用户名: 密码: 验证码:
镁合金板材温热冲压成形理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为最具发展潜力、最具竞争力的轻金属材料之一,被誉为二十一世纪的“绿色工程材料”,具有非常广阔的应用前景。镁合金板材温热冲压成形工艺不仅可以充分利用镁合金材料优异的机械性能、环保性以及满足产品薄壁化、轻量化的发展趋势,而且能够大幅度提高生产效率和产品合格率,正受到前所未有的关注。镁合金板材温热成形过程涉及工艺因素较多,是一个极其复杂的多参数耦合的非线性过程,采用“试错”的传统工艺设计方法已经无法充分发挥镁合金板材的成形性能,基于数值模拟的定量化工艺设计方法,必将成为镁合金板材温热成形工艺设计的发展方向。尽管国内外对镁合金板材成形工艺和实验研究进行了大量摸索,但对镁合金板材温热成形理论还需要进一步深入探索。镁合金板材温热冲压成形技术的研究已经成为镁合金应用技术中颇具挑战性的课题之一。
     本文以AZ31镁合金板材作为研究对象,以板材温热成形理论和拉延技术研究作为两条研究主线,从基础层、理论层和应用层三个层面进行系统研究;总体上采用试验和数值模拟相结合的研究方法;采用从基本性能实验到温热成形理论,再从温热成形理论指导工艺原型开发的研究思路。
     本文首先通过轧制实验、单向拉伸实验和微观组织分析,研究了AZ31镁合金板材的交叉轧制和热处理技术,获得了力学性能良好的镁合金板材的核心制备技术,并且分析了AZ31镁合金板材温热变形力学行为和微观组织特征;在此基础之上,提出了考虑温度效应的镁合金板材温热成形韧性破裂准则,开展了成形极限实验(FLD,Forming Limit Diagrams),获得了不同温度下的成形极限曲线(FLC,Forming Limit Curves),通过数值模拟和实验相结合的方法确定了韧性破裂准则中的材料参数;采用基于热力耦合的数值模拟方法对镁合金板材温热拉延成形过程进行了数值计算,以建立的考虑温度效应的镁合金板材韧性破裂准则作为判断破裂的标准,定量地分析了温度场和压边力等工艺因素对镁合金板材温热成形性能的影响机制,并且采用数值模拟的方法设计了镁合金板材变压边力差温拉延工艺方案;最后,通过可加热变压边力液压机和差温拉延模具,实现了镁合金板材拉延过程中压边力和温度的实时控制,形成了镁合金板材变压边力差温拉延工艺原型,实现了AZ31镁合金板材温热成形性能的显著提高。相对于以往的研究成果和研究经验,本文具有以下创新之处:
     1、提出了考虑温度效应的镁合金板材温热成形韧性破裂准则,解决了镁合金板材温热成形数值模拟中无法准确判断材料损伤破裂的技术难题,基于镁合金温热成形韧性破裂准则,揭示了成形温度和压边力等工艺因素对成形性能的影响机制,实现了对成形过程的定量分析;
     2、采用电化学蚀刻的方法,制取了清晰的应变网格圆,进行了AZ31镁合金板材在100℃、250℃、300℃变形温度下的成形极限实验,采用网格应变分析技术,制作了不同变形条件下的成形极限图,建立了镁合金板材温热成形性能的评价方法,突破了目前无法定量评价AZ31镁合金板材温热成形性能的难点;
     3、通过变压边力液压机和差温拉延模具,对拉深过程中拉深力、拉深速度、拉深温度进行了实时控制,开发了镁合金板材差温拉延和变压边力技术,形成了AZ31镁合金板材差温拉延和变压边力工艺原型,实现了镁合金板材成形性能的显著提高,极限拉深比达到3.5。
     通过本文的研究,有助于拓宽镁合金板材冲压成形领域,丰富和发展薄板温热冲压成形理论,形成镁合金板材变压边力差温拉延工艺原型,实现工艺设计由“定性”到“定量”的转变,促进镁合金板材温热冲压成形技术的推广和应用。
Magnesium alloy as the most development potential and competitive light metal is named as“the 21 Century's green engineering material”because of its low density, excellent specific strength and recyclebility. Warm deep drawing of magnesium alloy sheet not only meets the demands on the environmental protection and the lighter trend of products, but also can remarkably improve productivity and qualification of the products. The techniques of warm forming of magnesium alloy have been paid a great deal of attentions in recent years. At present, most investigations about warm deep drawing of magnesium alloy are focus on process and experiment. Few efforts are made on deformation mechanism in theory. So the theoretical investigation of warm forming technology also needs to be explored. However, the process of warm deep drawing of magnesium alloy sheet involving many processing parameters is a nonlinear producer of multi-fields coupled. Process design adopting try-and-error methods already have not made full use of favorable warm performance of magnesium alloy. Quantitative design of process based on numerical simulation is the development trend in the near future. So the research of warm deep drawing of magnesium alloy sheet is already became the most challenge project in the application technology of magnesium alloy.
