用户名: 密码: 验证码:
水轮机转轮叶片预成形设计与有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转轮叶片是水力发电机组中的核心部件,形状复杂,尺寸厚薄不均,制造难度大。从产品设计、工艺规划到生产试制等多个环节中都存在着技术瓶颈,传统的工艺设计方法具有盲目性和试验周期长等缺点。本文基于数值模拟的方法,系统研究了转轮叶片热模压成形过程,提出了新的设计思路和方法,完成了水轮机转轮叶片的预成形工艺设计,建立了成形过程的有限元分析模型与多目标优化模型,并将计算结果、优化结果与工厂试制结果进行了对比分析与验证。
     本文取得的主要研究成果如下:
     针对X型转轮叶片的参数化CAD模型,基于合模状态下的共同坐标,提出了新的水平基准的定位方式:以叶片工作面的进水边与下环交点为原点,出水边与上冠交点为X轴线点作为参考定位。针对热模压模具,建立了模具向冷却水传递热流的数学模型,求解了冷却水流速度。为使整个成形过程中的模具温度不低于300℃,冷却水流速应不低于970 mm/s。
     将基于理想变形理论的一步模拟法和基于相似原理的类等势场法相结合,提出了一种复合的预成形设计新方法。以一步模拟法反向计算外形轮廓尺寸,以类等势场法正向计算特征截面厚度分布,建立了不等厚度变截面的叶片展开坯料模型。中面模型展开计算采用可以表征弯曲作用的薄膜/板壳混合单元,摒弃了传统木模图中关于特征截面的展开计算方法,提高了叶片预成形设计的精度与效率。
     为确保实际生产中压力中心的波动始终处于设定的公差范围之内,提出了一种基于刚塑性有限元法,通过计算实时节点力获取不等厚度板坯模压成形过程中动态压力中心的新算法。在DEFORM 3D软件上二次开发实现了该算法,给出了用户坐标系下压力中心的变化规律,为压力中心的优化提供了必要的信息。
     基于金属材料热压缩试验结果,以分段函数的形式,建立了0Cr13Ni5Mo材料的高温流动应力模型。针对流动应力-应变曲线上升阶段和稳态阶段,分别采用了影响系数法和Arrhenius方程建立了应力关于变形温度、应变和应变速率的数学表达式。利用统计学的方法分析并验证了新材料模型的可靠性。
     考虑温度对磨损模型中参数的影响,采用修正的Archard模型,分析了0Cr13Ni5Mo材料热模压模具的磨损情况,发现模具磨损最严重处都位于模具同叶片出水边与下环相交的端部对应处。分析发现:成形温度对模具磨损的影响最为显著。
     为了降低成形抗力与能耗成本,建立了叶片热塑性加工多目标优化问题的数学模型,选取了变形温度、应变速率以及摩擦因子作为优化变量,构建了新的成形载荷子函数、能耗子函数、生产效率子函数。针对成形载荷子函数,设计了析因试验,采用回归分析等统计学方法,拟合其为包含交互效应的完全二次多项式。针对能耗子函数与生产效率子函数,通过分析其计算方法,将能耗函数、效率函数分别归纳为各自对应分量的和函数。利用线性加权和法,建立了评价函数,将多目标优化问题转化为单目标非线性规划问题。优化后的最大成形载荷为6.21 MN,小于设备额定载荷10 MN;成形能耗值由原设计的23 MJ降为18.63 MJ,降幅达19%;生产效率为39.67 min/件,较原工艺提高了17%。将工艺优化前、后的转轮叶片与初始设计原型在各测量点的厚度值进行了对比分析,工艺优化后的叶片厚度的相对误差由优化前的25%降至了15%,充分表明优化技术对现有工艺的改进作用。
Francis turbine blade is one of the key components of hydraulic generator, and it has complicated configurations and varied thickness. It is a difficult and time-consuming task to manufacture such products,there are also lots of technical bottlenecks in the whole manufacturing process. Traditional design, so called trial-and-error method, inherits disadvantages such as immature process plan, high investment risk and repeated trials. In the dissertation, the research was carried out about the blade hot forging process based on finite element analysis, and new ideas such as hybrid method of blade preform design were brought forward. Process design and multiple-objective optimization were also studied, the results by theory analysis, optimization calculating and trial manufacture were compared and verified. The research achievements are listed as follows:
     Using the CAD model of X shape Francis turbine blade, a new horizontal positioning method was put forward under the common coordinate of the upper die closure. The new original point was the intersection point between the inlet edge and the lower ring, and the X anchor point as reference positioning point was the intersection point between the outlet edge and the upper ring. In order to ensure effective cooling effects, a mathematical model of heat transfer from die to water was set up. Calculation results show that the flow velocity should be larger than 970 mm/s so as to keep the die temperature around 300℃during forming process.
