用户名: 密码: 验证码:
重组表位疫苗的制备及免疫学活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重组表位疫苗(Recombinant epitope vaccine)研制和开发过程主要包括构建表达、制备及活性研究等几个阶段。围绕以上三个方面,针对重组表位疫苗CZ-1、HSP65-MUC1和HSP65-HER2进行了以下研究:1、使用分子生物学软件对AsiaⅠ型口蹄疫病毒的VP1上的B细胞表位和Th细胞表位进行了多参数预测,根据预测结果在大肠杆菌内构建表达了由相同B细胞表位及Th细胞表位以串联模式组成口蹄疫重组表位疫苗CZ-1,采用层析法纯化、复性后,对其免疫豚鼠后产生中和抗体的滴度进行了测定;2、解决了HSP65-MUC1的降解问题,建立了重组表位疫苗HSP65-MUC1的实验室规模纯化工艺,并将纯化工艺放大至中试规模后,且对纯化后的HSP65-MUC1原液冻干品进行了一系列的质量检测;3、表达并纯化了重组表位疫苗HSP65-HER2,采用小鼠B16/HER2黑色素瘤的腹腔荷瘤动物模型研究其生物学活性,并对其作用机制进行了初步探索。
     本研究的意义在于,构建、表达、纯化获得了重组表位疫苗CZ-1,并对其生物学活性进行了研究,证实其有望开发成预防AsiaⅠ型FDMV感染的新型疫苗,并为其他同类型的重组表位疫苗的开发提供了思路;解决了HSP65-MUC1在制备过程中易降解的技术难题,建立了HSP65-MUC1的中试工艺,为进一步临床试验及商业化应用建立了坚实的基础;通过小鼠体内抑瘤实验,证实了HSP65-HER2与CpG ODN联合应用对HER2阳性肿瘤细胞生长抑制作用,为进一步的研究奠定了基础。
Recombinant epitope vaccine is a kind of vaccine which is comprised of recombinant epitopes and prepared by genetic engineering technology. The epitope- vaccine is consist of antigen specific epitopes which can induce specific immunogenic response against pathogens. It overcomes the crucial drawbacks of traditional vaccines which based on the intact pathogen and could be approach of safer vaccines.
     Specificity, construction, preparation and activity are crucial for the development of such epitope-based vaccines. In this study, we focus on the following concepts: first, identification of the B-cell epitopes in VP1 subunit of Foot-and-mouth disease virus (FMDV), preparation of the AsiaⅠtype FMDV epitope-vaccine CZ-1 and determination of the activity; Second, establishment of the lab-scale purification process of a HSP65-MUC1 protein, scaling it up to pilot-scale and quality control of the purified HSP65-MUC1 according to the Chinese Pharmacopoeia 2005; third, establishment of HER2 positive B16 cell line, preparation of HSP65-HER2 recombinant fusion protein and determination of its immunogenic activity on mice mode.
     This study was composed of following parts:
     1.1 Construction and preparation of AsiaⅠtype FMDV epitope-vaccine
     CZ-1 and determination of its immunogenicity.
     The VP1 subunits of FMDV is recognized as the primary target of neutralizing antibodies, and therefore knowledge of antigenic determinants that can elicit neutralizing antibodies could be beneficial for the development of a protective vaccine. B cell epitopes and T helper cell eptiopes in VP1 subunit was predicted by multi-parameters method using DNAStar software. The cDNA sequence encoding the B cell epitope and T helper cell epitope peptide was constructed artificially by PCR and then three units was connected in series pattern. The cDNA was cloned into the vector pET28a to construct pET28-CZ-1 plasmid, which was transformed into E.coli B21(DE3). After induced by IPTG, the CZ-1 was expressed as inclusion body which was solubilized in buffer of 8mol/L urea, and was purified by Ni-affinity chromatography and gel chromatography. In the purification process, the CZ-1 was refolded by decreasing the concentration of urea in the washing buffers in a stepwise gradient manner. 74 mg of CZ-1 with purity of 90% was purified from 12.5 g wet cell mass. Guinea pigs were immunized with CZ-1 and sera were collected. Neutralizing antibodies in the sera were determined by neutralization test in cells and protection assay in neonate rats. The antibody titer elicited by CZ-1 was 1:286 and 1:127 in cell neutralization test and neonate rats protection assay respectively, which was comparable to the traditional vaccines of whole pathogen.