     In this thesis, AZ31 magnesium alloy sheet is the main investigated subject. Theory and process study of warm deep drawing are the two main research threads, and the investigations are divided into three levels (basis level, theory level, application level). The combination research method of experiment with numerical simulation is adopted in general. The investigated route is from fundamental performance tests to warm forming theory, and then from warm forming theory to warm deep drawing experiments.
     AZ31 magnesium alloy sheet with good performance is fabricated through cross rolling and annealing heat treatment process. Through uniaxial tension tests and metallographic analysis, the mechanical behavior and the microstructure warm deformation characters of AZ31 magnesium alloy sheet are analyzed. A ductile fracture criterion of magnesium alloy sheet considering temperature effect is put forward. Forming Limit Diagrams experiments are also performed, and the forming limit curves of AZ31 magnesium alloy sheet are obtained under different forming temperatures. The material paramaters are calculated by the combination method of experiment with FE simulation. Thermo-mechanical coupled simulation of warm deep drawing of AZ31 magnesium alloy sheet is also performed. The effects of drawing temperature and blank holder force on the ductile fracture criterion are quantitative analyzed by numerical simulation method, and the deformation mechanism is disclosed. A new process of variable blank holder force and non-isothermal deep drawing of AZ31 magnesium alloy sheet is designed numerically. Finally, a hydraulic press with adjustable blank holder force and non-isothermal deep drawing die are manufactured. Real-time control of temperature and blank holder force is realized. Experimental verifications of variable blank holder force and non-isothermal deep drawing process are performed. The warm forming performance of AZ31 magnesium alloy sheet can be improved remarkably through the variable blank holder force and non-isothermal deep drawing process.
     The creatively work in this thesis as follows:
     1. The ductile fracture criterion of magnesium alloy sheet considering temperature effect is put forward. The difficulties of accurately deciding cracks in numerical simulation of warm forming are resolved. Based on this ductile fracture criterion,the deformation mechanisms of drawing temperature and blank holder force are disclosed. The change from qualitative to quantitative process design is realized.
     2. The clear meshes are fabricated by electrochemical etching method. Forming limit diagrams experiments of AZ31 magnesium alloy sheet are performed at different drawing temperature of 100℃, 250℃and 300℃, and the forming limit curves are measured by strain analysis technology. The warm forming performance evaluation criterion of AZ31 magnesium alloy sheet is put forward. The difficulty of quantitative evaluation of warm forming performance of AZ31 magnesium alloy sheet is resolved.
     3. Real-time control of punch load, punch velocity and drawing temperature are realized by variable blank holder force hydraulic press and non-isothermal die. The new process of variable blank holder force and non-isothermal deep drawing process of AZ31 magnesium alloy sheet are explored. The limit drawing ratio can reach 3.5.
     The research of this thesis is help to extend the application field of forming technology of magnesium alloy sheet,and develop the warm forming theory. It can promote the application of warm forming technology of magnesium alloy sheet.
引文
[1] Aedesian Michael M, Baker Hugh. Magnesium and Magnesium alloys. ASM International, 1999.
    [2] Robert S. Busk. Magnesium Products Design. The International Magnesium Association, 1987:373~374.
    [3]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京,机械工业出版社,2002.
    [4] H. Friedrich,S. Schumann. Research for a‘‘new age of magnesium’’in the automobile industry. Journal of Materials Processing Technology. 2001,117:276~281.
    [5] E. Aghion,B.Bronfin. Magnesium alloys development toward the 21st century. Materials Science Forum. 2000,22:19~28.
    [6]彭晓东,刘江.轻合金在汽车工业中的应用.汽车工艺与材料. 1999,1:1~16.
    [7] Satroselsky A,Anand L. A constitutive model for hcp materials deforming by slip and twinning application to magnesium alloy AZ31B. Int J Plasticity. 2003,19:1843.
    [8] Hoy-Petersen N. Proc. 47th Annual World Magnesium Conf.,International Magnesium Association. 1990,118:18.
    [9]陈振华,严红革,陈吉华等.镁合金.化学工业出版社,北京,2004.
    [10]日本マグネシゥ协会编,マグネシゥ技术便览.东京,カロス出版株式会社,2000.
    [11] Cahn R W,SHI Changxu,KEJun. Structure and Properties of Nonferrous Alloys. Beijing,Science Press,1999.
    [12] Hosokawa H,Chino Y,Shimojima K. Mechanical Properties and Blow Forming of Rolled Mg Alloy Sheet. Materials Transcations,2003,44(4):489~492.
    [13]张青来,卢晨,朱燕萍,丁文江,贺继泓.轧制方式对AZ31镁合金薄板组织和性能的影响,中国有色金属学报,2004,14(3):391~398.
    [14] Yukutake. E,Kaneko J,Sugamata M. Anisotropy and Non-Uniformity in plastic Behavior of AZ31 Mg Alloy Plates. Materials Transcations,2003,44(4):452~456.
    [15] Chino Y,Lee J S,Sassa K,et al. Press formability of arolled AZ31 Mg alloy sheet with controlled texture. Mater Lett,2006,60:173~176.
    [16]杨平,孟利,毛卫民,蔡庆武.利用道次间退火改善镁合金轧制成形性的研究,材料热处理学报,2005,26(2):34~41.
    [17]杨平,任学平,赵祖德,AZ31镁合金热成形及退火过程的组织与织构,材料热处理学报,2003,24(4):12~18.
    [18]陈振华,夏伟军,程永奇,傅定发,镁合金织构与各向异性,中国有色金属学报,2005,15(1):1~11.
    [19]王国军,变形镁合金挤压材生产技术及其标准.冶金标准化及其质量.2002,40(6):50~54.
    [20] Murai T,Matsuoka S,Miyamoto S,et al. Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions. Journal of Materials Processing Technology,2003,141(2):207~212.
    [21] Lapovok R. Y,Barnett M. R,Davies C. H. J. Construction of extrusion limit diagram for AZ31 magnesium alloy by FE simulation,Journal of Materials Processing Technology,2004,146(3):408~416.
    [22]黄光胜,汪凌云,范永革. AZ31B挤压工艺研究,金属成形工艺,2002,20(5):11~15.
    [23] Ogawa N,Shiomi M,Osakakd. Forming limit of magnesium alloy at elevated temperatures for precision forging. International Journal of Machine Tolls & Manufacture,2002,42:468~475.
    [24]濱葆夫,渡辺洋.薄肉マグネシウムの熱間鍛造技術の開発.軽金属,2001,51(11):573~575.
    [25]刑剋,惣田訩荆瑮罹A躍,三浦博己,酒井拓. AZ31マグネシウム合金の降温中多軸鍛造による微細粒組織の生成,軽金属,2004,54:527-531.
    [26]吕炎,徐福昌,薛克敏等.镁合金上机匣等温精锻工艺的研究,哈尔滨工业大学学报,2000,32(4):127~129.
    [27]关学丰.用铸锭直接制取镁锻件方法的研究.湖南冶金,1996,5:12~14.
    [28]萨洛金.镁合金板料冲压工艺.机械工业出版社,1958,11,第一版.
    [29] J. Enss,T. Evertz,T. Reier,et al. New magnesium rolled production for automobile application , Proceeding of the Second Israeli International Conference on Magnesium Science & Technology,Dead Sea,Israel,2000: 19~34.
    [30] E. Doege,K. Droder. Sheet metal forming of magnesium wrought alloys—formability and process technology. Journal of Materials Processing Technology 2001,115:14~19.
    [31] Fuh-Kuo Chen,Tyng-Bin Huang. Formability of stamping magnesium-alloy AZ31 sheets. Journal of Materials Processing Technology,2003,142:643~647.
    [32] Fuh-Kuo Chen,Tyng-Bin Huang,Chih-Kun Chang. Deep drawing of square cups with magnesium alloy AZ31 sheets. International Journal of Machine Tools & Manufacture,2003,43:1553~1559.
    [33] Shyong Lee, Yung-Hung Chen, Jian-Yih Wang. Isothermal sheet formability of magnesium alloy AZ31 and AZ61. Journal of Materials Processing Technology, 2002 (124):19–24.
    [34] H. Watari,N. Koga,K. Davey,T. Haga,M.T. Alonso Ragado. Warm deepdrawing of wrought magnesium alloy sheets produced by semi-solid roll strip-casting process. International Journal of Machine Tools and Manufacture,2006,46(11):1233~1237.
    [35] K. Iwanage,H. Tashiro,H. Okamoto,K.Shimizu. Improvement of formability from room temperature to warm temperature in AZ31 magnesium alloy. Journal of Materials Processing Technology. 2004,155–156:1313~1316.
    [36] K.F. Zhang,D.L. Yin,D.Z. Wu. Formability of AZ31 magnesium alloy sheets at warm working conditions. International Journal of Machine Tools & Manufacture. 2006,46:1276~1280.
    [37] D.L. Yin,K.F. Zhang,G.F. Wang,W.B. Han. Warm deformation behavior of hot-rolled AZ31 Mg alloy,Materials Science and Engineering A. 2005,392(1-2):320~325.
    [38] D.L. Yin,K.F. Zhang,G.F. Wang,W.B. Han. Superplasticity and cavitation in AZ31 Mg alloy at elevated temperatures. Materials Letters,2005,59(14-15):1714~1718.
    [39]张凯锋,尹德良,吴德忠,蒋少松. AZ31镁合金板的热拉深性能.中国有色金属学报,2003,13(6):1505~1509.
    [40]陈振华,程永奇,夏伟军,傅定发. AZ31镁合金薄板热拉深工艺研究.湖南大学学报,2005,32(1):83~86.
    [41] Yong Qi Cheng,Zhen Hua Chen,Wei Jun Xia. Drawability of AZ31 magnesium alloy sheet produced by equal channel angular rolling at room temperature. Materials Characterization,2006,In Press.
    [42]程永奇,陈振华,傅定发.镁合金拉深工艺的研究与进展.热加工工艺,2004(11):52~55.
    [43]张坤,王忠堂,张士宏,于传富.镁合金AZ31B板材热拉深成形工艺研究.轻合金加工技术. 2003,31(10):14~17.
    [44] S.H. Zhang,K. Zhang,Y.C. Xu,Z.T. Wang,Y. Xua,Z.G. Wang. Deep-drawing of magnesium alloy sheets at warm temperature. Journal of Materials Processing Technology. 2006,In Press.
    [45]郑文涛,徐永超,张士宏,王忠堂.镁合金手机壳的温热液压成形实验及模拟研究.塑性工程学报,2006,13(5):92~95.
    [46]卢志文,汪凌云,邱晓刚,潘复生.镁合金板材成形极限图(FLD)的实验研究.材料导报,2005,19(6):108~110.
    [47]陈林,汪凌云,卢志文. AZ31B镁合金板材冲压成形性能研究,轻合金加工技术. 2006,34(1):31~35.
    [48] K.Siegert,J. Hohnhaus,S. Wagner. Combination of Hydraulic Multipoint Cushion System and Segment-Elastic Blank-holders. SAE,980077.
    [49] K. Siegert,M. Ziegler,S. Wanger. Closed loop control of the friction force. Deep drawing process. Journal of Materials Processing Technology,1997,71:126~133.
    [50] K. Siegert,A. Rennet,K. J. Fann. Prediction of final part properties in sheet metal forming by CNC-controlled stretch forming. Journal of Materials Processing Technology,1997,71:141~146.
    [51] S. Thiruvarudchelvan. A hydraulic short-stroke device for deep drawing with the blank-holder force proportional to the punch force. Journal of Materials Processing Technology. 1995,51:106-121.
    [52] S. Thiruvarudchelvan,W. G. Lewis. Deep drawing with blank holder force approximately proportional to the punch force. Trans. ASME,J. Eng,Ind,1990,112(3):278~285.
    [53] S. Thiruvarudchelvan , N. H. Loh. Deep drawing of cylinder cups with friction-actuated blank holding. Journal of Materials Processing Technology,1994,40:343~358.
    [54] E. Doege,N. Sommer. Blank-holder pressure and blank-holder layout in deep drawing of thin sheet metal. Advanced Technology of plasticity: Proceeding of the Second International Conference on Technology of Plasticity,1987:1305~1314.
    [55] E. Doege,L. E. Elend. Design and application of pliable blank holder systems for the optimization of process conditions in sheet metal. Journal of Materials Processing Technology,2001,111:182~187.
    [56] Z. Q. Sheng,S. Jirathearanat. T. Altan. Adaptive FEM simulation for prediction of variable blank holder force in conical cup drawing. International Journal of Machine Tools and Manufacture,2004,44(5):487~494.
    [57]陈振华,变形镁合金,化学工业出版社,北京,2005.
    [58] Shoichiro Yoshihara,Hisashi Nishimura,Hirokuni Yamamoto,Ken-ichi Manabe. Formability enhancement in magnesium alloy stamping using a local heating and cooling technique: circular cup deep drawing process. Journal of Materials Processing Technology,2003,142:609~613.
    [59] S.Yoshihara , H.Yamamotob , K. Manabeb , H. Nishimura. Formability enhancement in magnesium alloy deep drawing by local heating and cooling technique. Journal of Materials Processing Technology,2003,(143–144):612~615.
    [60] S. Yoshihara,B.J. MacDonalda,H. Nishimura b,H. Yamamotoc,K. Manabec. Optimisation of magnesium alloy stamping with local heating and cooling using the finite element method. Journal of Materials Processing Technology,2004,(153–154):319~322.
    [61]张凯峰,吴德忠. AZ31镁合金非等温拉深性能的研究,材料科学与工艺,2004,12(1):87.
    [62] A. Staroselskya,L. Anandb. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B. International Journal of Plasticity,2003,19:1843~1864.
    [63] Takuda,H. Fujimoto,N. Hatta. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures,Journal of Materials Processing Technology,1998(80-81):513~516.
    [64] H. Takuda,T. Morishita,T. Kinoshita,N. Shirakawa. Modelling of formula for flow stress of a magnesium alloy AZ31sheet at elevated temperatures. Journal of Materials Processing Technology,2005,164–165:1258~1262.
    [65] M. R. Barnett. Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31. Journal of Light Metals,2001,1:167~177.
