用户名: 密码: 验证码:
离散多层爆炸容器动力响应及其工程设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爆炸容器是一种潜在危险的限域装置,它能限制爆炸冲击波和产物的作用范围,对试验人员和设备实现有效的近距离保护,方便对爆炸和爆轰过程进行观察和测试,因此被广泛地应用于国防军事、爆炸加工、危险物质储运和科学研究等领域。随着爆炸容器的大型化,目前广泛使用的单层爆炸容器的固有缺点逐渐显露出来,如制造困难、成本高、厚钢板(锻件)质量不易保证等,难以满足爆炸容器大当量化的要求。因此研究新型结构爆炸容器来满足爆炸容器大当量化的要求具有十分重要的意义。
     本文以国家自然科学基金课题“密闭多层圆柱壳在内爆炸强动载荷下的动力响应和寿命研究”(项目编号:10372091)和“多层圆柱形爆炸容器设计方法研究”(项目编号:50675195)为依托,对离散多层爆炸容器在爆炸冲击载荷作用下的弹塑性动力响应及其设计方法进行了较为深入的研究。本文的主要研究内容为:
     (1)建立了弹性动力响应理论计算模型。通过将位移解分离为满足给定边界条件的准静态解和满足初始条件的动态解的方法求解内外层的径向位移,其中准静态解由齐次线性方法和边界条件确定,动态解通过有限Hankel积分变换和Laplace积分变换求得。在相同的内部动载荷作用下,对几何尺寸、材料均相同的多层离散圆筒和单层圆筒的动力响应进行了对比分析;对钢带缠绕倾角、内外层厚度比和内外层材料组合对动力响应的影响进行了研究。
     (2)建立了刚塑性动力响应理论计算模型。采用刚塑性材料本构模型,对整体均布矩形载荷和局部载荷作用下的离散多层爆炸容器的动力响应进行了研究;通过引入钢带有效质量因子,得到了具有较高精度的内筒和外钢带层最大位移和动力响应时间的计算公式;揭示了离散多层爆炸容器存在着各层分离和各层共同运动这两种运动模式,并给出了两种运动模式转换的条件。
     (3)基于LS-DYNA和ABAQUS,建立了离散多层爆炸容器的刚塑性动力响应三维数值分析模型。通过对比分析LS-DYNA和ABAQUS计算结果,确定了接触计算中关键参数的设置。在此基础上,数值计算了离散多层爆炸容器的动力响应,进一步证明了容器存在着各层分离和共同运动这两种运动模式,数值计算结果与理论分析结果符合良好。
     (4)建立了考虑材料应变强化效应和应变率效应的塑性动力响应理论计算模型。
     针对离散多层爆炸容器可能出现的各层分离和共同运动这两种运动模式,分别推导出两种运动模式下的最大位移计算公式和等效塑性应变计算公式。通过数值计算,证明了最大位移计算公式和等效塑性应变公式具有较高的精度。
     (5)基于LS-DYNA,建立了局部载荷作用下考虑材料应变强化效应和应变率效应的塑性动力响应数值计算模型。根据材料组合的不同,再次证实了离散多层爆炸容器存在着各层分离和各层共同运动这两种不同的运动模式。在局部载荷作用下,发现了外层钢带层在运动后期存在的一种非薄膜运动模式;在各层共同运动条件下,发现离散多层爆炸容器的最大等效塑性应变总是出现在内筒中心截面处,并且各钢带层的等效塑性应变基本不随钢带的后期非薄膜运动而变化。
     (6)提出了多次使用和单次使用离散多层爆炸容器的设计方法。对于多次使用离散多层爆炸容器,为便于工程应用,推导出一组方便的计算内筒和各层钢带层应力和位移的理论公式,通过引入安全系数,得到了容器最大的允许爆炸载荷。对于单次使用离散多层爆炸容器,阐明了内筒和钢带层的等效塑性应变是衡量容器强度的最重要指标,提出了极限应变设计准则,并给出了钢带层缠绕倾角、内外层厚度比和材料组合的选择原则。
Explosion containment vessel is a device used for confining potential danger.It can restrict shock wave and production of explosion,effectively protect the personnel and equipment near from the explosion,and facilitate the observation and testing of the explosion and detonation process.Therefore,it is widely used in national defense, fabrication using explosion process,storage and transportation of dangerous substances, scientific research and other fields.Because of the development of military,fabrication and scientific research,there is a larger capacity trend existing in explosion containment vessels. With the capacity development of explosion containment vessels,the inherent shortages of the currently widely used single shell explosion containment vessels gradually reveal themselves.For instance,the manufacturing difficulties,high costs,and difficult quality assurance of the thick steel plate(forge).Therefore,it is a very important to develop new type explosion containment vessel to fulfill the requirement of large capacity.
     Based on the National Natural Science Foundation″Analysis of Dynamic Elastic Response and Lifetime of Confined Discrete Multi-Layered Explosion Containment Vessel(DMECV) under Strong Dynamic Load″(No.10372091) and″Investigation on Method for Design of Multilayered Cylindrical Explosion Containment Vessels″(No.50675195),the elastoplastic dynamic response and design methods for DMECV under explosion loading were deeply studied in this thesis.The main researches are as follows:
     (1) A theoretical elastic-dynamic response calculation model has been developed.The displacement solution of the dynamic equilibrium equations of both inner shell and outer ribbon layer can be decomposed into two parts,i.e.,a elastic solution for inhomogeneous stress boundary conditions,and an elastic-dynamic solution for homogeneous stress boundary conditions under given initial conditions.The quasi-static elastic solution is determined by linearity method and stress boundary conditions,while the dynamic solution is worked out by means of finite Hankel integral transformation and Laplace integral transformation.Under the same internal dynamic loads,the dynamic responses of DMECV and monobloc explosion vessel with the same geometry and material have been comparative analyzed,and the effect of winding angle,inner and outer shell thickness ratio and material composition on the dynamic response have also been studied.
     (2) A theoretical calculation model for rigid plastic dynamic response has been established. By using a rigid plastic constitutive material model,the dynamic response of DMECV under the overall uniformly distributed rectangular load and partial load have been studied. Through the introduction of ribbon effective quality factor,the largest displacement and dynamic response time calculation formula for the inner shell and outer ribbon layer have been deduced,which are with high accuracy.Two modes of shell movements,i.e.,moving separately and moving together,are revealed,and the conversion conditions of the two movement modes are also given.
     (3) Three-dimensional numerical simulation method for calculating the rigid plastic dynamic response of DMECV has been developed.Finite element analysis models are established based on LS-DYNA and ABAQUS.Through comparing and analyzing the LS-DYNA and ABAQUS simulation results,the key parameters for exposure calculation have been determined.Based on the results of the former analysis,the numerical dynamic responses of DMECV are calculated,and the numerical calculation results fit with the theoretical analysis results very well,which further prove the existence of the two movement modes of DMECV.
     (4) Considering the strain strengthening effect and strain rate effect of the material,the model for calculating the plastic dynamic response has been established.Corresponding for each of the two movement modes,the maximum displacement formula and the equivalent plastic strain formula are derived.By calculating the theoretical formulas and comparing the result with numerical simulation results,it verifies that the largest displacement formula and equivalent plastic strain formula are with fine precision.
     (5) Considering the material strain strengthening effect and strain rate effect,the numerical simulation model for calculating the plastic dynamic response of DMECV under partial load has been established in LS-DYNA.According to the combination of different materials,the two movement modes of DMECV are confirmed again.Under partial load,in the latter part of a movement,the existence of non-membrane movement pattern of the outer ribbon layer is found.Under the condition of all layers together movement,it is found that the largest equivalent plastic strain of the vessel is always in the cross-section of the cylinder centre,and that the equivalent plastic strain of the ribbon shell don't change with the non- membrane movement. (6) The methods for design of multiple-used and single-used DMECV have been developed. For a multiple-used DMECV,in order to facilitate the engineering application,a group of theoretical formulae for easily calculating stresses and displacements of the inner shell and outer ribbon shells have been derived.By introducing a safety factor,the largest allowable explosive load for the DMECV is obtained.For a single-used DMECV,the equivalent plastic strains of inner shell and layered ribbons are the most important indicator for vessel strength is clarified,and a limit strain design rule is carried out.At last,selection principle of ribbon winding angle,inner and outer shell thickness ratio and material compositions are narrated.
引文
1. E. A. Rodriguez, C. Romero. Hydrodynamic Modeling of Detonations for Structural Design of Containment Vessels. Proceedings of PVP2006-ICPVT-11, 2006 ASME Pressure Vessels and Piping Division Conference, 2006.
    