     1.2 Establishment of the HSP65-MUC1 pilot-scale purification scheme and detection of the purified HSP65-MUC1
     HSP65-MUC1, a fusion protein between Bacillus Calmette-Guerin (BCG) derived heat shock protein 65 (HSP65) and human MUC1 VNTR peptides, was approved by China’s FDA to initiate a phase clinical trial for the treatment of patients with MUC1-positive breast cancer. To avoid the degradation of HSP65-MUC1, we increased the pH and the NaCl concentration of the buffers used in homogenization and HIC to 9.0 that was demonstrated crucial for stabilizing HSP65-MUC1. To produce qualified HSP65-MUC1, a lab-scale purification scheme of HSP65-MUC1 was established. The scheme consists of two steps including hydrophobic interaction chromatography (HIC) and ion-exchange chromatography (IEX). The purity of purified HSP65-MUC1 was up to 95%. And then, the lab-scale purification scheme was scaled up to pilot-scale by adjusting the NaCl concentration of elution buffer in HIC. In pilot scale, 400mg HSP65-MUC1 with purity of 96% was purified from 100 g wet cell mass. According to the Chinese pharmacopeia, the quality control method of HSP65-MUC1 was set up. To detect the general properties (appearance and pH), purity and sterility, we reconstituted lyophilized HSP65-MUC1 in a vial with 0.5ml Mili-Q water. The reconstituted sample, without color or particles, with pH 7.1, was clear. The concentration of HSP65-MUC1 was 0.996mg/ml. The purity of HSP65-MUC1 was 96%. The molecular weight and pI of HSP65-MUC1 were 64 kDa and 4.8, respectively. Endotoxin level of HSP65-MUC1 was less than 0.25 EU/mg, and no rabbit showed a temperature rise of 0.5°C compared with respective control temperature at any time period. E.coil protein and DNA were less than 10 ng/mg protein and less than 100 pg/mg protein, respectively. No microbial growth was observed for 14 days. The amino sequence obtained by N-teminal sequencing matched exactly the predicted N-termini of the HSP65-MUC1. The HSP65-MUC1 stored over 12 months at 4°C showed no evident degradation, aggregation, and potency loss.
     In a word, the purified HSP65-MUC1 meet the requirement of phaseⅠc linical trials.
     1.3 Study on immunologic activity of HSP65-HER2
     HSP65-HER2 is a fusion protein between Bacillus Calmette-Guerin (BCG) derived heat shock protein 65 (HSP65) and multi- epitopes. In the previous reports, HSP65-HER2 can induce the specific and non-specific immune response to inhibit the generation of ZR-75-30 (HER2 positive). The immunologic activity of HSP65-HER2 was verified further by the tumor growth inhibition in mice model.
     After screening culture by G418 and monoclonal culture, the stable expressed HER2 B16 cell line was established with the transfection of the pCDNA3-GFP-HER2 plasmid, and the expression of HER2 gene were identified by fluorescence microscope and flow cytometry. HSP65-HER2 was expressed in E.coli, purified by Ni affinity chromatography and superdex G-25, and the endotoxin was removed by Triton X-114.
     In the study of the prophylactic effect of HSP65-HER2, inhibition of the growth of HER2-expressing tumors and prolonged survival of tumor-bearing mice were observed in the HSP65-HER2 groups immunized with or without CpG ODN as adjuvant. And in the therapeutic study, inhibition of the growth of HER2-expressing tumors and prolongation of the survival of tumor-bearing mice were observed in the groups immunized with HSP65-HER2 plus CpG ODN as adjuvant, while the no such effect was observed in the groups immunized with only HSP65-HER2 or only CpG ODN. HSP65-HER2 inhibit the growth of HER2- expressing tumors by inducing the HER2-specific CTL.
     In the study, we constructed and prepared the recombinant epitope vaccine CZ-1, identified the immunogenicity by neutralization test in cell line and protection assay in neonate rats, established the pilot-scale purification scheme, prepared sufficient clinical grade HSP65-MUC1, and identified the tumor growth inhibition effect of HSP65-HER2 in mice model.
引文
[1] Margarita Sáiz, JoséI. Nú?ez,et al. Foot-and-mouth disease virus: biology and prospects for disease control. Microbes and Infection 4 (2002) 1183–1192.
    [2] Marvin J. Grubman , Barry Baxt, et al. Foot-and-Mouth Disease. CLINICAL MICROBIOLOGY REVIEWS, 2004, 4:465–493.