     A hybrid method for turbine blade perform design integrating One-step FEA and Equi-potential Lines Method was proposed, while One-step FEA was used to predict the profile of the unfold billet and Equi-potential Lines Method provided the thickness distribution of featured sections. The hybrid membrane/shell element was used by integrating CST3 and DKT6 elements to consider bending effect. Configuration calculations of the unfold blade billet were improved with a higher design efficiency.
     To keep the variation of forming load center within predefined tolerance scope during the whole forging process, a new algorithm to dynamically calculate the forming load center for the whole process of non-uniform thickness metal thermal forming was put forward based on rigid plastic FEA simulation, The formulations were developed and coded into a user routine on software DEFORM 3D V 6.1. The history of forming load center could be calculated, which is helpful for the unbalanced load control and optimization.
     Based on thermal compression test, a new two-segment function was put forward to characterize the flow stress behavior of 0Cr13Ni5Mo during ascend and steady stage. A sub-function utilized the influence coefficient method and the other sub-function adopted the Arrhenius equation, statistic analysis proves the reliability of the new model clearly.
     The modified Archard model was introduced to evaluate the effects of process parameters on die wear, the effect of temperature to the parameters in Archard model was considered. It concluded that the most severe die wear is located at the corresponding area where the outlet and lower ring intersect, and the forming temperature has most sensitive effect to the die wear.
     To minimize forming load and energy consumption, multi-objective optimization method was proposed, and new sub-functions were established with constraint conditions. By linear weighing-sum method, the multi-objective optimization was converted into a linear programming problem with the evaluation equation. Process parameters were optimized with SQP algorithm. The optimized load was 6.21 MN, much lower than the limit value of the press (10 MN); the optimized energy consumption was 18.63 MJ, reduced by 19% compared with the original one (23 MJ); and the optimized product efficiency was 39.67 min per piece, increased by 17%. The optimization design was evaluated by comparing the thickness distribution error between the optimized result and original design with that between plant try-out result and original design, and the relative thickness error was reduced down to 15% from 25%, which demonstrated the effective optimization advantage.
引文
[1] Electricity generation for the Pacicific Northwest. Northwest Power and Conservation Council. June, 2006.
    [2]电力能源发展面临战略性结构调整[R]. http://www.chinapower.com.cn 2006-7-24.
    [3] 2007年中国水电行业分析及投资咨询报告[R].北京:中国投资咨询网, 2007.
    [4]马元珽. X型叶片转轮技术[J].水利水电快报, 2007, 28(11): 27-28.
    [5]赖喜德.大型水轮机叶片制造技术的新进展[J].西华大学学报·自然科学版, 2006, 25(2): 72-77.
    [6]王蕴莹.水轮机[M].北京:中国水利水电出版社, 2006.
    [7]向莉.水轮机叶片热处理变形及其控制[J].东方电机, 2006, (6): 5-7.
    [8]钟惠仙.大型混流式水轮机转轮叶片制造技术的发展[J].大型铸锻件, 1996, (2): 37-39.
    [9]肖琬元,林志雄.流体机械原理与CAD演习[M].武汉:华中理工大学出版社, 1992.
    [10]贺元.水轮机叶片制造技术[J].东方电气评论, 2004, 18(4): 210-214.
    [11] WALTHER Howald.世界最高速级水轮发电机[J].国外大电机, 1995, (5):1-5.
    [12] S. J. Yan, Y. F. Zhou, X. D. Lai. Research on the localisation of the workpieces with large sculptured surfaces in NC machining [J]. International Journal of Advanced Manufacturing Technology, 2004, 23(5-6): 429-435.