    2. V. I. Tsypkin, O. A. Kleshchevnikov, A. T. Shitov, et al. Scale Effect in the Explosive Destruction of Water-Filled Vessels. Atomic Energy, 1975, 38(4): 317-318.
    
    3. A. G.Ivanov, V. N. Minaev, V. I. Tsypkin, et al. Plasticity, Failure, and the Scale Effect in Explosive Loading of Steel Tubes Combustion, Explosion, and Shock Waves, 1974, 10(4): 526-529.
    
    4. V. A. Ryzhanskii, V. N. Mineev, A. G.Ivanov, et al. Failure of Water-Filled Cylindrical Glass - Reinforced Epoxy Shells under Internal Impulsive Loading. Mechanics of Composite Materials, 1978,14(2): 227-233.
    
    5. L. N. Aleksandrov, A. G.Ivanov, V. N. Mineev, et al. Plastic Deformation of Spherical Steel Shells under Internal Blast Loading. Journal of Applied Mechanics and Technical Physics, 1982, 23(6): 831-835.
    
    6. A. G.Fedorenko, V. I. Tsypkin, A. G.Ivanov, et al. Peculiarities of the Dynamic Deformation and Fracture of Cylindrical Glass-Fiber Reinforced Plastic Shells upon Internal Impulse Loading. Mechanics of Composite Materials, 1983,19(1): 75-79.
    
    7. A. G.Fedorenko, V. I. Tsypkin, A. G.Ivanov, et al. Deformation and Failure of Different-Scale Cylindrical Glass-Reinforced Plastic Shells in Internal Pulsed Loading. Mechanics of Composite Materials, 1987,22(4): 463-467.
    