    [3] Bittle J L, Houghen R A, Alexander H, et al. Protection against foot-and- mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence[J]. Nature,1983,298:31-33 .
    [4] Collen T, Dimarchi R, Doel T R.A T cell epitope in VP1 of foot-and-mouth disease virus is immunodominant for vaccinated cattle[J]. J Immunol, 1991, 146:749-755
    [5] Parry N R, Fox G,Rowlands D, et al. Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus[J]. Nature, 1990, 347:569-572.
    [6] Aggarwal N , Barnett P V. Antigenic sites of foot-and-mouth disease virus ( FMDV) : an analysis of t he specificities of anti-FMDV antibodies after vaccination of naturally susceptible host species[J ]. J Gen Virol , 2002 , 83 :775-782.
    [7] Parry NR, Syred A, Rowlands DJ, et al. A high proportion of anti-peptide antibodies recognize foot-and-mouth disease virus particles. Immunology, 1988, 64(4): 567 572.
    [8] Bittle JL, Houghten RA, Alexander H, et al. Protection against foot-and- mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature, 1982, 298(5869) : 30-33.
    [9] Chan EW, Wong HT, Cheng SC, et al. An immunoglobulin G based chimeric protein induced foot and mouth disease specificimmune response in swine.Vaccine, 2000, 19 (45): 538 546.
    [10] Thomas A A M, Woortmeijer R J , PUIJK W, et al. Antigenic sites on Foot-and-mouth disease virus type A10[J]. J Virol, 1988, 62:2782-2789.
    [11] Saiz J C, Gonzalez M J, Borca M V, et al. Identification of neutralizing antigenic sites on VP1 and VP2 of type A5 Foot-and-mouth disease virus, defined by neutralization-resistant variants [J ] . J Virol, 1991, 65:251822524.)
    [12] Butchaiah G, Morgan D O. Neutralization antigenic sites on type Asia21 Foot-and- mouth disease virus defined by monoclonal antibody resistant variants [J]. Virus Res, 1997, 52 (2) :183-194.
    [13] Marquardt O , Rahman M M ,Freiberg B. Genetic and antigenic variance of Foot-and- mouth disease virus type Asia21[J]. Arch Virol, 2000, 145:149-157.
    [14] L N MF, WILLI AMS C, MURRAY MV, et al . Removal of lipopolysaccharides from protein lipopolysaccharide complex by nonflammable solvents[ J ]. J Chrom B , 2005, 816 (122) : 167 - 174.
    [15] MATSUMAE H, MI NOBE S, KI NDAN K, et al. Specific removal of endotoxin from protein solutions by immobilized histidine [J]. Biotechnol Appl Biochem , 1990, 12(2): 129-140.
    [16] KARPLUS TE, ULEV ITCH RJ, W I LSON CB. A new method for reduction of endotoxin contaminations from protein solutions [J]. J Imm unolM ethod, 1987, 105 (2): 211-220.
    [17] AIDA Y, PABSTMJ, et al. Removal of endotoxin from protein solutions by phase separation using Triton X-114 [J]. J Immunol Methods, 1990, 132 (2): 191-195.
    [18] Werner M H, Clore G M, Refolding proteins by gel filtration chromatography. FEBS Lett, 1994,345(2):125-130.
    [19] Xie Y, Wetlaufer D B. Control of aggregation in protein refolding: the temperature-leap tactic. Protein Sci, 1996,5(3): 517–523.
    [20] Akira S, Takeda K. Toll-like receptor signaling[J]. Nature Reviews Immunology, 2004(4): 499-511.
    [21] Liang X, Moseman EA, Farrar MA, Bachanova V, Weisdorf DJ, Blazar BR, Chen W.Toll-like receptor 9 signaling by CpG-B oligodeoxynucleotides induces an apoptotic pathway in human chronic lymphocytic leukemia B cells[J].Blood. 2010,3(25): 321- 326.
    [22] Laabs EM, Wu W, Mendez S. Vaccination with live Leishmania major and CpG DNA promotes interleukin-2 production by dermal dendritic cells and NK cell activation. Clin Vaccine Immunol. 2009 Nov;16(11):1601-1606.
    [23] Chuang CM, Monie A, Wu A, Mao CP, Hung CF.Treatment with LL-37 peptide enhances the antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer[J]. Hum Gene Ther. 2008(11); 166-172.
