用户名: 密码: 验证码:
基于强限制光波导的微环谐振器及其热光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
器件小型化的研究一直是集成光电子器件的发展方向之一。利用强限制光波导结构是实现器件小型化设计的一种非常有效的途径。微环谐振器(MRR)是集成光电子回路的重要组成单元,它可以实现光无源/有源器件的众多功能,因此MRR的相关研究至关重要。本论文围绕SOI(Silicon-on-insulator)和SU-8两种材料,研究了两种强限制光波导结构:SOI纳米线光波导和SU-8脊型光波导,在此基础上,对基于强限制光波导的小型化MRR及其热光特性进行了深入的理论和实验研究。
     集成光电子器件的理论基础是光波导电磁场理论及其数值计算方法。在此,给出了包括有限差分方法(FDM)、光束传输方法(BPM)及时域有限差分方法(FDTD)等的分析求解过程,并将其应用到光波导器件的分析研究中。本文利用分步FDTD方法对透镜光纤(TLF)与SOI纳米线光波导的端面耦合系统进行了分析:考虑到光纤的旋转对称性结构,我们采用旋转体FDTD方法对磨锥TLF和拉锥TLF的聚焦特性进行了分析,把三维问题转化为二维问题,节省了计算资源,提高了计算效率。计算结果表明拉锥TLF具有较强的聚焦特性,但是相对于磨锥TLF,其传输损耗比较大。因为SOI纳米线光波导不具备旋转对称性,所以对光纤-波导耦合系统的特性分析,我们使用了标准的三维FDTD方法。仿真结果显示拉锥TLF光斑小,与Si纳米线光波导的耦合效率高;但是耦合系统总的损耗(耦合损耗与TLF传输损耗之和)与磨锥TLF耦合时计算出的总的损耗相差不多。
     在热传导理论基础上建立了光波导的热学分析模型,提出了亚微米宽的新型热电极,并把它应用到SOI脊型纳米线光波导上。利用自建的热学分析模型,对该光波导结构进行了数值分析,并与传统的掩埋型光波导进行了热学性能的比较。结果显示,具有新型热电极的SOI脊型纳米线光波导结构所需电极功耗低,约为后者的1/10,响应速度快,约为后者的2倍。不仅如此,其加工工艺简单(仅需一次光刻工艺),制作成本可大大降低。在此基础上,我们对该光波导结构进行了光学性能优化,并利用MRR结构设计出一种超小型、低功耗(5mW)、大范围可调(20nm)的热光可调谐滤波器。
     对SOI超小型光波导器件的制作工艺进行了总结,并给出了新型热电极下的SOI脊型纳米线光波导热光器件的工艺流程。对SU-8脊型光波导(空气为波导的上包层)的制作工艺进行了研究,并对两种制作工艺(纳米压印技术和直接紫外光刻技术)进行了比较。后者工艺简单,对于我们设计的SU-8光波导结构(微米量级)仍然能够提供足够的工艺容差,因此本文中关于SU-8光器件的制作都是利用直接紫外光刻技术完成的,器件表征结果显示利用该技术能够制作出低损耗的SU-8光波导及器件,如小型化多模干涉(MMI)耦合器、MRR等。
     利用SU-8脊型光波导结构,通过在MMI区域引入二次曲线锥形结构,设计出一种基于GI(General Interference)干涉机制的小型化2×2 MMI耦合器,并利用直接紫外光刻技术,完成了该器件的制作,测试结果显示该器件具有损耗低、均匀性好、带宽大等优点。把小型化2×2锥形MMI耦合器引入到MRR耦合区,研制出了小型化的MRR器件,对其光学性能,包括光谱响应、偏振相关特性等进行了表征,并对其热光效应进行了实验研究,测试结果显示温度升高100℃,其谐振波长漂移量将超过10nm,该性质对于研制大范围可调谐的滤波器件十分有利。针对SU-8脊型光波导的强限制作用及MRR的谐振增强效应,我们对MRR的热光非线性效应进行了探索性实验研究,通过对测试结果的分析,我们得到了SU-8材料对红外光的吸收系数约为0.179 cm~(-1),为实现全光控制提供了一定基础。
Miniaturization is one of the research directions for integrated opto-electronic devices.A very effective method to develop compact or ultracompact devices is using strongly-confined optical waveguides.Microring resonators(MRRs)become indispensable elements for photonic integrated circuits because of their strong flexibility and functionality.Therefore, researches on MRRs are very important.In this thesis,two kinds of strongly-confined optical waveguides are involved,namely,SOI(Silicon-on-insulator)nanowire waveguides and SU-8 ridge waveguides.Compact MRRs based on these strongly-confined optical waveguides and their thermal performances are studied theoretically and experimentally.
     Optical lightwave theory and numerical methods build up the basis of integrated optics. Here,various numerical methods,including finite-difference method(FDM),beam propagation method(BPM),finite-difference time domain(FDTD)method,are introduced and applied to analyze and design various photonic devices.In this thesis,two-step FDTD method is utilized to analyze the butt-coupling between tapered lens fibers(TLFs)and a SOI rib waveguide.Two types of TLFs are considered,namely,a tapered-cladding TLF and a tapered-core TLF.The BOR(or radial)FDTD is first used to simulate light focusing for two types of TLFs.It is shown that the tapered-core TLF has a smaller focus spot size and a larger transmission loss than the tapered-cladding TLF.The butt-coupling between a TLF of either type and a SOI rib waveguide is then simulated by a 3D FDTD method.The tapered-core TLF has a smaller coupling loss to the SOI rib waveguide but a similar total loss(the sum of the coupling loss and the transmission loss),as compared with the tapered-cladding TLF.