    8. A. G.Fedorenko, M. A. Syrunin, A. G.Ivanov. Criterion for Selecting Composite Materials for Explosion Containment Structures (Review). Combustion, Explosion, and Shock Waves, 2005, 41(5): 487-495.
    
    9. M. A. Syrunin, A. G.Fedorenko. Dynamic Strength of Cylindrical Fiber-Glass Shells and Basalt Plastic Shells under Multiple Explosive Loading. Journal of Physics IV France, 2006, 134(2): 995-1001.
    
    10. V. I. Tsypkin, V. N. Rusak, A. T. Shitov, et al. Deformation and Fracture of Cylindrical Shells Made of Glass-Epoxide. Mechanics of Composite Materials, 1981,17(2): 169-175.
    
    11. M. A. Syrunin, A. G.Fedorenko, A. T. Shitov. Strength of Glass-Plastic Cylindrical Shells of Different Configuration under Loading by an Explosioa Combustion, Explosion, and Shock Waves, 1989,25(4): 479-485.
    
    12. D. Ellis. AT595 Explosive Resistant Container Tests. International Security News, 2004.
    
    13. A. M. Clayton. Design Methods Used for AWE Containment Vessel.The PVRC Committee on Dynamics and Analysis Testing Meeting Minutes. Hydrodynamics Research Facility. AWE/DSD/C/750.6.2/AC/001. 2001.
    
    14. ASME Boiler & Pressure Vessel Code, Section VIII, Rules for Construction of Pressure Vessels, Division 3, Alternative Rules for Construction of High Pressure Vessels. 1997.
    
    15. U. N. Departments of the US Army, US Air Force. Structures to Resist the Effects of Accidental Explosions. Report AD-A243-272, US Army TM 5-1300, US Navy NAVFAC P-397, US Air Force AFR 88-22. 1990.
    
    16. J. K. Asahina, T. Shirakura. Detonation Chamber of Chemical Munitions - Its Design Philosophy and Operation Record at Kanda, Japan. Proceedings of PVP2006-ICPVT-11, 2006 ASME Pressure Vessels and Piping Division Conference. Vancoucer, BC, Canada, 2006.
    