    [24] Betting DJ, Yamada RE, Kafi K, Said J, van Rooijen N, Timmerman JM. Intratumoral but not systemic delivery of CpG oligodeoxynucleotide augments the efficacy of anti-CD20 monoclonal antibody therapy against B cell lymphoma. J Immunother. 2009;32(6):622-31.
    [25] Wu X. Codon optimization reveal critical factors for high level expression of two rare codon genes in Escherichia coli: RNA stability and secondary structure but not tRNA abundance[J]. Biochem Biophys Res Commun, 2004, 313(1):89-96.
    [26] Chiristian K M. Soluble expression of a pro-transglutaminase from Streptomyces in Escherichia coli[J]. Enzyme and Microbial Technology, 2007,40(6):1543-1550.
    [27] Vallejo L F, Rinas U. Optimized procedure for renaturation of recombinant human bone morphogenetic protein-2 at high protein concentration [J]. Biotechnology and Bioengineering, 2004,85(6): 601-609.
    [28] Marabe K, Asano R, Ito T, et al. Tumor-directed lymphocyte-activating cytokines: refolding-based preparation of recombinant human interleukin-12 and an antibody variable domain-fusion protein additive-introduced stepwise dialysis [J]. Biochem Biophys Res Communications, 2005, 328(1): 98-105.
    [29] Middelberg A P. Preparative protein refolding [J]. Trends Biotechnol, 2002,20(10):437-443.
    [30] Li D, Li H, Zhang P, Wu X, Wei H, Wang L, Wan M, Deng P, Zhang Y, Wang J, Liu Y, Yu Y, Wang L. Heat shock fusion protein induces both specific and nonspecific anti-tumor immunity. Eur J Immunol. 2006, 36(5): 1324-36.
    [31] Yu Feng, Min Wan, Zemin Xiang, Hongfei Wei, Xiaoping Hu, Yanmei Wang, Li Dai, Mingli Fang, Xuefeng Zhang, Yongli Yu, Liying Wang. Purification of a non-tagged recombinant BCG heast shock protein 65-Her2 peptide fusion protein from Escherichia coli. Protein Expression and Purification, 2007 53:390-395.
    [32] Alix AJ. Predictive estimation of protein linear epitopes by using the program PEOPLE. Vaccine 1999, 18(324): 311-314.
    [33] Bailey SM, Meagher MM. Separation of soluble protein from inclusion bodies in Escherichia coli lysate using crossflow microfiltration. J Membr Sci, 2000, 166: 137-146.
    [34] Belew, M, Yafang, M, Bin L, Berglf J. Janson J-C. Purification of recombinant hepatitis B surface antigen produced by transformed Chinese hamster ovary (CHO) cell line grown in culture. Bioseparation.1991, 1: 397–408
    [35] Belew M, Zhou Y, Wang S, et al. Purification of recombinant human granulocyte-macrophage colony-stimulating factor from the inclusion bodies produced by transformed Escherichia coli cells. J Chromatography, 1994, 679: 67-83
    [36] Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S, Udono H, Srivastava PK. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med. 1997, 186(8): 1315-22
    [37] Zhang Yin, Xu Jinshu, Zhao Renping, Liu Jingjing, Wu Jie. Inhibition effects on liver tumors of BALB/c mice bearing H22 cells by immunization with a recombinant immunogen of GnRH linker to heat shock protein 65[J]. Vaccine.2007, 25:6911-6921.
    [38] Bonnerjea, J., Oh, S., Hoare, M. & Dunhill, P. The right step at the right time. Bio/Technology. 1986, 4: 954-958
    [39] Cho BK, Palliser D, Guillen E, Wisniewski J, Young RA, Chen J, Eisen HN. A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat shock fusion proteins. Immunity. 2000, 12(3): 263-72
    [40] Chu NR, Wu GB, Wu T, et al. Immunotherapy of a human papillomavirus (HPV) type16 E7-expressing tumor by administration of fusion protein comprising mycobacterium bovis Bacilli Calmette-Guerin (BCG) HSP65 and HPV16 E7. Clin Exp immunol 2002, 121(2): 216-225
    [41] Derkay CS, Smith RJ, McClay J, et al. HspE7 treatment of pediatric recurrent respiratory papillomatosis: Final results of an open-label trial. Ann Otol Rhinol Laryngol 2005, 114(9): 730-7
    [42] L.D. Roman, S. Wilczynski, L.I. Muderspach, A.F. Burnett, A.O. Meara, J.A. Brinkman, W.M. Kast, G. Facio, J.C. Felix, M. Aldana, J.S. Webber. A phaseⅡstudy Hsp-7(SGN-00101) in women with high-grade cervicial intraepithelial neoplasia[J]. Gynecologic Oncology. 2007, 106: 558-566.
    [43] Feliu JX, Cubarsi R, Villaverde A. Optimized release of recombinant proteins by ultrasonication of E. coli cells. Biotechnology and Bioengineering, 1998, 58(5): 536-540.
    [44] Gilljam, G., Hinkula, J., Daniels, A.I. Wahren, B. Production and purification of murine monoclonal antibodies directed against HIV-1, for use inpassive immunotherapy of HIV-1. Poster presented at Biotech 92. International Symposium; New eneration of Monoclonal Antibodies in Diagnosis and Therapy. Genoa, Italy, 1992
    [45] Harwood L J, Russell NJ. Lipids and Plant Membranes, 1984, 30-31
    [46] Himmelhoch, SR. Chromatography of proteins on ion-exchange adsorbents. Meth. Enzymol. 22 (1971): 273-286
    [47] Hopp TP, Woods KR. prediction of protein antigenic determinants from aminoacid sequences. Proc Natl Acad Sci USA 1981, 78(6): 3824-3828.
    [48] Janson, JC. Ryden, L. Protein Purification - Principles, High-Resolution Methods, and Applications. 2ed, John Wiley & Sons
    [49] Janson, J.C. Ryden, L. Ion Exchange Chromatography: Protein Purification, Principles, High resolution methods and Applications, Publishers Inc. New York. 1989: 107-14
    [50] KKolaskar AS, Tongaonkar PC. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 1990, 276(122): 172-174.
    [51] Larsen JE, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006, 2:2
    [52] Lefort, S, Ferrara, P. Hydrophobic adsorbants for the isolation and purification of biosynthetic human growth hormone from crude fermentation mixtures. J.Chromatog. 1986, 361: 209–216
    [53] Liu SG, Tobias R, McClure S, Styba G, Shi QW, Jackowski G. Removal of endotoxin from recombinant protein preparations. Clinical Biochemistry, 1997, 30: 455-463
    [54] Logan, D, Abu-Ghazaleh, R, Blakemore, W, Curry, S, Jackson, T, King, A, Lea, S, Lewis, R, Newman, J, Parry, N, Rowlands, D, Stuart, D, Fry, E. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature, 1993, 362: 566-8,
    [55] Maguire M, Coates AR, Henderson B. Cloning, expression and purification of three Chaperonin 60 homologues. J Chromatogr B Analyt Technol Biomed Life Sci. 2003, 786(1-2): 117-25.
    [56] Melander, W. Horvath, C. Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch. Biochem. Biophys. 1977, 183: 200–21
    [57] Ochoa WF, Kalko SG, Mateu MG, Gomes P, Andreu D, Domingo E, Fita I, Verdaguer N. A multiply substituted G-H loop from foot-and-mouth disease virus incomplex with a neutralizing antibody: a role for water molecules. J Gen Virol. 2000, 81(6): 1495-505
    [58] Pellequer JL, Westhof E, Van Regenmortel MH. Correlation between the location of antigenic sites and the prediction of turns in proteins. Immmunol Lett, 1993, 345 (1): 83-99.
    [59] Portaro FC, Hayashi MA, De Arauz LJ, Palma MS, Assakura MT, Silva CL, de Camargo AC. The Mycobacterium leprae hsp65 displays proteolytic activity. Mutagenesis studies indicate that the M. leprae hsp65 proteolytic activity is catalytically related to the HslVU protease. Biochemistry. 2002, 41(23): 7400-6.
    [60] Qamra R, Mande SC. Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. J Bacteriol. 2004, 186(23): 8105-13
    [61] Reynolds SR, Dahl CE, Harn DA. T and B epitope determination and analysis of multiple antigenic peptides for the Schistosoma mansoni experimental vaccine triose-phosphate isomerase. J Immunol, 1994, (152): 193-200.
    [62] Rosengren, J, P?hlman, S, Glad, M. Hjertén, S. Hydrophobic interaction chromatography on non-charged Sepharose derivatives. Binding of a model protein, related to ionic strength, hydrophobicity of the substituent, and degree of substitution (determined by NMR). Biochim. Biophys. Acta. 1975, 412: 51–61
    [63] Schirle M, Weinschenk T, Stevanovic S. Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens. J Immunol Methods, 2001, 257 (12): 1216.
    [64] Schoel B, Kaufmann SH. Hydrophobic interaction chromatography for the purification of a mycobacterial heat shock protein of relative molecular mass 60,000. J Chromatogr. 1991, 587(1): 19-23.
    [65] Seely, J. E. & Richey, C. W. Use of ion-exchange chromatography and hydrophobic interaction chromatography in the preparation and recovery ofpolyethylene glycol-linked proteins. J Chromatogr A. 2001, 908(1-2): 235-241
    [66] Srinivasan, R, Ruckenstein, E. Role of physical forces in hydrophobic interaction chromatography. Separation & Purification Methods. 1980, (9): 267–370
    [67] Srivastava PK. Peptide-binding heat shock proteins in the endoplasmic reticulum: role in immune response to cancer and in antigen presentation. Adv Cancer Res, 1993, 62: 153-77
    [68] Srivastava PK. Purification of heat shock protein-peptide complexes for use in vaccination against cancers and intracellular pathogens. Methods. 1997, 12: 165-171.
    [69] Suzue K, Zhou X, Eisen Hn et al. Heat shock fusion protein as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc Natl Acad Sci USA. 1997, 94(24): 13146-5
    [70] Theisen DM, Bouche FB, El Kasmi KC, von der Ahe I, Ammerlaan W, Demotz S, Muller CP. Differential antigenicity of recombinant polyepitope- antigens based on loop and helix-forming B and T cell epitopes. J Immunol Methods. 2000, 242(1-2): 145-57.
    [71] Earp HS, Dawson TL, Li X, Yu H. Heterodimerization and functional interaction between EGF receptor family members: a new signaling paradigm with implications for breast cancer research[J]. Breast Cancer Res Treat. 1995, 35(1):115-32.
    [72] Pal, S.K., M. Pegram. Targeting HER2 epitopes[J]. Seminars in Oncology. 2006,33:386-391.
    [73] Roskoski, R. The ErbB/HER receptor protein-tyrosine kinases and cancer[J]. Biochemical and Biophysical Research Communications 2004; 319:1-11.
    [74] Gross, ME., RL. Shazer, DB. Agus. Targeting the Her-kinase axis in cancer[J]. Seminars in Oncology. 2004, 31:9-20.
    [75] Badache, A. and A. Gonclaves. The ErbB2 signaling network as a target forbreast cancer therapy[J]. Mammary Gland Biol Neoplasia. 2006, 11: 13-25.
    [76] Rowinsky, EK. Signal events: cell signal transduction and its inhibition in cancer[J]. The Oncologist. 2003, 8(3):5-17.
    [77] Worthylake, R., LK. Opresko, HS. Wiley. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors[J]. Biological Chemistry. 1999, 274(13):8865-8874.
    [78] Slamon, D.J., G.M. Clark, S.G. Wong, W.J. Levin, A. Ullrich. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene[J]. Science, 1987; 235:177-182
    [79] Yip, YL., and RL. Ward. Anti-ErbB-2 monoclonal antibodies and ErbB-2-directed vaccines[J]. Cancer Immunology, Immunotherapy. 2002, 50(11):569-587.
    [80] Agus, DB., RW. Akita, WD. Fox, GD. Lewis, B. Higgins. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth[J]. Cancer Cell. 2002, 2:127-137.
    [81] Slamon, DJ., B. Leyland-Jones, S. Shak, H. Fuchs, V. Paton, et.al. Use of chemotherapy plus a monoclonal antibody against Her2 for metastatic breast cancer that overexpressed Her2[J]. N Eng J Med. 2001, 344(11):783-792.
    [82] Nahta, R. and F.J. Esteva. Molecular mechanisms of trastuzumab resistance[J]. Breast Cancer Research. 2006, 8: 215-222.
    [83] Thole JE, Keulen WJ, De Bruyn J, Kolk AH, Groothuis DG, Berwald LG, Tiesjema RH, van Embden JD. Characterization, sequence determination, and immunogenicity of a 64-kilodalton protein of Mycobacterium bovis BCG expressed in Escherichia coli K-12. Infect Immun. 1987, 55(6): 1466-75.
    [84] