用户名: 密码: 验证码:
堆芯上腔三维化的池式快堆系统分析软件开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前我国快堆系统分析软件主要采用国外引进方式而导致难以掌握核心物理模型的现状,本文首先通过开发中子动力学模型、堆芯及其热钠池模型、中间热交换器模型、一回路和中间回路热量传输系统模型、三回路模型等,自主开发出基于Compaq Visual Fortran的适用于稳态计算的池式快堆系统分析软件SAC-CFR (System Analysis Code for Pool-type Fast Reactor in China)。在此基础上,通过进一步开发系统部件的瞬态模型、控制系统和保护系统模型,及确定瞬态工况热工水力学的求解逻辑和稳定性标准,完成SAC-CFR瞬态计算功能的开发。
     堆芯上腔三维化的池式快堆系统分析软件SAC-CFR具有以下特点:中子动力学模型采用传统的、计算方法较为成熟的点堆模型,并且采用瞬跳近似和分段多项式逼近两种方法求解点堆方程。热钠池模型为基于直角坐标系和柱坐标系下的三维计算模型,具有一定的先进性。应用多孔介质方法建立钠池内中间热交换器、主泵、事故热交换器及屏蔽柱模型,完成了含有多孔介质模型和复杂几何边界的钠池三维计算模型开发,并完成了该三维模型向SAC-CFR的嵌入。
     应用SAC-CFR对中国实验快堆三个回路系统建模,分析其在不同功率台阶稳态运行时系统的热工水力学状态,验证了所开发稳态模型的计算精度。之后,应用SAC-CFR对文殊快堆45%功率汽机跳闸工况进行建模分析,将计算所得的一回路流量、主容器进出口温度、中间热交换器出口温度等关键参数与堆内实测数据进行对比,发现各参数变化趋势一致,初步验证了该软件用于系统瞬态分析的有效性。
     最后,应用堆芯上腔三维化的SAC-CFR分析文殊堆停堆瞬态过程中上腔室内热工水力学特性,发现了文殊堆上腔室内流体热分层特点;分析中国实验快堆在稳态运行和紧急停堆工况下钠池内的流场分布,验证多孔介质模型的合理性,得到了钠池内流场分布特点。
     作为系统软件SAC-CFR开发工作的延伸,通过建立非能动余热排出系统(Passive Direct Reactor Auxiliary Cooling Syste, PDRACS)内事故热交换器、空冷器、一回路和中间回路管道内的热工水力学模型,开发出非能动余热排出系统的计算程序。稳态初始化之后,用该程序模拟反应堆跳闸的同时空冷器风门打开的瞬态工况,得到了中间回路自然循环的流量、PDRACS带走的功率、空冷器出口空气温度、中间热交换器两侧温度等参数随时间的变化。
Aiming at developing system analysis code independently, a System Analysis Code for Pool-type Fast Reactor in China (SAC-CFR), with neutron kinetics model, core and hot pool model, intermediate heat exchanger model, primary and intermediate heat transport system, steam generation system, was developed based on Compaq Visual Fortran to analyze the thermal-hydraulic characteristic of fast reactor under steady state operation. Then the transient calculation function of SAC-CFR was developed with further development of component transient model, plant control and protection system model, transient calculation logic and stability criteria.
     The newly developed SAC-CFR is characterized by three aspects. Firstly, the conventional point reactor neutron kinetics model was chosen to calculate the time dependent fission power with prompt jump approximation (PJA) method and piecewise polynomial approximation method. Secondly, the hot pool was analyzed with three-dimensional model developed based on SIMPLE algorithm on stagger grid under Cartesian coordinates and cylindrical coordinates. Thirdly, The three-dimensional hot pool analysis model was updated after incorporating porous medium model of penetration components and complex geometry component. Penetration components included intermediate heat exchanger (IHX), primary pump, decay heat exchanger (DHX), and radial shielding. Then the updated three-dimensional model was embedded into SAC-CFR.
     Then the newly developed code was used to analyze system thermal-hydraulic characteristic of China Experimental Fast Reactor (CEFR) under steady state operation of different power level. The good agreements between the simulation results and data in CEFR safety analysis report (SAR) showed that the present model is effective. The transient started from turbine trip test at45%thermal output in the Monju plant was analyzed with SAC-CFR. The simulation results, such as mass flow rate in primary loop, coolant temperature at inlet and outlet of main vessel, coolant temperature at outlet of intermediate heat exchanger (IHX), were compared with the data tested in reactor. A good agreement between the calculated results and the test data was obtained.
     Finally, the system analysis code with three-dimensional hot pool model was used to analyze the thermal-hydraulic behavior in upper plenum of "MONJU" FBR during reactor scram transient, and the flow field in CEFR hot pool under steady-state operation condition and after scram. Some thermal stratification characteristics in Monju was founded. The agreement between the computational flow field and hot pool geometry of CEFR showed the effectiveness of porous medium model. Also, some characteristic of flow field was founded.
     As the extension of SAC-CFR development, an analysis code to perform thermal-hydraulic calculation in Passive Direct Reactor Auxiliary Cooling System (PDRACS) was developed through the coupling of thermal-hydraulic response in direct heat exchanger (DHX), air heat exchanger (AHX) and circuits of PDRACS. After steady-state initialization, a transient starting from air damper opening at the instant of reactor scram was simulated. Key parameters, such as mass flow rate in intermediate loop under natural circulation, heat removed by PDRACS, air temperature at AHX outlet, coolant temperature at both side of DHX, are calculated, which preliminary showed the effectiveness of the code. And the newly developed code is now ready to be incorporated into SAC-CFR to perform the interactive response between the PDRACS and the whole system after scram.
引文
[1]赵志祥.加快我国快堆商用化进程[J].中国核工业,2012:30-31
    [2]周培德.发展快堆技术促进核电可持续发展[R].2007年三代核电技术报告会.
    [3]徐銤.核能的可持续发展和快堆[J].中国核电,2009,V2(2):106-110
    [4]H B Zhang, H H Zhao, Cliff Davis, et al. RELAP5 Analysis of the Hybrid Loop-Pool Design for Sodium Cooled Fast Reactors [R]. USA:Anaheim, ICAPP,2008
    [5]Yoshitaka Chikazawa, Shoji Kotake, Shusaku Sawada. Comparison of advanced fast reactor pool and loop configurations from the viewpoint of construction cost [J]. Nuclear Engineering and Design,2011,241:378-385.
    [6]M Khatib-Rahbar, J G Guppy, R J Cerbone. LMFBR SYSTEM-WIDE TRANSIENT ANALYSIS:THE STATE OF THE ART AND U.S. VALIDATION NEEDS [R]. USA:BNL-NUREG-31543,1982
    [7]D. C. ALBRIGHT, R. A. BARI, Cerbone R J. PRIMARY PIPE RUPTURE ACCIDENT ANALYSIS FOR THE CLINCH RIVER BREEDER REACTOR[R]. USA:BNL-NUREG-21656,1976
    [8]Martin, B.A., Agrawal, A.K., Albright, D.C., et al. NALAP:an LMFBR system transient code [R]. USA:BNL-50457,1975
    [9]Gebhardt, W., Luigs, D. IANUS:a reactor code system for nuclear design calculations[R]. USA:CONF-750413-P2,1975
    [10]Cheung, A.C., Kao, T.T., Cho, S.M., et al. Comparison of results between the DEMO 1-D and the COMMIX 3-D analysis of the CRBRP-IHX under a natural-circulation event[R]. USA:CONF-830702-29,1983.
    [11]B. Schubert. Untersuchungen zur Anlagendynamik von natriumgekuhlten Schnellen Brutreaktoren-Verifikation eines Anlagenmodells[R]. GKSS:1988.
    [12]Hetrick, D.L., Sowers, G. W. BRENDA:a dynamic simulator for a sodium-cooled fast reactor power plant [R]. USA:NUREG/CR-0244,1978
    [13]Cady, K.B., Pavlenco, G.F., Raber, J.R., et al. EPRI-CURL dynamic analysis of loop type LMFBRs [R]. USA:EPRI-NP-1001,1979
    [14]W. C. Horak, J.G. Guppy and R.J. Kennett. VALIDATION OF SSC USING THE FFTF NATURAL-CIRCULATION TESTS[R]. BNL-NUREG-31437
    [15]Horak, W.C., Kennett, R.J., Guppy, J.G. Long term post-test simulation of the FFTF natural circulation tests using SSC [R]. USA:BNL-NUREG-34245,1984
    [16]Van Tuyle, G.J., Guppy, J.G.Analysis of the CRBRP part-load conditions using SSC/MINET [R]. USA:BNL-NUREG-31430,1982
    [17]Computer Codes:SASSYS-1. [EB/OL]. http://www.ne.anl.gov/codes/sassys/index.html
    [18]Hill, DJ. SASSYS analysis of EBR-Ⅱ SHRT experiments [R]. USA: CONF-871101-20,1987
    [19]Bordner, G.L., Dunn, F.E. SASSYS pretest analysis of the THORS-SHRS experiments[R]. USA:CONF-850410-17,1985
    [20]Computer Codes:SAS4A. [EB/OL]. http://www.ne.anl.gov/codes/sas4a/index.html
    [21]Briggs, L.L. SAS4A simulation of the OPERA-15 two-dimensional voiding experiment[R]. USA:CONF-841105-14,1984
    [22]Tentner, A.M., Kalimullah, Miles, K.J. Analysis of metal fuel transient overpower experiments with the SAS4A accident analysis code [R]. USA: CONF-900804-7,1990
    [23]Tentner, A.M., Birgersson, G., Cahalan, J.E., et al. SAS4A:A computer model for the analysis of hypothetical core disruptive accidents in liquid metal reactors [R]. USA:CONF-870472-3,1987
    [24]杨红义,徐銤.OASIS程序的开发与应用[J].核科学与工程,2001,21(4):322-325
    [25]XU Mi. The status of Fast Reactor Technology Development in China[R]. Vienna, Austria:IAEA,1999
    [26]张春明.DINROS程序在中国实验快堆事故分析中的应用[J].核科学与工程,2006,26(2): 142-148
    [27]任丽霞.钠冷快堆系统分析程序使用开发[D].北京:中国原子能科学研究院,2003
    [28]廖智杰,任玉新,沈孟育等.中国实验快堆事故停堆后余热排放过程的数值模拟[J].核科学与工程,1999,19(3):201-209
    [29]S.C. Chetal, V. Balasubramaniyan, P. Chellapandi, et al. The Design of the Prototype Fast Breeder Reactor [J]. Nuclear Engineering and Design,2006, 236(7-8):852-860
    [30]B. Farrar, J. C. Lefevre, S. Kubo, et al. Fast reactor decay heat removal: approach to the safety system design in Japan and Europe [J]. Nuclear Engineering and Design,1999,193(1-2):45-54.
    [31]F. Hofmann, C. Essig. Investigation on Natural Convection Decay Heat Removal for the EFR Status of the program [R]. SPECIALISTS'MEETING ON "Evaluation of Decay Heat Removal by Natural Convection" IWGFR/88, Feb, 1993, Oarai Engineering Center, PNC, JAPAN:15-19
    [32]N. Kasinathan. Analysis of decay heat removal by natural convection in PFBR[R]. SPECIALISTS'MEETING ON "Evaluation of Decay Heat Removal by Natural Convection" IWGFR/88, Feb,1993, Oarai Engineering Center, PNC, JAPAN:15-19
    [33]Y. Ieda. Strategy of experimental studies in PNC on natural circulation decay heat removal [R]. SPECIALISTS'MEETING ON "Evaluation of Decay Heat Removal by Natural Convection" IWGFR/88, Feb,1993, Oarai Engineering Center, PNC, JAPAN:15-19
    [34]T.C. Hung, V.K. dHIR, J.C. Chang, et al. CFD modeling and thermal-hydraulic analysis for the passive decay heat removal of a sodium-cooled fast reactor [J]. Nuclear Engineering and Design,2011,241(7-8):425-432
    [35]T. H. Chien, H. M. Domanus, W. T. Sha. COMMIX-PPC:A Three-Dimensional Transient Multicomponent Computer Program for Analyzing Performance of Power Plant Condensers Volume 1:Equations and Numerics [R]. USA: ARGONNE National Laboratory, ANL-92/2[R],1993
    [36]Shin, Y.W. Three-dimensional thermal-hydraulic analysis of a liquid metal reactor design with the COMMIX code [R]. USA:CONF-881115-2,1988
    [37]Tzanos, C.P., Pedersen, D.R. Analysis of RVACS test 2F-L for COMMIX validation[R]. USA:CONF-890819-23,1989
    [38]T. Muramastsu, I. Maedawa, M. Matsumoto, et al. Single-Phase Multi-Dimensional Thermal-Hydraulic Analysis Code:AQUA-Program Description[R]. Japan:PNC N952087-013,1987
    [39]T. Muramastsu, I. Maekawa, M. Matsumoto, et al. Single-Phase Multi-Dimensional Thermal-Hydraulic Analysis Code:AQUA-Input Manual [R]. Japan:PNC N9520 87-011,1987
    [40]Tenchine, D., Barthel, V., Bieder, U., et al. Status of TRIOU code for sodium cooled fast reactor[J]. Nuclear Engineering and Design,2012,242,307-315.
    [41]邓保庆,席时桐,卢万成.快堆钠池三维稳态与非稳态流动传热的数值研究[J].原子能科学技术,1998,32(4):328-337
    [42]卢万成,席时桐,邓保庆.三维流动传热空隙率计算程序FASTOR-3D开发研究[J].工程热物理学报,1998,19(5):616-619
    [43]廖智杰,任玉新.快堆热钠池的三维热工水力分析[J].核科学与工程,1998,118(2):125-129
    [44]陈逸少,蒋帆,殷浩松.实验快堆自然循环和衰变热排出系统计算程序DHRSC[J].原子能科学技术,1991,25(5):85-89
    [45]Akira Yamaguchi, Hiroyuki Ohshima. Improvement of Reactivity Feedback Modeling in SSC-L and Analysis of Plant Thermal Hydraulic Behavior During ATWS Accident [R]. Japan:Power Reactor and Nuclear Fuel Development Corporation,1988
    [46]Shinji YOSHIKAWA, Masaki MINAMI. Data Description for Coordinated Research Project on Benchmark Analyses of Sodium Natural Convection in the Upper Plenum of the MONJU Reactor Vessel under Supervisory of Technical Working Group on Fast Reactor, International Atomic Energy Agency [R]. Japan:Japan Atomic Energy Agency,2009
    [47]Power Reactor & Nuclear Fuel Development Corporation. Prototype Fast Breeder Reactor Monju[M/OL]. Japan:[s.n.],1985. http://www.jaea.go.jp/english/
    [48]Power Reactor & Nuclear Fuel Development Corporation. PNC Technical Review[J/OL]. Japan:[s.n.],1984. http://www.jaea.go.jp/english/
    [49]Hiroyasu Mochizuki. Verification of NETFLOW code using plant data of sodium cooled reactor and facility [J]. Nuclear Engineering and Design,2007, 237(1):87-93
    [50]Hiroyasu Mochizuki. Development of the plant dynamics analysis code NETFLOW++[J]. Nuclear Engineering and Design,2010,240(3):577-587
    [51]Akira Yamaguchi, shinji yoshikawa, Hiroyuki Ohshima, et al. Improvemetn in Accuracy and the Applicability of SSC-L [R]. Japan:PNC N9410 87-143,1987
    [52]Emonot, P., Perdu, F., Baviere, R., et al. Coupling CATHARE and Trio U Using ICOCO[R]. NURISP, Karlsruhe.
    [53]Xu, C., Class, A., Meloni, P., et al.. THINS project presentation[R]. Seventh Framework Programme of EUROATOM for Nuclear Research and Training Activities,2010
    [54]谢仲生.核反应堆物理分析[M].西安:西安交通大学出版社,2004
    [55]于平安,朱瑞安,喻真烷,等.核反应堆热工分析[M].上海:上海交通大学出版社,2002
    [56]AKIRA Y, SHINJI Y, HIROYUKI O, et al. Improvement in the accuracy and the applicability of SSC-L[R]. Japan:Power Reactor and Nuclear Fuel Development Corporation,1987
    [57]Van TUYLE G J, GUPPY J G, NEPSEE T C. MINET:Transient analysis of fluid-flow and heat-transfer networks[R]. USA:Brookhaven National Laboratory,1983
    [58]刘桂娟.CEFR功率调节系统的设计与研究[D].北京:中国原子能科学研究院,2006
    [59]姚远.中国实验快堆功率调节系统的数字化仿真研究[D].北京:中国原子能科学研究院,2007
    [60]张建民.核反应堆控制[M].北京:原子能出版社,2009,pp:205-210
    [61]谢仲生.核反应物理分析[M].西安:西安交通大学出版社,2004,PP:214-246
    [62]KHATIB-RAHBAR M, AGRAWAL A K, SRINIVASAN E S. Feedback control system for non-linear simulation of operational transients in LMFBR[R]. USA: Brookhaven National Laboratory,1979.
    [63]FINK J K. Thermophysical properties of uranium dioxide[J]. Journal of Nuclear Materials,2000,279(1):1-18
    [64]方昆凡.工程材料手册[M].北京:北京出版社,2001
    [65]快堆研究编辑部.钠钾工程手册[M].北京:出版地不详,1986
    [66]HUH Byung Gil, KIM Sin, CHUNG Chang Hyan. The turbulent prandtl number for temperature analysis in rod bundle subchannels[J]. Journal of Nuclear Science and Technology,2005,42(2):183-190
    [67]KONSTANTIN M. Heat transfer to liquid metal:Review of data and correlations for tube bundles[J]. Nuclear Engineering and Design,2009,239(4): 680-687
    [68]Hiroyasu Mochizuki, Masahito Takano. Heat transfer in heat exchangers of sodium cooled fast reactor systems [J]. Nuclear Engineering and Design,2009, 239:295-307
    [69]李庆扬,王能超,易大义.数值分析[M].北京:清华大学出版社,2008.
    [70]单建强,王军武,王学容.钠冷快堆无保护失流事故和安全特性研究[J].核科学与程,2002,22(2):113-118.
    [71]A.E. Aboanber, Y.M. Hamada. PWS:an efficient code system for solving space-independent nuclear reactor dynamics [J]. Annals of Nuclear Energy, 2002,29:2159-2172
    [72]Gilberto Espinosa-Paredes, Marco-A. Polo-Labarrios, Erick-G. Espinosa-Martinez, et al. Fractional neutron point kinetics equations for nuclear reactor dynamics [J]. Annals of Nuclear Energy,2011,38:307-330
    [73]肖红,王侃.求解点堆动态方程的IGear方法[J].核科学与程,2008,28(2):107-114.
    [74]经荥清,李君利,罗经宇.点堆动态学方程几种解法的比较[J].清华大学学报,1995,35(3):7-12.
    [75]蔡章生.一个新的中子倍增公式[J].核动力工程,1995,16(2):129-134
    [76]胡大璞.克服点堆中子动力学方程刚性的新方法——断点浮动法[J].核动力工程,1993,14(2): 122-128
    [77]濮继龙.点堆动态方程的半解析解[J].核动力工程,1983,4(1):1-16
    [78]J. J. Kaganove. Numerical Solution of the One-group Space-Independent Reactor Kinetics Equations for Neutron Density Given the Excess Reactivity[R]. USA:Argonne National Laboratory, ANL-6132,1983.
    [79]沈华韵.中子连续能量时空动力学直接模拟方法研究[D].北京:清华大学,2008
    [80]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001,pp:176-183
    [81]李庆扬,王能超,易大义.数值分析[M].北京:清华大学出版社,2008.
    [82]TENCHINE D, MORO J P. Experimental and numerical study of coaxial jets[C]//Proceedings of Eighth International Topic Meeting on Nuclear Reactor Thermal-Hydraulics. Kyoto, Japan:Atomic Energy Society of Japan,1997: 1381-1386.
    [83]Akira, Y., Hiroyuki, O. Key Technology Design Study of a Large LMFBR-Improvement of Reactivity Feedback Modeling in SSC-L and Analysis of Plant Thermal Hydraulic Behavior During ATWS Accident [R]. PNC N9410 88-006, Japan,1988
    [84]Hongbin Zhang,Haihua Zhao,Cliff Davist, et al. RELAP5 Analysis of the Hybrid Loop-Pool Design for Sodium Cooled Fast Reactors [R]. Proceedings of ICAPP, USA,2008
    [85]Eckhard Krepper, Matthias Beyer. Experimental and numerical investigations of natural circulation phenomena in passive safety systems for decay heat removal in large pools [J]. Nuclear Engineering and Design,2010,240: 3170-3177
    [86]Floyd E. Dunn, Frederick G. Prohammer, David P. Weber. The SASSYS LMFBR systems code [R]. Argonne National Laboratory. Argonne, Illinois
    [87]Won-Pyo Chang, Young-Min Kwon, Yong-Bum Lee,et al. Model development for analysis of the Korea advanced liquid metal reactor [J]. Nuclear Engineering and Design,2002,217(1):63-80
    [88]Juan J. Carbajo. Applicability of Heat Transfer Coefficient Correlations to Single-phase Convection in Liquid Metals [R].USA:Oak Ridge National Laboratory,2008
    [89]赵志祥.中国实验快堆最终安全分析报告[R].北京:中国原子能科学研究院,2008
    [90]刘一哲.最佳估算方法在中国实验快堆一回路热工流体力学分析中的应用研究[D].北京:中国原子能科学研究院,2011
    [91]杨红义.中国实验快堆动态模拟系统的建立[J].原子能科学技术,1999,33(2):108-113
    [92]高剑锋.典型工况下中国实验快堆栅板联想流体力学分析[D].北京:中国 原子能科学研究院,2005
    [93]刘一哲,喻宏.快堆燃料组件热工流体力学计算研究[J].原子能科学技术,2008,42(2):128-134
    [94]薛秀丽.中国实验快堆堆芯出口区域温度分布研究[D].北京:中国原子能科学研究院,2006
    [95]许义军,刘一哲,薛秀丽等.池式快堆三维热工流体力学设计研究[J].核科学与程,2009,29(4):308-315.
    [96]张亚勃,杨红义.CEFR堆芯围筒开孔处温度场及流场分析[J].原子能科学技术,2008,42(10):916-919
    [97]李静.中国实验快堆空气热交换器热工流体力学研究[D].北京:中国原子能科学研究院,2007
    [98]Hiroyasu Mochizuki. Inter-subassembly heat transfer of sodium cooled fast reactor:Validation of the NETFLOW code[J]. Nuclear Engineering and Design, 2007,237(1):2040-2053
    [99]Yasuhiro Enuma, akira Yamaguchi.An Analysis of the Secondary Loop Natural Circulation Test in Monju using SSC-L [R]. PNC ZN9410 93-213, Japan,1993
    [100]FBR Plant Engineering Center. External evaluation on Monju core confirmation test in FY 2010 [M]. Japan:[s.n.],2011
    [101]Power Reactor & Nuclear Fuel Development Corporation. Recent design of FBR Monju[M]. Japan:[s.n.],1984.
    [102]Akira Miyakawa, Kazuhiro Hattori, Takahisa Jou. The Prototype Fast Breeder Reactor Monju System Startup Tests Report [R]. JNC TN2410 2005-002, Japan, 2005
    [103]沈锡荣,周振年.实验快堆停堆后衰变热特性[J].核动力工程,1988,9(3):90-94.
    [104]许义军,陆道纲,杨红义,等.中国实验快堆额定工况下冷热钠池数值分析[J].原子能科学技术,2004,38(2):115-120.
    [105]MAEDAWA I, MURAMASTSU T, MATSUMOTO M, et al. A single-phase multi-dimensional thermal-hydraulic analysis code:AQUA-the description of the numerics, PNC N9520 87-012[R]. Japan:[s. n.],1987
    [106]Toshiharu Muramatsu. Manual Trip Event Analysis from a Full-power Operation Condition at the Power Ascention Test Period [R]. PNC ZN9410 92-322, Japan,1992
    [107]Yoshihiro, D., Toshiharu, M., Kousuke, K. Thermal Stratification Tests in Monju Upper Plenum-Temperature Distribution under Normal and Scram Conditions with 40% power operation [R]. PNC TN9410 96-117, Japan,1996
    [108]许义军,杨红义,喻宏.中国实验快堆热钠池热分层现象研究[J].核科学与工程,2008,28(4):313-318
    [109]张亚勃,杨红义.中国实验快堆堆芯围筒开孔对正常运行工况影响的分析[J].核科学与工程,2008,28(2): 120-124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700