    17. 赵士达.爆炸容器.爆炸与冲击,1989,9(1):85-96.
    18.胡八一,刘仓理,胡海波,et al.树脂基玻璃纤维复合材料爆炸容器的研制.压力容器,2005,22(6):10-12,45.
    19.J.Y.Zheng,Y.J.Chen,G.D.Deng,et al.Dynamic Elastic Response of an Infinite Discrete Multi-Layered Cylindrical Shell Subjected to Uniformly Distributed Pressure Pulse.International Journal of Impact Engineering,2006,32(11):1800-1827.
    20.Case of ASME Boiler of Pressure Vessel Code.Impulsively Loaded Pressure Vessels.2008,Case 2564,
    21.W.E.Baker.The Elastic-Plastic Response of Thin Spherical Shells to Internal Blast Loading.Journal of Applied Mechanics,1960,27(1):139-144.
    22.M.A.Salmon.Studies of Reactor Containment Structures.IlT Researeh Institute.HTRI-578P22-11.1966.
    23.W.L.Ko,H.G.Pennick,W.E.Baker.Elasto-Plastie Response of a Multi-Layered Spherical Vessel to Internal Blast Loading.International Journal of Solids and Structures,1977,13(6):503-514.
    24.T.A.Butler,W.E.Baker,J.G.Bennett,et al.Investigations of Steel Containment Buckling under Dynamic Loads.Nuclear Engineering and Design,1985,94(1):31-39.
    25.T.A.Butler,W.E.Baker.Steel Containment Buckling.Nuclear Engineering and Design,1985,98(2):89-102.
    26.A.F.Demchuk.One Method of Calculating Detonation Chambers.Journal of Applied Mechanics and Technical Physics,1968,9(5):47-50.
    27.J.J.White,B.D.Trott.Scaling Law for the Elastic Response of Spherical Explosion-Containment Vessels.Experimental mechanics,1980,20(5):174-177.
    28.A.G.Ivanov,V.A.Ryzhanskii,V.I.Tsypkin,et al.Scale Effect in The Strength of a Pressure Vessel under Internal Explosive Loading.Combustion,Explosion,and Shock Waves,1981,17(3):327-331.
    29.T.A.Duffey,C.Romero.Strain Growth in Spherical Explosive Chambers Subjected to Internal Blast Loading.International Journal of Impact Engineering,2003,28(9):967-983.
    30.T.A.Duffey,D.Doyle.Plastic Instabilities in Spherical Shells under Load,Displacement,and Impulsive Loading.2006 ASME Pressure Vessels and Piping Division Conference.Vancoucer,BC,Canada,2006.
    31.T.A.Duffey,D.Mitchell.Containment of Explosions in Cylindrical Shells.International Journal of Mechanical Sciences,1973,15(3):237-249.
    32.E.D.Esparza.Proof testing of an explosion containment vessel.LA-UR-96-3789.1996.
    33.R.Martineau,C.Romero.Response of a Stainless Steel Cylinder with Elliptical Ends Subjected to an Off-Center Blast Load.American Society of Mechanical Engineers,Pressure Vessels and Piping Division(Publication) PVP,Structures under Extreme Loading Conditions.1996.
    34.钟方平,陈春毅,林俊德,et al.带平板封头的双层爆炸容器动力响应的实验研究.爆炸与冲击,1999,19(3):199-203.
    35.钟方平,陈春毅,林俊德.双层圆柱形爆炸容器弹塑性结构响应的实验研究.兵工学报,2000,21(3):268-271.
    36.钟方平.柱形容器内部爆炸流场的数值模拟.计算物理,2000,17(6):695-701.
    37.胡永乐,林俊德,金飞华,et al.应变式压杆压力传感器在冲击波载荷测试中的应用.实验力学,2006,21(5):547-552.
    38.林俊德.封闭空间的化爆荷载与沙墙消波.解放军理工大学学报(自然科学版),2007,8(6):559-566.
    39.陈剑杰,胡永乐,辛春亮.钢筋混凝土结构抗内爆性能的有限元优化设计分析.岩石力学与工程学报,2002,21(4):554-557.
    40.蔡清裕,曾新吾,胡永乐.钢-混凝士复合爆炸容器内爆响应数值模拟.国防科技大学学报,2003,25(3):28-31.
    41.朱文辉.圆柱形爆炸容器动力学强度的理论和实验研究.国防科技大学.长沙,1994.
    42.朱文辉,薛鸿陆,韩钧万,et al.爆炸容器动力学研究进展评述.力学进展,1996,26(1):68-77.
    43.朱文辉,薛鸿陆,刘仓理.爆炸容器承受内部加载的实验研究.爆炸与冲击,1995,15(4):374-381.
    44.霍宏发,石小峰,文潮.椭球封头圆柱形爆炸容器安全性的实验研究.第一届全国工程结构安全防护学术会议.黄山,1999.
    45.霍宏发.组合式爆炸容器振动特性与破坏模式分析.压力容器,2003,20(5):12-16.
    46.霍宏发,黄协清,林俊德.组合式密闭爆炸容器螺栓预应力范围的计算方法.机械强度,2001,23(2):194-197.
    47.霍宏发,于琴,黄协清.组合式爆炸容器冲击载荷及其动力响应的数值模拟.西南交通大学学报,2003,38(5):513-516.
    48.胡八一,刘大敏.脉冲载荷下球形爆炸容器的弹性响应.振动与冲击,1998,17(3):19-23.
    49.胡八一,刘大敏,柏劲松.密封结构内炸药爆炸产生的准静态气体压力研究评述.第一届爆炸力学实验技术交流会议,2000.
    50.胡八一,柏劲松,张明.球形爆炸容器动力响应的强度分析.工程力学,2001,18(4):137-139.
    51.段卓平,恽寿榕.密闭爆炸容器实验研究及数值模拟.中国安全科学学报,1994,4(3):1-8.
    52.W.E.Baker(著),江科(译).空中爆炸.北京:原子能出版社.1982.
    53.S.A.Zhdan.Dynamic Load Acting on the Wall of an Explosion Chamber.Combustion,Explosion,and Shock Waves,1981,17(2):142-146.
    54.朱文辉,薛鸿陆,张振宇.解析方法与数值模拟相结合求解炸药在容器内部爆炸产生的壁面载荷.国防科技大学学报,1997,19(6):102-106.
    55.张梦萍,刘儒勋.高分辨率差分格式的数值分析与限制因子的构造.应用数学和力学,1998,19(7):631-640.
    56.毕明树,尹旺华,丁信伟.密闭容器非理想爆源爆炸过程的数值模拟.化学工业与工程技术,2003,24(3):1-3.
    57.曹玉忠,卢泽生,管怀安,et al.抗爆容器内爆炸流场数值模拟.高压物理学报,2001,15(2):127-133
    58.J.Henrych.The Dynamics of Explosion and Its Use.Beijing:Science Press.1987.