    [13] C. C. Chen, X. D. Lai. Latest Progress of Design and Manufacturing for Hydro Turbine in China [J]. Journal of Japanese Turbo-machinery, 2003, 31(4): 193-198.
    [14]张向阳,库仁智,姜世昌.两江/满台城电站水轮机转轮叶片二次热弯成型工艺研究[J].大电机技术, 1997, (5): 45-50.
    [15]王地召,王贞凯.水轮机转轮叶片模压成型技术[J].东方电气评论, 2006, 20(1): 42-46.
    [16] J. D. Alexander.贺开运译.宇航材料的锻造和性能[M].北京:国防工业出版社, 1985.
    [17] T. Altan.陆索译.现代锻造-设备、材料和工艺[M].北京:国防工业出版社, 1982.
    [18]彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社, 1999.
    [19] S. Kobayashi, S. I. Oh, T. Altan. Metal Forming and the Finite-element Method [M]. Oxford: Oxford University Press, 1989.
    [20] O. C. Zienkiewicz, L. Robert, Taylor. Finite Element Method for Solid and Structural Mechanics [M]. Butterworth-Heinemann, 2005.
    [21] M. Shahaf, M. Bercovier. Interactive simulation of a forging process for blades [J]. Numerical method in Industrial Forming Processes, 1982, 343-349.
    [22] H. Ou, R. Balendra. Die-elasticity for precision forging of aerofoil sections using finite element simulation [J]. Journal of Materials Processing Technology, 1998, 76: 56-61.
    [23] H. Ou, C. G. Armstrong, M. A. Price. Die shape optimization in forging of aerofoil sections [J]. Journal of Materials Processing Technology, 2003, 132: 21-27.
    [24] H. Ou, J. Lan, C.G. Armstrong et al. An FE simulation and optimization approach for the forging of aero engine components [J]. Journal of Materials Processing Technology, 2004, 151: 208-216.
    [25] H. Ou, C.G. Armstrong. Evaluating the effect of press and die elasticity in forging of aerofoil sections using finite element simulation [J]. Finite Element in Analysis and Design, 2006, 42: 856-867.
    [26] J. W. Brooks, T. A. Dean, Z. M. Hu et al. Three-dimensional finite element modeling of a titanium aluminide aerofoil forging [J]. Journal of Materials Processing Technology, 1998, 80-81: 149-155.
    [27] P. F. Bariani, S. Bruschi, T. Dal Negro. Integrating physical and numerical simulation techniques to design the hot forgingprocess of stainless steel turbine blades [J]. International Journal of Machine Tools andfield theory [J]. International Journal of Mechanical Sciences, 2002, 44(4): 773-792.
    [77]李超,李付国,张莹等.一种基于等势场的胀形坯料反推新方法[J].机械工程学报, 2005, 41(11): 127-133.
    [78]肖军,李付国,李超.镦粗成形工艺的类等势场分析法[J].西北工业大学学报, 2006, 24(5): 672-676.
    [79]能源发展“十一五”规划[R].北京:国家发展和改革委员会, 2007.
    [80]陈宗器.水电资源的现状与未来[J].华通技术, 2006, (2): 21-34.
    [81]王勖成.有限单元法[M].北京:清华大学出版社, 2002.
    [82]刘光宁,张富钦,吴新润.国内外水轮机研制技术的新发展[J].动力工程, 1997, 17(5): 60-70.
    [83]朱邦材.大型混流式水轮机转轮叶片热压成型工艺探讨[J].大电机技术, 1991, (3): 42-48.
    [84]曹宗洪,吴文旭.水轮机转轮叶片热弯模[J].模具工业, 1995, (6): 2-5.
    [85]王立影,林建平,朱巧红等.热冲压成形模具冷却系统临界水流速度研究[J].机械设计, 2008, 25(4): 15-18.
    [86]何福保,沈亚鹏.板壳理论[M].西安:西安交通大学出版社, 1993.
    [87]陈如欣,胡忠民.塑性有限元法及其在金属成形中的应用[M].重庆:重庆大学出版社, 1989.
    [88]陶文铨.数值传热学[M].西安:西安交通大学出版社, 2001.
    [89]刘高典.温度场的数值模拟[M].重庆:重庆大学出版社, 1990.