     According to the heat conduction theory,thermal modeling of optical waveguides is presented.Based on this thermal modeling,a photonic SOI ridge wire with a submicron metal heater is proposed.Its thermal analysis is presented and compared with the conventional buried optical waveguide.The simulation indicates that the power consumption of the proposed SOI waveguide structure is almost less than 1/10 of the latter,and the response time is about half of that of the latter.This proposed structure also helps reduce the manufacture cost,because only one photolithography process is needed.Furthermore,optical performances of this structure are optimized,and an ultracompact widely tunable thermooptical(TO)MRR filter is designed.The calculation shows that the designed MRR has a wide tuning range of about 20nm with a low heating power of 5mW.
     The fabrication processes for SOI based ultracompact optical waveguides and devices are summarized.Here also present the manufacturing processes for the thermooptical devices based on the photonic SOI ridge wire with a submicron metal heater.We conduct researches on fabrication arts of SU-8 ridge waveguides and devices.Two kinds of technologies are compared,i.e.,nanoimprint lithography and direct ultraviolet(UV)photolithography.The latter is easier and is still able to provide enough fabrication tolerance for our designed SU-8 optical waveguides(several microns).Therefore,in this thesis,SU-8 based photonic devices are all developed by direct UV photolithography technology,which are proved effective by low loss optical waveguides and devices,e.g.,small multimode interference(MMI)coupler, MRR,etc.
     A2×2 tapered MMI coupler is designed and fabricated by using air-cladded SU-8 ridge waveguides,which are effective in reducing the device size and improving the self-imaging quality.The parabolically tapered MMI section is used to reduce further the size of the MMI coupler.The measurement results show that the fabricated 2×2 tapered MMI coupler has relatively small excess loss and nonuniformity for both polarizations in a broad wavelength range.Introducing this 2×2 tapered MMI coupler into MRR coupling region,we develop a compact MRR device.Its optical performances are characterized.TO effect of such MMI-based MRR are studied experimentally and the measurement results indicate that the resonant wavelength will shift over 10nm when the temperature is increased by 100℃.This is useful for developing TO devices with a wide tuning range.Considering the strong light confinement of SU-8 based air cladded ridge waveguides and the resonance enhancement of MRR structure,the last experiment presented in the thesis is carried out to explore the thermal nonlinearity of SU-8 polymer.The measurement results are analyzed and the infrared light absorption coefficient of SU-8(about 0.179cm~(-1))is obtained,which establishes the basis for the future work involved in all-optical communication.
引文
[1] L. C. Kimerling, "Photons to the rescue: Microelectronics becomes microphotonics", Electrochemical Society Interface, 2000, 9(2): 28-32.
     [2] R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S-Y. Wang, and R. S. Williams, "Nanoelectronic and nanophotonic interconnect", Proc. IEEE, 2008, 96(2): 230-247.
    [3] L. Pavesi, G. Guillot, Optical interconnects. Springer Berlin Heidelberg New York, 2005.
    [4] J. Held, J. Bautista, S. Koehl, "From a few cores to many: A tera-scale computing research overview", White Paper Research at Intel, 2006. (http://techresearch.intel.com/articles/Tera-Scale/1489.htm)
    [5] Y. Vlasov, "Silicon photonics for next generation computing systems", 34~(th) European Conference and Exhibition on Optical Communication, Brussels Expo Belgium, 21-25 Sep. 2008. (http://domino.research.ibm.com/comm/research projects.nsf/pages/photonics.index.ht ml)
    