    59.A Manual for the Prediction of Blast and Fragment Loadings on Structures(DOE/TIC-11268).NewYork:US Department of Energy,Albuquerque Operations Office,Amarillo Area Office,Pantex Plant.1992.
    60.毕明树,尹旺华,丁信伟.圆筒形容器内可燃气体爆燃过程的数值模拟.天然气工业,2004,24(4):94-96,14.
    61.G.D.Deng,P.Xu,J.Y.Zheng,et al.Numerical Study on Applicability of Decoupled Analyses on Design of Cylindrical Steel Explosion Containment Vessels.7th International Conference on Shock & Impact Loads on Structures,2007.
    62.V.A.Ryzhanskii,A.G.Ivanov,N.P.Kovalev,et al.Response of a Cylindrical Steel Container to Internal Explosive Loading with Variation in the Degree of Water Filling.Combustion,Explosion,and Shock Waves,2000,36(4):523-537.
    63.N.Jones.Structure Impact.UK:Cambridge University Press.1989.
    64.A.G.Ivanov,S.A.Novikov,V.A.Sinitsyn.Scale Effect in the Explosive Destruction of Closed Steel Vessels Combustion,Explosion,and Shock Waves,1972,8(1):101-104.
    65.V.I.Tsypkin,A.G.Ivanov,V.N.Mineev,et al.Effect of Scale,Geometry,and Filler on the Strength of Steel Vessels to Internal Pulsed Loads.Atomic Energy,1976,41(5):303-308.
    66.A.G.Ivanov,V.N.Mineev.Scale Effects in Fracture.Combustion,Explosion,and Shock Waves,1979,15(5):617-638.
    67.A.G.Ivanov.Dynamic Failure in the Extensive Plastic-Strain Range.Journal of Applied Mechanics and Technical Physics,1986,27(2):146-151.
    68. B. I. Igolkin. The Nature of the Scale Effect Strength of Materials, 1978,10(3): 299-302.
    69. V. A. Batalov, A. G.Ivanov, G.G.Ivanova, et al. Strength of Single-Layer and Multi-layer Cylindrical Vessels Loaded Internally by Pulses of Various Lengths. Journal of Applied Mechanics and Technical Physics, 1978,19(5): 695-700.
    70. V. I. Tsypkin, A. G.Ivanov. Scale Effect in Explosive Failure of Wound Strip Shells. Strength of Materials, 1981,13(6): 794-797.
    71. V. I. Tsypkin, V. N. Rusak, A. G.Ivanov, et al. Deformation and Fracture of Two-Layer Metal-Plastic Shells under Internal Shock Loading. Mechanics of Composite Materials, 1988, 23(5): 586-590.
    72. A. G.Ivanov, V. I. Tsypkin. Deformation and Fracture of Glass-Plastic Shells under Extreme Shock Loads. Mechanics of Composite Materials, 1987,23(3): 332-339.
    73. M. A. Syrunin, A. G.Fedorenko, A. G.Ivanov. Limiting Strain in an Oriented Fiberglass Shell on Internal Explosive Loading. Combustion, Explosion, and Shock Waves, 1992, 28(2): 190-194.
    74. A. G.Fedorenko, M. A. Syrunin, A. G.Ivanov. Dynamic Strength in Explosive Loading for Shells Made of Oriented Fibrous Composites (Review). Journal of Applied Mechanics and Technical Physics, 1993, 34(1): 123-128.
    75. V. N. Rusak, A. G.Fedorenko, M. A. Syrunin, et al. Limiting Deformability and Strength of Basalt Plastic Shells under Internal Explosive Loading. Journal of Applied Mechanics and Technical Physics, 2002,43(1): 154-161.
    76. V. A. Maltsev, Y. A. Konon, G.V. Stepanov. Scale Effects for the Stress Level in a Spherical Shell Loaded by Central Explosions. Strength of Materials, 1987,19(5): 103-107.
    77. M. Singh, H. R. Suneja, M. S. Bola, et al. Dynamic Tensile Deformation and Fracture of Metal Cylinders at High Strain Rates. International Journal of Impact Engineering, 2002, 27(9): 939-954.
    78. V. A. Ogorodnikov, A. G.Ivanov, V. I. Luchinin, et al. Effect of Size, Manufacturing and Prestrain on High-Rate Failure (Spall) of PT-3V Titanium Alloy and 12KHLSN10T Steel. Combustion, Explosion, and Shock Waves, 1995,31(6): 726-733.
    79. A. G.Ivanov. Dynamic Fracture and Scale Effects (Survey). Journal of Applied Mechanics and Technical Physics, 1994, 35(3): 430-442.
    80. A. E. Kolobanova. Scale Effect in the Fracture of a Thin-Walled Ring. Strength of Materials, 1989, 21(11): 1552-1558.
    81. A. A. Buzukov. Characteristics of the Behavior of the Walls of Explosion Chambers under the Action of Pulsed Loading. Combustion, Explosion, and Shock Waves, 1976,12(4): 549-554.
    82. J. N. Goodier, J. K. McIvor. The Elastic Cylindrical Shell under Nearly Uniform Radial Impulse. Transaction of ASME, Journal of Applied Mechanics, 1964, 31(2): 259-272.
    83. Q. Dong, Q. M. Li, J. Y. Zheng. Strain Growth in Containment Vessels. Transactions of Tianjin University, 2006,12(zl): 193-198.
    84. A. I. Abakumov, V. V. Egunov, A. G.Ivanov, et al. Calculation and Experiments on the Deformation of Explosion-Chamber Shells. Journal of Applied Mechanics and Technical Physics, 1984, 25(3): 455-458.
    85. V. A. Maltsev, Y. A. Konon, V. V. Adishchev, et al. Experimental Investigation and Analysis of Oscillations of Thin-Walled Spherical Shell During Pulse Loading. Combustion, Explosion, and Shock Waves, 1984,20(2): 97-102.
    86. V. A. Maltsev, G.V. Stepanov, I. A. Konon, et al. Estimation of Maximum Stresses in Thin-Walled Spherical Shell Structures Loaded by a Short Pressure Pulse. Strength of Materials, 1985, 17(12): 100-103.
    87. S. B. Menkes, H. J. Opat. Broken beams. Experimental mechanics, 1973,13(11): 480-486.
    88. E. A. Rodriguez, T. A. Duffey. Part 2: Ductile Failure Criteria for Detonation-Induced Pressure Loading in Containment Vessels. Welding Research Council Bulletin, 2002,477(1): 31-60.
    89. W. E. Cooper. Rationale for a Standard on the Requalification of Nuclear Class 1 Pressure-Boundary Components.EPRI Report No. NP-1921. Electric Power Research Institute. 1981.
    90.T.Nakamura,H.Kaguchi,S.Kubo.Failure Strain of Thin Cylindrical Vessel Subjected to Dynamic Internal Pressure.ASME Pressure Vessels and Piping Division Conference.R.Baliga,2000.
    91.R.E.Nickell,T.A.Duffey,E.A.Rodriguez.ASME Code Ductile Failure Criteria for Impulsively Loaded Pressure Vessels.ASME Pressure Vessels and Piping Division Conference,Shaping High Pressure Technology for the Future,2003.
    92.F.A.McClintock.A Criterion for Ductile Fracture by Growth of Holes.Transaction of ASME,Journal of Applied Mechanics,1968:363-371.
    93.A.G.Fedorenko,V.I.Tsypkin,A.G.Ivanov,et al.Peculiarities of the Dynamic Deformation and Fracture of Cylindrical Glass-Fiber Reinforced Plastic Shells upon Internal Impulse Loading.Mechanics of Composite Materials,1983,19(1):75-79.
    94.Q.M.Li.Strain Energy Density Failure Criterion.International Journal of Solids and Structures,2001.38(38-39):6997-7013.
    95.胡八一,柏劲松,刘大敏,et al.爆炸容器的工程设计方法及其应用.压力容器,2000,17(2):39-41.
    96.A.M.Clayton,R.Forgan.The Design of Steel Vessels to Contain Explosions.2000 ASME Pressure Vessels and Piping Division Conference,Emerging Technologies in Fluids,Structures and Fluid/Structure Interactions,2000.
    97.ASME Boiler & Pressure Vessel Code,Section Ⅷ,Rules for Construction of Pressure Vessels,Division 2,Alternative Rules.1998.
    98.Assessment of the Integrity of Structures Containing Defects.Nuclear Electric.Report-R6.1999.
    99.M.A.Syrunin,A.G.Fedorenko,A.G.Ivanov.Dynamic Strength of Cylindrical Fiberglass Shells under Multiple Explosive Loading.Combustion,Explosion,and Shock Waves,1997,33(6):713-717.
    100.ASME Boiler & Pressure Vessel Code,Section Ⅲ,Division 1,Non-Mandatory Appendix F,"Rules for Evaluation of Service Loadings with Level D Service Limits",ASME International,New York.2001.
    101.Pressure Vessels Subject to Impulsive Loads.ASME Section Ⅷ Division 3,Special Working Group/High Pressure Vessels,Task Group on Impulsively Loaded Vessels.2007.
    102.J.F.Proctor.Explosion Containment for Nuclear Reactor Vessels.Nuclear Safety,1966,7(4):459-468.
    103.R.A.Bcnham,T.A.Duffcy.Experimental-Theoretical Correlation on the Containment of Explosions in Closed Cylindrical Vessels.international Journal of Mechanical Sciences,1974,16(8):549-558.
    104.N.Jones.Literature Review:A Literature Review of the Dynamic Plastic Response of Structures.The Shock and Vibration Digest,1975,7(8):89-105.
    105.N.Jones.Literature Review:Recent Progress in the Dynamic Plastic Behavior of Structures:Part Ⅱ.The Shock and Vibration Digest,1978,10(10):13-19.
    106.N.Jones.Recent Progress in the Dynamic Plastic Behavior of Structures.The Shock and Vibration Digest,1978,10(9):21-33.
    107.N.Jones.Recent Progress in the Dynamic Plastic Behavior of Structures,Part Ⅲ.The Shock and Vibration Digest,1981,13(10):3-16.
    108.N.Jones.Recent Progress in the Dynamic Plastic Behaviour of Structures,Part Ⅳ.The Shock and Vibration Digest,1985,17(2):35-47.
    109.N.Jones.Recent Progress in the Dynamic Plastic Behavior of Structures,Part Ⅴ.The Shock and Vibration Digest,1989,21(8):3-13.
    110.N.Jones.Recent Progress in the Dynamic Plastic Behavior of Structures Part Ⅵ.The Shock and Vibration Digest,1992,24(11):3-16.
    111.R.R.Karpp,T.A.Duffey,T.R.Ncal.Response of Containment Vessels to Explosive Blast Loading,L.A.N.Laboratory,Editor.1980.
    112.B.L.Haroldsen,J.H.Stofleth,J.E.Didiake.Response of the Explosive Destruction System Containment Vessel to internal Detonations.ASME Pressure Vessels and Piping Division Conference,2003.
    113.T.W.Chao,J.E.Shepherd.Fracture Response of Externally Flawed Aluminum Cylindrical Shells under internal Gaseous Detonation Loading.international Journal of Fracture,2005,134(1):59-90.
    114.C.K.Youngdahl.Correlating the Dynamic Plastic Deformation of a Circular Cylindrical Shell Loaded by an Axially Varying Pressure.Argonne National Laboratory.ANL-7738.1970.
    115.J.Pastmak,C.Henning,W.Crundler,et al.Composite Vessels for Containment of Extreme Blast Loadings.American Society of Mechanical Engineers 2004 ASME Pressure Vessels &Piping Division Conference.San Diego,California,2004.
    116.A.G.Ivanov,M.A.Syrunin,A.G.Fedorenko.Effect of Reinforcing Structures on the Critical Deformability and Strength of Shells Made of Oriented Glass-Plastic Composites under an internal Explosive Load.Journal of Applied Mechanics and Technical Physics,1992,33(4):594-598.
    117.A.G.Fedorenko,M.A.Syrunin,A.G.Ivanov.Dynamic Strength of Spherical Fiberglass Shells under Internal Explosive Loading.Combustion,Explosion,and Shock Waves,1995,31(4):486-491.
    118.V.A.Ryzhanskii,V.N.Rusak,A.G.Ivanov.Estimating the Explosion Resistance of Cylindrical Composite Shell.Combustion,Explosion,and Shock Waves,1999,35(1):103-108.
    119.A.I.Abakumov,I.V.Devyatkin,V.Y.Meltsas,et al.Explosion-Resistant Container Design Numerical,Theoretical and Experimental Justification of the Container Design Parameters.AIP Conference Proceedings,2005.
    120.朱国辉,郑津洋.新型绕带式压力容器.北京:机械工业出版社.1995.
    121.蒋家羚,朱国辉.新型薄内筒扁平绕带式高压容器绕带的强度分析.力学与实践,1984,6(6):20-24.
    122.黄载生.扁平绕带高压容器强度的研究.化工炼油机械,1984,13(3):34-39.
    123.朱国辉,王乐勤,王春泉.扁平绕带高压容器的疲劳试验及断裂力学分析.化工炼油机械,1983,12(1):19-26.
    124.郑津洋,朱国辉,黄载生.扁平绕带容器预应力的研究.石油化工设备,1992,21(1):6-8.
    125.郑津洋.扁平绕带式高压容器的失效方式.化工装备技术,1993,14(5):19-22.
    126.郑津洋.扁平绕带容器的爆破特性.化工机械,1993,20(3):26-31.
    127.郑津洋.扁平绕带容器轴向与环向强度试验研究 机械强度,1994,16(1):72-76,79.
    128.田锦邦.扁平绕带式压力容器的抗爆性能研究.太原理工大学,太原,2007.
    129.宋延泽.爆炸载荷作用下扁平绕带高压容器实验研究和数值模拟.太原理工大学,太原,2006.
    130.吴晓丹.离散多层爆炸容器的热冲击研究.浙江大学,杭州,2007.
    131.P.G.J.Hodge.The influence of Blast Characteristics on the Final Deformation of Circular Cylindrical Shells.Journal of Applied Mechanics,1956,23(12):617-622.
    132.G.Cinelli.An Extension of the Finite Hankel Transform and Applications.international Journal of Engineering Science,1965,3(5):539-559.
    133.G.Cinelli.Dynamic Vibrations and Stresses in Elastic Cylinders and Spheres.Journal of Applied Mechanics,1966,3(4):825-830.
    134.W.E.Baker,W.C.L.Hu,T.R.Jackson.Elastic Response of Thin Spherical Shells to Axisymmetric Blast Loading.Journal of Applied Mechanics,1966,33(4):800-806.
    135.丁皓江,王惠明,陈伟球.圆柱壳的轴对称平面应变弹性动力学解.应用数学和力学,2002,23(2):128-134.
    136.H.J.Ding,H.M.Wang,W.Q.Chen.A Solution of a Non-Homogeneous Orthotropic Cylindrical Shell for Axisymmetric Plane Strain Dynamic Thermoelastic Problems.Journal of Sound and Vibration,2003,263(4):815-829.
    137.H.J.Ding,H.M.Wang,P.F.Hou.The Transient Responses of Piezoelectric Hollow Cylinders for Axisymmetric Plane Strain Problems.International Journal of Solids and Structures,2003,40(1):105-123.v138.H.M.Wang,H.J.Ding,Y.M.Chen.Dynamic Solution of a Multilayered Orthotropic Piezoelectric Hollow Cylinder for Axisymmetric Plane Strain Problems.International Journal of Solids and Structures,2005,42(1):85-102.
    139.X.Wang,Y.N.Gong.An Elastodynamic Solution for Multilayered Cylinders.International Journal of Engineering Science,1992,30(1):25-33.
    140.王熙.具有初始层间压力的层合圆筒的热冲击研究.应用数学和力学,1999,20(10):1065-1071.
    141.郑津洋,邓贵德,陈勇军,et al.离散多层厚壁爆炸容器抗爆炸性能试验研究.爆炸与冲击,2005,25(6):506-511.
    142.杨桂通.塑性动力学.新版.北京:高等教育出版社.2000.
    143.P.G J.Hodge.The Effect of the end Conditions of the Dynamic Loading of Plastic Shells.Journal of the Mechanics and Physics of Solids,1959,7(2):258-263.
    144.G Eason,R.T.Shield.Dynamic Loading of Rigid-Plastic Cylindrical Shells.Journal of Mechanical Physical of Solid,1956,4(2):53-71.
    145.C.K.Youngdahl.Dynamic Plastic Deformation of Circular Cylindrical Shells.Transaction of ASME,Journal of Applied Mechanics,1972,39(3):746-750.
    146.R.L.Azevedor,M.Alves.A Numerical Investigation on the Viscous-Plastic Response of Structures to Different Pulse Loading Shapes.Engineering Structures,2008,30(1):258-267.
    147.X.Qiu,V.S.Deshpande,N.A.Fleck.Finite Element Analysis of the Dynamic Response of Clamped Sandwich Beams Subject to Shock Loading.European Journal of Mechanics A /Solids,2003,22(6):801-814.
    148.J.F.Proctor.Containment of Explosions In Water-Filled Right-Circular Cylinders.Experimental Mechanics,1970,10(11):458-466.
    149.A.G Ivanov,L.I.Kochkin,V.E Novikov,et al.High-Rate Fracture of Thin-Walled Tubes Made out of Soft Steel.Journal of Applied Mechanics and Technical Physics,1983,24(1):112-117.
    150.J.F.Proctor.Energy Partition of Water-Cased Explosions in an Idealized Model Reactor Vessel.U.S.Naval Ordnance Laboratory.NOLTR 62-155.1960.
    151.W.R.Wise,J.E Proctor,L.P.Walker.Enrico Fermi Shield-plug Response to a 1000-1b TNT Accident.Experimental Mechanics,1963,3(10):245-252.
    152.J.F.Proctor.Adequacy of Explosion-Response Data in Estimating Reactor-Vessel Damage.Nuclear Safety,1967,8(6):565-572.
    153.V.A.Ryzhanskii,A.G Ivanov,V.V.Zhukov,et al.Explosion-Resistance of the Cylindrical Part of a Fast-Reactor Vessel.Atomic Energy,1995,79(3):588-597.
    154.V.N.Rusak,V.A.Ryzhanskii,A.G Ivanov,et al.Explosion Resistance of Welded Cylindrical Titanium Shells.Combustion,Explosion,and Shock Waves,1994,30(4):549-556.
    155.V.A.Ryzhanskii,A.G Ivanov,A.A.Uskov,et al.Simulation of Pulsed Accidental Energy Release in a Reactor Core.Atomic Energy,1994,77(2):601-607.
    156.V.A.Ryzhanskii,A.G Ivanov,V.V.Zhukov.Method for Estimating the Blast-Resistance and Carrying Capacity of a Fast-Reactor Vessel during an Unspecified Accident.Atomic Energy,1994,76(2):79-85.
    157.A.G Ivanov,A.I.Korshunov,A.M.Podurets,et al.Strain-Hardening of Steel by Dynamic Uniaxial Tension.Journal of Applied Mechanics and Technical Physics,1987,28(6):133-140.
    158.N.Perrone.On a Simplified Method for Solving Impulsively Loaded Structures of Rate-Sensitive Materials.Journal of Applied Mechanics,1965,32(9):489-492.
    159.郑津洋,陈勇军,邓贵德,et al.强动载荷下离散多层圆筒的弹性动力响应分析.浙江大学学报(工学版),2005,39(12):1847-1853.
    160.A.F.Demchuk.Method for Designing Explosion Chambers.Journal of Applied Mechanics and Technical Physics,1968,9(5):47-50.
    161.T.A.Duffey,E.A.Rodriguez,C.Romero.Part 1:Detonation-induced Dynamic Pressure Loading in Containment Vessels.Welding Research Council Bulletin,2002,477(1):1-30.
    162.Y.J.Chen,P.Xu,J.Y.Zheng,et al.Life Prediction of a Discrete Multi-Layered Explosion Containment Vessel.Proceedings of PVP2007,2007 ASME Pressure Vessels and Piping Division Conference.2007.San Antonio,Texas.
    163.A.M.Clayton.Preliminary Design of Vessels to Contain Explosions.Proceedings of PVP2006-ICPVT-11,2006 ASME Pressure Vessels and Piping Division Conference.2006.Vancoucer,BC,Canada.
    164.范志强,高德平,覃志贤,el al.20号钢的冲击拉伸力学性能试验研究.燃气涡轮试验与研究,2006,19(4):35-37,51.
    165.杨柳,罗迎社,许建民,et al.20号钢热拉伸流变特性的研究(Ⅰ).湘潭大学自然科学学报,2004,26(2):37-40.
    166.G D.Deng,P.Xu,J.Y.Zheng,et al.Numerical Simulation of Blast Loadings on a Thick-walled Cylindrical Vessel.Proceedings of PVP2007 ASME Pressure Vessels and Piping Division Conference.2007.San Antonio,Texas.
    167.J.Y.Zheng,G.D.Deng,Y.J.Chen,et al.Experimental Investigation on Multilayered Explosion Containment Vessels.Proceedings of PVP2006-ICPVT-11,2006 ASME Pressure Vessels and Piping Division Conference.2006.
    168.W.Solonick.Elastic-Plastic Strain Acceptance Criterion for Structures Subject to Rapid Transient Dynamic Loading.New York.KAPL Atomic Power Laboratory.KAPL-P-000034.1996.
    169.张国顺,文以明,刘定吉.爆炸危险性及其评估(上册).北京:群众出版社.1988.
    170.林俊德.内部资料.2000.
    171.A.G Ivanov.Explosive Deformation and Destruction of Tubes.Strength of Materials,1976,8(11):1303-1306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700