    [90] Metal Forming Handbook [M]. Berlin Heidelberg: Schuler Springer-Verlag, 2004.
    [91]科学研究报告.叶片热塑性状态时的展开方法研究[R].哈尔滨:哈尔滨大电机研究所, 1998.
    [92]杜雄柏.逻辑学教程[M].长沙:湖南大学出版社, 2005.
    [93]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社, 2005.
    [94]董湘怀,黄树槐,李志刚等.塑性加工技术的发展趋势[J].中国机械工程, 2000, 11(9): 1074-1078.
    [95]吕炎.精密塑性体积成形技术[M].北京:国防工业出版社, 2003
    [96]王波.三峡电站水轮机转轮叶片的加工[J].水利水电技术, 2007, 38(4): 55-57.
    [97] J. W. Yoon, K. Chung, F. Pourboghrat et al. Design optimization of extruded preform for hydroforming processes based on ideal forming design theory [J]. International Journal of Mechanical Sciences, 2006, 48: 1416-1428.
    [98] J. M. Roelandt, X. J. Liu, J. L. Batoz et al. Axisymmetric and general shell elements for large transformation (Formulation and applications) [J]. MECAMAT’91, International Seminar on Large Plastic Deformations, Fundamental Aspects and Applications to Metal Forming, Fontainebleau, France, 1991: 457-430.
    [99] J. M. Roelandt, J. L. Batoz. Shell finite element for deep drawing problems: computational aspects and results [J]. IUTAM Symposium on Finite Inelastic Deformations, Theory and Application, Hannover DB, Stein E (eds). Springer: Berlin, 1991: 423-430.
    [100]乔端,钱仁根.非线性有限元法及其在塑性加工中的应用[M].北京:冶金工业出版社, 1990.
    [101]王蔷.电磁场理论基础[M].北京:清华大学出版社, 2003.
    [102]周莉英.静电场的计算机模拟[D].苏州:苏州大学, 2004.
    [103]崔令江,韩飞.塑性加工工艺学[M].北京:机械工业出版社, 2007.
    [104]水轮机叶片热模压压力中心及压力吨位估算方法的研究[R].哈尔滨:哈尔滨大电机研究所, 1998.
    [105] K. Lange. Handbook of Metal Forming. McGraw-Hill, New York, 1985.
    [106] Z. C. Lin, C. H. Deng. Analysis of a torque equilibrium model and the optimal strip working sequence for a shearing-cut and bending progressive die [J]. Journal of Materials Processing Technology, 2001, 115: 302-312.
    [107]曹晓卿.冲模压力中心计算的简化方法[J].太原理工大学学报, 2000, 31(4): 467-469.
    [108]程西智,郝永辉.基于模具三维造型软件的复合冲裁模压力中心的确定[J].机电信息, 2005, 17: 38-40.
    [109]汤廷孝,贾志欣.三维CAD环境下压力中心的快速求解[J].中国机械工程, 2006, 17: 302-305.
    [110]宋爱平,倪中华,张军等.曲面板件三维模型表面数据的提取与平置处理[J].锻压技术, 2007, 32(1): 113-116.
    [111]李开泰,黄艾香,黄庆怀.有限元方法及其应用[M].北京:科学出版社, 2006.
    [112]肖景容,姜奎华.冲压工艺学[M].北京:机械工业出版社, 2000.
    [113] DEFORM-3D User’s Manual Version 6.0. Scientific Forming Technology Corporation, 2007.
    [114] J. H. Yoon, E. P. Yoon, B. S. Lee. Correlation of chemistry, microstructure and ductile fracture behaviours of niobium-stabilized austenitic stainless steel at elevated temperature [J]. Scripta Materialia, 2007, 57(1): 25-28.
    [115]鲍崇高,邢建东,高义民等.碳钢奥氏体不锈钢材料在水电工程中应用的局限性[J].机械工程学报, 2004, 40(12): 86-89.
    [116]鲍崇高,邢建东,高义民等.水轮机用不锈钢的电化学腐蚀性能研究[J].铸造, 2002, 51(7): 425-427.
    [117] Z. Li, G. Fontana. Autogenous laser welding of stainless steel to free-cutting steel for the manufacture of hydraulic valves [J]. Journal of Materials Processing Technology, 1998, 74(1-3): 174-182.
    [118] Z. Xiaojun, L.A.J. Procopiak, N.C. Souza et al. Phase transformation during cavitation erosion of a Co stainless steel [J]. Materials Science and Engineering A, 2003, 358 (1-2): 199-204.
    [119] P. Johan Singh, B. Guha, D. R. G. Achar. Fatigue life prediction for stainless steel welded plate CCT geometry based on Lawrence's local-stress approach [J]. Engineering Failure Analysis, 2003, 10(6): 655-665.
    [120] W. Liu, Y. G. Zheng, C. S. Liu et al. Cavitation erosion behavior of Cr-Mn-N stainless steels in comparison with 0Cr13Ni5Mo stainless steel [J]. Wear, 2003, 254(7-8): 713-722.
    [121] Y. G. Zheng, S. Z. Luo, K. Wei. Effect of passivity on electrochemical corrosion behavior of alloys during cavitation in aqueous solutions [J]. Wear, 2007, 262(11-12): 1308-1314.
    [122] B. C. Wang, J. H. Zhu. Influence of ultrasonic cavitation on passive film of stainless steel [EB/OL]. www.elsevier.com/locate/ultsonch. 27April 2007.
    [123]曲波,周辉,江崇民等.硬质合金面铣刀铣削0Cr13Ni5Mo不锈钢切削性能的试验研究[J].工具技术, 2003, 37(2): 3-4.
    [124]樊百林,严国安,管克智等.不锈钢热变形流动应力数学模型[J].北京科技大学学报, 2002, 24(3): 280-283.
    [125]许勇顺,柳建韬,聂明等.金属热变形应力-应变曲线数学模型的研究与应用[J].应用科学报, 1997, 15(4): 379-384.
    [126]周纪华,管克智.金属塑性变形阻力[M].北京:机械工业出版社, 1989.
    [127] A. Cingara, H. J. McQueen. New formula for calculating flow curves from high temperature constitutive data for 300 austenitic steels [J]. Journal of Materials Processing Technology, 1992, 36(1): 31-42.
    [128] G. R. Johnson, W. H. Cook. A constitutive description of the deformation of copper based on the use of mechanical threshold stress as an internal state variable [J]. Acta metal, 1988, 36(1).
    [129] F. J. Zerilli, R. W. Armstrong. Dislocation mechanics based constitutive relations for material dynamics calculations processes [J]. Journal of Application Physics, 1987, 61(5).
    [130] C. M. Sellars. Computer modeling of hot-working processes [J]. Materials Science and Technology, 1985, 1:325-332.
    [131]金泉林,吴慧英.金属超塑变形本构方程中材料参数的识别[J].航空制造技术, 2001, (6): 28-29.
    [132]周承高.优化方法及其程序设计[M].北京:中国铁道出版社, 1989.
    [133] P. P. Jeunechamps, J. Walmag, V. Mathonet et al. Identification of elastoplastic model parameters in large deformation problems. http://www.ingveh.ulg.ac.be/fr/publications/.
    [134] H. H. James, T. N. Bittencourt, A. R. Ingraffea. Three-dimensional influence coefficient method for cohesive crack simulations [J]. Engineering Fracture Mechanics, 2004, 71(15): 2109-2124.
    [135] J.P. Poirier.关德林译.晶体的高温塑性变形[M].大连:大连理工大学出版社, 1989.
    [136]张世强.曲线回归的拟合优度指标的探讨[J].中国卫生统计, 2002, 19(1): 9-11.
    [137]张尧庭,方开泰.多元统计分析引论[M].北京:科学出版社, 2003.
    [138] J. Lemaitre. Continuous damage mechanics model for ductile fracure [J]. Jounal of Engineering Materials and Technology, 1985, 107(1): 83-89.
    [139] A. Behrens, H. Just. Extension of the forming limits in cold and warm forging by the FE based fracture analysis with the integrated damage model of effective stresses [J]. Jounal of Material Processing Technology, 2002, 125-126: 235-241.
    [140] S. C. Wu, H. Liang. A kinetic equeation for ductile damage at large plastic strain [J]. Jounal of Material Processing Technology, 1990, 21(3): 295-302.
    [141] A. M. Freudenthal. The Nelastic Behavior of Solids [M]. New York: Wiley, 1950.
    [142] M. G. Cockroft, D. J. Latham. Ductility and the workability of metals [J]. Journal of the institute of metals, 1968, 35: 363-371.
    [143] P. Brozzo, B. Deluca, R. Rendnar. A new method for the prediction of formability limits in metal sheets [C]. Proceedings of the 7th Biennial Conference of the International Deep Drawing Research Group. Amsterdam, Netherlands: 1972: 28-37.
    [144] F. A. McClintock. Challenges in f racture mechanics [J]. Developments in Mechanics, 1969, (5): 905-919.
    [145] J. R. Rice, D. M. Tracey. On ductile enlargement of voids in triaxial stress fields [J]. Mechanics Physics Solids, 1969, 17(2): 201-217.
    [146]郑长卿.韧性断裂细观力学的初步研究及应用[M].西安:西北工业大学出版社, 1988.
    [147] E. Sieble, Steel, 1933, 93(17): 37.
    [148] D. Green, Mechanics Engineering Research Lab. Plasticity Rep. 1956 (128).
    [149]夏巨谌.塑性成形工艺及设备[M].北京:机械工业出版社, 2003.
    [150]金伟民.不同设备特性下的锻造成形过程数值模拟技术研究[D].上海:上海交通大学, 2007.
    [151]赵振铎,邵明志.金属塑性成形中的摩擦与润滑[M].北京:化学工业出版社, 2004.
    [152]赵振铎,刘芬,黄书亮.金属塑性成形的“平均摩擦系数”与接触压力的关系研究[J].英才高职论坛, 2007, (1): 52-55.
    [153] C. C. Chen, S. Kobayashi. Rigid-plastic finite element analysis of ring compression [J]. Application of Numerical Methods to Forming Processes, ASME, AMD, 1978, 28: 163-170.
    [154]茆诗松,周纪芗,陈颖.试验设计[M].北京:中国统计出版社, 2004.
    [155]刘文卿.实验设计[M].北京:清华大学出版社, 2005.
    [156]周飞.铝型材挤压有限元/有限体积复合数值模拟技术研究[D].上海:上海交通大学, 2002.
    [157] B. A. Behrens, F. Schaefer. Prediction of wear in hot forging tools by means of finite-element-analysis [J]. Journal of Materials Processing Technology, 2005, (167): 309-315.
    [158]王华昌,龙满林.锻模综合应力有限元仿真分析[J].模具工业, 2004, (3): 6-10.
    [159] J. H. Kang, I. W. Park, J.S. Jae et al. A study on a die wear model considering thermal softening: (I) Construction of the wear mode [J]. Journal of Materials Processing Technology, 1999, 96: 53-58.
    [160] R. S. Lee, J. L. Lou. Application of numerical simulation for wear analysis of warm forging die [J]. Journal of Materials Processing Technology, 2003, 140: 43-48.
    [161]汪学阳,王华君,王华昌等.基于FEM的热锻模磨损分析与寿命预测[J].润滑与密封, 2008, 33(5): 49-53.
    [162] P. Picart, O. Ghousti, J. C. Gelin. Optimization of metal forming process parameters with damage minimization [J]. Journal of Material Processing Technology, 1998, 80-81: 597-601.
    [163]陈晓艳,郭宝峰,金淼等.管筒形零件机械扩径工艺过程的成形参数优化[J].塑性工程学报, 2003, 13(6): 24-28.
    [164]陈学文,王进,陈军等.热锻成形过程数值模拟与多目标设计优化技术研究[J].塑性工程学报, 2005, 12 (4): 80-84.
    [165]赵新海,陈国军,李剑峰等.基于有限元的锻件变形力优化设计[J].中国机械工程, 2006, 17: 122-124.
    [166]孙靖民.机械优化设计(第4版)[M].北京:机械工业出版社, 2007.
    [167]余锦华,杨维权.多元统计分析与应用[M].广州:中山大学出版社, 2005.
    [168]任露泉.试验优化设计与分析[M].北京:高等教育出版社, 2003.
    [169]周开利. MATLAB基础及其应用教程[M].北京:北京大学出版社, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700