    [66] H. Takuda,T. Yoshii,N. Hatta. Finite element analysis of the formability of a magnesium-based alloy AZ31 sheet , Journal of Materials Processing Technology,1999,89~90:135~140.
    [67] H. Takuda,N. Hatta. Numerical analysis of formability of a commercially pure zirconium sheet in some sheet forming processes. Materials Science and Engineering A,1998,242,1-2:15~21.
    [68] H. Takuda,K. Morib,N. Hatta. The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals. Journal of Materials Processing Technology,1999,95:116~121.
    [69] H. Takuda,K. Mori,N. Takakura,K. Yamaguchi. Finite element analysis of limit strains in biaxial stretching of sheet metals allowing for ductile fracture. International Journal of Mechanical Sciences,2000,42:7857~7860.
    [70] H. Takuda,K. Mori,H. Fujimoto,N. Hatta. Prediction of forming limit in deep drawing of Fe/Al laminated composite sheets using ductile fracture criterion. Journal of Materials Processing Technology,1996,60,1-4:291~296.
    [71] Tyng-Bin Huang,Yung-An Tsai,Fuh-Kuo Chen. Finite element analysis and formability of non-isothermal deep drawing of AZ31B sheets,Journal of Materials Processing Technology,2006,177,1-3:142~145.
    [72] H. Takuda, K. Mori,I. Masuda,Y.Abe,M.Matsuo. Finite-element simulation of warm deep drawing of aluminium alloy sheet when accounting for heat conduction. Journal of Materials Processing Technology 2002,(120):412–418.
    [73] Abdel-Wahab El-Morsy , Ken-Ichi Manabe. Finite element analysis of magnesium AZ31 alloy sheet in warm deep-drawing process considering heat transfer effect. Materials Letters,2006,60:1866~1870.
    [74] Hariharasudhan Palaniswamy,Gracious Ngaile,Taylan Altan. Simulation of magnesium alloy sheet forming at elevated temperatures. Journal of Materials Processing Technology,2004,146:52~60.
    [75] Lin Wang,T.C. Lee. Controlled strain path forming process with space variant blank holder force using RSM method. Journal of Materials Processing Technology. 2005,167:447~455.
    [76] N. Krishnan,J. Cao. Estimation of optimal blank holder force trajectories insegmented binders using an ARMA model. Trans. ASME,J. Manuf. Sci. Eng, 2003,125:763~770.
    [77] Keeler S P,Backofen W A. Plastic instability and fracture in sheets stretched over rigid punches. Trans ASM. 1965,56:25~48.
    [78] Goodwin G M. Application of strain analysis to sheet metal forming problems in the press shop. SAE Trans. ,1968.(680093):380~397.
    [79] Swift H W. Plastic instability under plane stress. J. Mech Phys Solids, 1952, (1):1~18.
    [80] Hill R. On discontinous plastic states with special reference to localized necking in thin sheets. J. Mech Phys Solids, 1952, (1):19~30.
    [81] Marciniak Z, Kuczynski K, Limit strain in the processes of stretch-forming sheet metal. Int J. Mech Sci, 1967, (9):609~620.
    [82] Storen S, Rice J R. Localized necking in thin sheets. J. Mech Phys Solids, 1975, (23):418~421.
    [83] Gotoh M. A new plastic constitutive equation and its applications to forming limit problems of metal sheets. Proc 1st ICTP,Tokyo,1984:695~700.
    [84] J. Lemaitre. A continuous damage mechanics model for ductile fracture. J. Eng. Mat. Tech. 1985,107:83~89.
    [85] A. L Gurson. Continuum theory of ductile rapture by void nucleation and growth. ASME. J. Eng. Mat. Technology. 1977,99:2~15.
    [86]山口克彦.板材の成形限界.塑性と加工,1986,29:151~158.
    [87] D. Banabic. Limit strains in the sheet metals by using the new Hill’s yield criterion (1993). Journal of Materials Processing Technology,1999,92~93:429~432.
    [88] Ghosh A K. Failure in thin sheets stretched over rigid punches. Met Trans., 1975,6A:21.
    [89] M. Azrin,W. A. Backofen. The deformation and failure of a biaxially stretched sheet,Met Trans.,1970,1:2857.
    [90] Raghavan K. S. A simple technique to generate in-plane forming limit curve and selected applications. Met Mat Trans.,1995,26A:2075~2084.
    [91] Shiratori E,Ikegami K. Experimental study of the subsequent yield surface by using cross-shaped specimens. J. Mech. Phys. Solids,1968,16:373~394.11
    [92]吴向东.不同加载路径下各向异性板料塑性变形行为的研究[博士论文].北京:北京航空航天大学. 2004.11
    [93]万敏,洪强,吴向东,周贤宾.十字形试件双向拉伸试验系统建立及加载精度分析.机械工程学报,2001,37(1):57~62.
    [94] Yu Y,Wan M,Wu X D,Zhou X B. Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM. Journal of Materials Processing Technology,2002,123(1):67~70.
    [95] Demmerle S,Boehler J P. Optimal design of biaxial tensile cruciform specimens.J Mech Phy Solids,1993,41(1):143~181.
    [96] Li Ping Lei,Jeong Kiml. Bursting failure prediction in tube hydroforming processes by using rigid-plastic FEM combined with ductile fracture criterion. International Journal of Mechanical Sciences. 2002,44:1411~1428.
    [97] H Takuda,K Moril. The application of some criteria for ductile fracture to the forming limit of sheet metals. Journal of Materials processing Technology,1999,95:116~121.
    [98] H Takuda,K Moril. Finite element analysis of limit strains in biaxial stretching of sheet metals allowing for ductile fracture. International Journal of Machine Tools and Manufacturing,2000,42:785~789.
    [99] P. Picart,O Ghouatil. Optimization of metal forming process parameters with damage minimizationl. Journal of Materials processing Technology,1998,80~81:116~121.
    [100] McClintock. Ductile fracture by hole growth in shear bands. Int. J. mechanics. 1996,2:614~627.
    [101] M. G. Cockcroft,O. J. Latham. A simple criterion of fracture for ductile metals. National Engineering Laboratory Report. 1966,6:No. 240.
    [102] P. Brozzo,B. Deluca. A new method for the prediction of formability limits in metal sheets. Proceeding of the 17th Biennial Conference of the International Deep Drawing Research. 172.
    [103] Oyane M,Sato. T. Criteria for ductile fracture and their applications. Journal of Mechanical Working and technology,1980,4:65~81.
    [104]于忠奇,基于LEMAITRE损伤理论的韧性断裂准则建立及板料成形极限预测[博士论文].哈尔滨:哈尔滨工业大学. 2003.
    [105] M. Oyane, S. Shima. Consideration of basic equations, and their applications, in the forming of metal powders and porous metals. Journal of Mechanical Working and technology,1978,1:325~341.
    [106]王仁,熊祝华,黄文彬.塑性力学基础.198,北京:科学出版社.
    [107]王勖成,有限单元法基本原理和数值方法(第二版). 1997,北京:清华大学出版社.
    [108]彭颖红,金属塑性成形仿真技术. 1999,上海:上海交通大学出版社.
    [109] S. Yoshihara, Hisashi Nishimura and Hirokuni Yamamoto etc. Formability enhancement in magnesium alloy stamping using a local heating and cooling technique: circular cup deep drawing process. Journal of Materials Processing Technology, 2003, 142: 609-613.
    [110]熊绍乾,冷却冲压对拉延的改善.模具工业, 1980, 02: 1874-1877.
    [111]胡世光,陈鹤峥,板料冷压成形原理(修订版). 1989,北京:机械工业出版社.
    [112]郑家贤,冲压工艺与模具设计.北京:机械工业出版社2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700