    [6] M. Smit, S. Oei, F. Karouta, R. Notzel, J. Wolter, E. Bente, X. Leijtens, J. Van der Tol, M. Hill, H. Dorren, D. Khoe, and H. Binsma, "Photonic integrated circuits: where are the limits?" (http://w3.tue.nl/fileadmin/ele/TTE/OED/Files/Pubs 2005/Smit PIC IPRA 05 IWB1.pdf)
    [7] L. Thylén, S. He, L. Wosinski, D. Dai, "The Moore's law for photonic integrated circuits", J. Zhejiang Univ SCIENCE A, 2006, 7(12): 1961-1967.
    [8] N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, "Optical 4×4 hitless silicon router for optical networks-on-chip (NoC)", Opt. Express, 2008,16(20): 15915-15922.
    [9] Y. Hibino. "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs", IEEE J. Sel. Top. Quantum Electron., 2002,8(6): 1090-1101.
    [10] I. P. Kaminow, "Optical integrated circuits: A personal perspective", J. Lightwave Technol., 2008,26(9): 994-1004.
    [11] S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Silicon-on-insulator microring add-drop filters with free spectral ranges over 30nm", J. Lightwave Technol., 2008, 26(2): 228-236.
    [12] S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, "Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters", IEEE Photonics Technol. Lett., 1999,11(11): 1423-1425.
    [13] D. Dai, L. Yang, and S. He, "Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires", J. Lightwave Technol., 2008, 26(6): 704-709.
    [14] F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip", Nat. Photonics, 2007, 1(1): 65-71.
    [15] H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, "Low-threshold continuous-wave Raman silicon laser", Nat. Photonics, 2007,1(4): 232-237.
    [16] A. Bennecer, K. A. Williams, R. V. Penty, I. H. White, M. Hamacher, and H. Heidrich, "Directly modulated wavelength-multiplexed integrated microring laser array", IEEE Photonics Technol. Lett., 2008, 20(16): 1411-1413.
    [17] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Mricometre-scale silicon electro-optic modulator", Nature, 2005,435(7040): 325-327.
    [18] Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators", Opt. Express, 2007, 15(2): 430-436.
    [19] K. Preston, P. Dong, B. Schmidt, and M. Lipson, "High-speed all-optical modulation using polycrystalline silicon microring resonators", Appl. Phys. Lett., 2008, 92(15): 151104.
    [20] A. W. Poon, L. Zhou, F. Xu, C. Li, H. Chen, T. Liang, Y. Liu, and H. K. Tsang, "Silicon photonics research in Hong Kong: Microresonator devices and optical nonlinearities", IEICE Trans. Electron., 2008, E91-C(2): 156-166.
    [21] C. - Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications", IEEE J. Sel. Top. Quantum Electron., 2006, 12(1): 134-142.
    
    [22] A. Maxwell, S. - W. Huang, T. Ling, J. - S. Kim, S. Ashkenazi, and L. J. Guo, "Polymer microring resonators for high-frequency ultrasound detection and imaging", IEEE J. Sel. Top. Quantum Electron.,2008, 14(1): 191-197.
    
    [23] B. Jalali, "Teaching silicon new tricks", Nat. Photonics, 2007, 1(4): 193-195.
    [24] B. Jalali, "Can silicon change photonics?", Phys. Stat. Sol. (a), 2008,205(2): 213-224.
    [25] Z. Wang, and Y. J. Chen, "Thermal properties and passband improvement of high index contrast micro-ring resonator by phase error correction", ECOC 2005 Proceedings, 3(7): 589-590.
    [26] R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, "Efficient thermal tuning for second-order silicon nitride microring resonators", Photonics in Switching, San Francisco, CA, USA, 19-22 August 2007.
    [27] X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, "Compact thermally tunable silicon wavelength switch: Modeling and characterization", IEEE Photonics Technol. Lett., 2008,20(11): 936-938.
    [28] S. Yamagata, Y. Yanagase, and Y. Kokubun, "Wide-range tunable microring resonator filter by thermo-optic effect in polymer waveguide", Jpn. J. Appl. Phys., 2004, 43(8B): 5766-5770.
    [29] G. Sekiguchi, S. Yamagata, and Y. Kokubun, "Polarization-independent tuning of widely tunable vertically coupled microring resonator using thermo-optic effect", Jpn. J. Appl. Phys., 2005,44(4A): 1792-1796.
    [30] K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, "Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides", Opt. Express, 2008,16(17): 12987-12994.
    [31] V. R. Almeida and M. Lipson, "Optical bistability on a silicon chip", Opt. Lett., 2004, 29(20): 2387-2389.
    [32] T. Carmon, L. Yang, and K. J. Vahala, "Dynamical thermal behavior and thermal self-stability of microcavities", Opt. Express, 2004, 12(20): 4742-4750.
    
    [33] M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, "Improvement of thermal properties of ultra-high Q silicon microdisk resonators", Opt. Express, 2007, 15(25): 17305-17312.
    
    [34] D. Dai and Y. Shi, "Deeply etched SiO_2 ridge waveguide for sharp bends", J. Lightwave Technol., 2006, 24(12): 5019-5024.
    [35] P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer micro-ring filters and modulators", J. Lightwave Technol., 2002, 20(11): 1968-1975.
    [36] R. Hu, D. Dai, and S. He, "A small polymeric ridge waveguide with a high index contrast", J. Lightwave Technol., 2008,26(13): 1964-1968.
    [37] B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, "Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer", J. Lightwave Technol., (to be published).
    [38] D. Dai, and S. He, "Analysis of characteristics of bent rib waveguides", J. Opt. Soc. Am. A, 2004, 21(1): 113-121.
    [39] D. Dai, and Z. Sheng, "Numerical analysis of silicon-on-insulator ridge nanowires by using a full-vectorial finite-difference method mode solver", J. Opt. Soc. Am. B, 2007, 24(11): 2853-2859.
    [40] Y. A. Vlasov, and S. J. McNab, "Losses in single-more silicon-on-insulator strip waveguides and bends", Opt. Express, 2004, 12(8): 1622-1631.
    [41] R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8 × 8 optical matrix switch", J. Lightwave Technol., 2002, 20(6): 993-1000.
    [42] H. Ma, A. K.-Y. Jen, and L. R. Dalton, "Polymer-based optical waveguides: materials, processing, and devices", Adv. Mater., 2002, 14(19): 1339-1365.
    [43] L. Eldada, "Polymer microphotonics", Proc. SPIE, 2003, 5225: 49-60.
    
    [44] K. K. Tung, W. H. Wong, and E. Y. B. Pun, "Polymeric optical waveguides using direct ultraviolet photolithography process", Appl. Phys. A, 2005. 80(3): 621-626.
    [45] L. Yang, B. Yang, Z. Sheng, J. Wang, D. Dai, and S. He, "Compact 2×2 tapered multimode interference couplers based on SU-8 polymer rectangular waveguides", Appl. Phys. Lett., 2008, 93(20): 203304.
    [46] C. M. Chen, X. Z. Zhang, H. M. Zhang, D. Zhang, S. K. Mu, A. L. Hou, X. L. Zhang, L. Li, and D. M. Zhang, "Research and fabrication of a UV curable polymeric 41×41 arrayed-waveguide grating multiplexer", Microw. Opt. Technol. Lett., 2007,49(12): 3040-3044.
    [47] L. Yang, D. Dai, B. Yang, Z. Sheng, and S. He, "Characteristic analysis of tapered lens fibers for light focusing and butt-coupling to a silicon rib waveguide", Appl. Opt., 2009, 48(4): 672-678.
    [48] D. Dai, S. He and H. Tsang, "Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide", J. Lightwave Technol., 2006,24(6): 2428-2433.
    [49] K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, "Silicon wire waveguiding system: fundamental characteristics and applications", Electronics and Communications in Japan, Part 2, 2006, 89(3): 42-55.
    [50] T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada and H. Morita, "Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibers", Electron. Lett., 2002, 38(25): 1669-1670.
    [51] F. Van Laere, G. Reolkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, "Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides", J. Lightwave Technol., 2007, 25(1): 151-156.
    [52] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor", Nature, 2004,427(6975): 615-618.
    [53] H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser", Nature, 2005,433(7027): 725-728.
    [54] T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, "31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate", Opt. Express, 2007,15(21): 13965-13971.
    [55] L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, "40 Gbit/s silicon optical modulator for high-speed applications", Electron. Lett., 2007,43(22): 1196-1197.
    [56] K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70×60μm~2 size based on Si photonic wire waveguides". Electron. Lett., 2005, 41(14): 801-802.
    [57] D. Dai, L. Liu, L. Wosinski, and S. He, "Design and fabrication of ultra-small overlapped AWG demultiplexer based on a-Si nanowire waveguides", Electron. Lett.. 2006,42(7):400-402.
    [58]K.Okanoto,"Fundamentals of optical waveguides",New York:Academic Press,2006.
    [59]K.Kawano,and Y.Kitoh,"Introduction to optical waveguide analysis:Solving Maxwell's equations and the Schr6dinger equation",New York:John Wiley & Sons,Inc.2003.
    [60]K.S.Chiang,"Analysis of rectangular dielectric waveguides:effective-index method with built-in perturbation correction",Electron.Lett.,1992,28(4):388-390.
    [61]M.Munowitz and D.J.Vezzetti,"Numerical procedures for constructing equivalent slab waveguides-An alternative approach to effective-index theory",J.Lightwave Technol.,1991,9(9):1068-1073.
    [62]时尧成,戴道锌,何赛灵,“一种适用于任意折射率分布的等效折射率方法”,光学学报,2005,25(1):51-54.
    [63]M.M.Ney,"Method of moments as applied to electromagnetic problems",IEEE Trans.Microw.Theory Tech.,1985,MTT-33(10):972-980.
    [64]J.-S.Gu,P.-A.Besse,and H.Melchior,"Method of lines for the analysis of the propagation characteristics of curved optical rib waveguides",IEEE J.Quantum Electron.,1991,27(3):531-537.
    [65]W.Yang and A.Gopinath,"A boundary integral method for propagation problems in integrated optical structures",IEEE Photon.Technol.Lett.,1995,7(7):777-779.
    [66]J.Jin,"The Finite Element Method in Electromagnetics",2~(nd)ed.New York:John Wiley & Sons,2002.
    [67]M.S.Stern,"Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles",IEE Proceedings Pt.J.,1988,135(1):56-63.
    [68]N.-N.Feng,G.-R.Zhou,C.Xu,and W.-P.Huang,"Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers",J.Lightwave Technol.,2002,20(11):1976-1980.
    [69]D.Dai,Y.Shi,and S.He,"Characteristic analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration",Appl.Opt.,2006,45(20):4941-4946.
    [70]C.Vassalo,and F.Collino,"Highly efficient absorbing boundary condition for the beam propagation method",J.Lightwave Technol.,1996,14(6):1570-1577.
    [71] G. R. Hadley, "Transparent boundary condition for the beam propagation method", IEEE J.Quantum Electron., 1992, 28(1): 363-370.
    [72] D. Zhou, W. P. Huang, C. L. Xu, D. G. Fang, and B. Chen, "The perfectly matched layer boundary condition for scalar finite-difference time-domain method", IEEE Photon. Technol. Lett., 2001,13(5): 454-456.
    [73] W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer (PML) boundary condition for the beam propagation method", IEEE Photon. Technol. Lett., 1996, 8(5): 649-651.
     [74] W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer boundary condition for modal analysis of optical waveguides: leaky mode calculations", IEEE Photon. Technol. Lett., 1996, 8(5): 652-654.
    [75] Y. - L. Hsueh, M. - C. Yang, and H. - C. Chang, "Three-dimensional noniterative full-vectorial beam propagation method based on the alternating direction implicit method", J. Lightwave Technol., 1999, 17(11): 2389-2397.
    [76] R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices", IEEE J. Sel. Top. Quantum Electron., 2000, 6(1): 150-162.
    [77] M. Koshiba, "Beam propagation method based on finite element scheme and its application to optical waveguide analysis", Electronics and Communications in Japan, Part 2,2002, 85(10): 29-39.
    [78] G. R. Hadley, "Wide-angle beam propagation using Padé approximant operators", Opt. Lett., 1992, 17(20): 1426-1428.
    [79] W. P. Huang, and C. L. Xu, "A wide-angle vector beam propagation method", IEEE Photon. Technol. Lett., 1992,4(10): 1118-1120.
    
    [80] H. Rao, R. Scarmozzino, and R. M. Osgood. Jr, "A bidirectional beam propagation method for multiple dielectric interfaces", IEEE Photon. Technol. Lett., 1999, 11(7): 830-832.
    [81] Y. Lu, and S. Wei, "A new iterative bidirectional beam propagation method", IEEE Photon. Technol. Lett., 2002,14(11): 1533-1535.
    [821 K S Yee "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media",IEEE Trans.Antennas Propagat.,1966,AP-14:302-307.
    [83]A.Taflove and S.C.Hagness,"Computational Electrodynamics:The Finite-Difference Time-Domain Method",3~(rd)ed.Artech House,2005.
    [84]L.Liu,and S.He,"Design of metal-cladded near-field fiber probes with a dispersive body-of-revolution finite-difference time-domain method",Appl.Opt.,2005,44(17):3429-3437.
    [85]C.W.Barnard and J.W.Y.Lit,"Single-mode fiber microlens with controllable spot size",Appl.Opt.,1991,30(15):1958-1962.
    [86]M.Kawachi,T.Edahiro and H.Toba,"Microlens formation on VAD single-mode fibre ends",Electron.Lett.,1982,18(2):71-72.
    [87]A.Malki,R.Bachelor and F.V.Lauwe,"Two-step process for micro-lens-fibre fabrication using a continuous CO_2 laser source",J.Opt.A:Pure Appl.Opt.2001,3(4):291-295.
    [88]S.Mukhopadhyay,S.Gangopadhyay and S.Sarkar,"Coupling of a laser diode to a monomode elliptic-core fiber via a hyperbolic microlens on the fiber tip:efficiency computation with the ABCD matrix",Opt.Engineering,2007,46(2):025008.
    [89]B.Hermansson,D.Yevick and J.Saijonmaa,"Propagating-beam-method analysis of two-dimensional microlenses and three-dimmensional taper structures",J.Opt.Soc.Am.A,1984,1(6):663-671.
    [90]N.Axelrod,A.Lewis,N.B.Yosef,R.Dekhter,G.Fish,and A.Kroll,"Small-focus integral fiber lenses:modeling with the segmented beam-propagation method and near-field characterization",Appl.Opt.,2005,44(7):1270-1282.
    [91]杨世铭,陶文铨,《传热学》,3版,北京:高等教育出版社,2006。
    [92]俞昌铭,《热传导及其数值分析》,北京:清华大学出版社,1981。
    [93]M.Iodice,G.Mazzi,and L.Sirleto,"Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide",Opt.Express,2006,14(12):5266-5278.
    [94]杨建义,江晓清,杨方辉,王明华,“有机聚合物热光器件的热学模型”,光电子·激光,2000,11(4):349-352。
    [95]于辉,江晓清,杨建义,李锡华,王明华,“有机聚合物热光器件热场的解析模型”,半导体学报,2004,25(8):995-999。
    [96]S.V.J.Narumanchi,J.Y.Murthy and C.H.Amon,"Comparison of different phonon transport models for predicting heat conduction in silicon-on-insulator transistors",J.Heat Transf.,2005,127(7):713-723.
    [97]T.Yamane,N.Nagai,S.Katayama and M.Todoki,"Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method",J.Appl.Phys.,2002,91(12):9772-9776.
    [98]L.Yang,D.Dai,and S.He,"Thermal analysis for a photonic Si ridge wire with a submicron metal heater",Opt.Commun.,2008,281(9):2467-2471.
    [99]R.L.Espinola,M.C.Ysai,J.T.Yardley and R.M.Osgood,"Fast and low-power thermooptic switch on thin silicon-on-insulator",IEEE Photon.Technol.Lett.,2003,15(10):1366-1368.
    [100]T.Chu,H.Yamada,S.Ishida and Y.Arakawa,"Compact 1×N thermo-optic switches based on silicon photonic wire waveguides",Opt.Express,2005,13(25):10109-10114.
    [101]T.Tsuchizawa,K.Yamada,H.Fukuda,T.Watanabe,S.Uchiyama and S.Itabashi,"Low-loss Si wire waveguides and their application to thermooptic switches",Japa.J.Appl.Phys.,2006,45(8B):6658-6662.
    [102]Y.Chen,Y.Li,J.Xia,J.Liu,S.Chen and J.Yu,"Silicon-on-insulator-based waveguides switch with fast response",Chin.Phys.Lett.,2004,22(1):139-141.
    [103]Y.Li,J.Yu,S.Chen,"Rearrangeable nonblocking SOI waveguide thermooptic 4×4switch matrix with low insertion loss and fast response",IEEE Photon.Technol.Lett.,2005,17(8):1641-1643.
    [104]J.Song,Q.Fang,S.H.Tao,T.Y.Liow,M.B.Yu,G.Q.Lo,and D.L.Kwong,"Fast and low power Michelson interferometer thermo-optical switch on SOI",Opt.Express,2008,16(20):15304-15311.
    [105]P.Dumon,W.Bogaerts,V.Wiaux,J.Wouters,S.Beckx,J.V.Campenhout,D.Taillaert,B.Luyssaert,P.Bienstman,D.V.Thourhout,and R.Baets,"Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography",IEEE Photon.Technol.Lett.,2004,16(5):1328-1330.
    [106] W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, "Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography", IEEE J. Sel. Top. Quantum Electron., 2002, 8(4): 928-934.
    [107] W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman and D. V. Thourhout, "Nanophotonic waveguides in Silicon-on-insulator fabricated with CMOS technology", J. Lightwave Technol., 2005, 23(1): 401-412.
    [108] H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, "Si photonic wire waveguide devices", IEICE Trans. Electron., 2007, E90-C(1): 59-64.
    [109] S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuits with membrane-type photonic crystal waveguides", Opt. Express, 2003, 11(22): 2927-2939.
    [110]K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO_2 waveguides by roughness reduction", Opt. Lett., 2001, 26(23): 1888-1890.
    [111] D. K. Sparacin, S. J. Spector, and L. C. Kimerling, "Silicon waveguide sidewall smoothing by wet chemical oxidation", J. Lightwave Technol., 2005,23(8): 2455-2461.
    [112] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub-25nm vias and trenches in polymers", Appl. Phys. Lett., 1995, 67(21): 3114-3116.
    
    [113] H. Schift, "Nanoimprint lithography: An old story in modern times? A review", J. Vac. Sci. Technol. B, 2008,26(2): 458-480.
    [114]N. Y. Lee, and Y. S. Kim, "A poly(dimethylsiloxane)-coated flexible mold for nanoimprint lithography", Nanotechnology, 2007, 18(41): 415303(7pp).
    
    [115] K. J. Vahala, "Optical microcavities", Nature, 2003,424(6950): 839-846.
    
    [116] O. Schwelb, "Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters - a tutorial overview", J. Lightwave Technol., 2004, 22(5): 1380-1394.
     [117] A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides", Electron. Lett., 2000, 36(4): 321-322.
    
    [118] L. Caruso and I. Montrosset, "Analysis of a racetrack microring resonator with MMI coupler", J. Lightwave Technol., 2003, 21(1): 206-210.
    [119] J. Rogers, C. Ma, M. Paranjape, and E. Van Keuren, "A multimode thermo-optic beam steering switch", Proc. SPIE, 2006, 6368: 636815.
    [120] G. Cocorullo, F. G. Delia Corte, and I. Rendina, "Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550K at the wavelength of 1523nm", Appl. Phys. Lett., 1999, 74(22): 3338-3340.
    [121] L. Martinez and M. Lipson, "High confinement suspended micro-ring resonators in silicon-on-insulator", Opt. Express, 2006, 14(13): 6259-6263.
    
    [122] T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides", Jpn. J. Appl. Phys. 1, 2004,43(2): 646-647.
    [123] T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology", IEEE J. Sel. Top. Quantum Electron., 2005, 11(1): 232-240.
    [124] D. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delage, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, "High bandwidth SOI photonic wire ring resonators using MMI couplers", Opt. Express, 2007,15(6): 3149-3155.
    [125] F. Xia, L. Sekaric, and Y. A. Vlasov, "Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators", Opt. Express, 2006, 14(9): 3872-3886.
    
    [126] D. - X. Xu, S. Janz, and P. Cheben, "Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering", IEEE Photon. Technol. Lett., 2006,18(2): 343-345.
    [127] D. - X. Xu, P. Cheben, A. Delage, S. Janz, B. Lamontagne, E. Post, and W. N. Ye, "Polarization-insensitive MMI-coupled ring resonators in silicon-on-insulator using cladding stress engineering", Photonics West 2007, Proc. SPIE, 2007, 6477.
    [128]L. B. Soldano. and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications", J. Lightwave Technol., 1995, 13(4): 615-627.
    [129] S. Tsao, H. Guo, and Y. Chen, "Design a 2×2 MMI MZI SOI electro-optic switch covering C band and L band", Microw. Opt. Technol. Lett., 2002, 33(4): 262-265.
    
    [130]M H Ibrahim, S. Lee, M. Chin, N. M. Kassim, A. B. Mohammad, "Multimode
     105 interference wavelength multi/demultiplexer for 1310 and 1550nm operation based on BCB 4024-40 photodefinable polymer", Opt. Commun, 2007, 273(2): 383-388.
    [131] M. R. Paiam and R. I. MacDonald, "Polarisation-insensitive 980/1550nm wavelength (de)multiplexer using MMI couplers", Electron. Lett., 1997, 33(14): 1219-1220.
    [132] F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, "Optical switch based on multimode interference coupler", IEEE Photon. Technol. Lett., 2006, 18(2): 421-423.
    [133] R. Ulrich and G. Ankele, "Self-imaging in homogeneous planar optical waveguides", Appl. Phys. Lett., 1975, 27(6): 337-339.
    [134] D. C. Chang and E. F. Kuester, "A hybrid method for paraxial beam propagation in multimode optical waveguides", IEEE Trans. Microw. Theory Tech, 1981, MTT-29(9): 923-933.
    [135] D. Dai, and S. He, "Design of an ultrashort Si-nanowaveguide-based multimode interference coupler of arbitrary shape", Appl. Opt, 2008,47(1): 38-44.
    [136]X. Wang, and R. T. Chen, "Image enhanced polymer-based multimode interference coupler covering C and L bands using deeply etched air trenches", Appl. Phys. Lett., 2007,90(11): 111106.
    [137] Y. Shi, and D. Dai, "Design of a compact multimode interference coupler based on deeply-etched SiO_2 ridge waveguides", Opt. Commun, 2007,271(2): 404-407.
    [138] D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, Jr., "A new design for ultracompact multimode interference-based 2×2 couplers", IEEE Photon. Technol. Lett., 1998, 10(1): 96-98.
    [139] D. Dai, and S. He, "Proposal for diminishment of the polarization-dependency in a Si-nanowire multimode interference (MMI) coupler by tapering the MMI section", IEEE Photon. Technol. Lett., 2008, 20(8): 599-601.
    [140] V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip", Nature, 2004,431(7012): 1081-1084.
    
    [141] T. Tanabe, M. Notomi. S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities", Appl. Phys. Lett., 2005, 87(15): 15112.
     [142] Q. Xu and M. Lipson, "Carrier-induced optical bistability in silicon ring resonators", Opt. Lett.,2006,31(3):341-343.
    [143]M.Cada,J.He,B.Acklin,M.Proctor,D.Martin,F.Morier-Genoud,M.-A.Dupertuis,and J.M.Glinski,"All-optical reflectivity tuning and logic gating in a GaAs/AIAs periodic layered structure",Appl.Phys.Lett.,1992,60(4):404-406.
    [144]J.He,M.Cada,M.-A.Dupertuis,D.Martin,F.Morier-Genoud,C.Rolland,and A.J.SpringThorpe,"All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure",Appl.Phys.Lett.,1993,63(7):866-868.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700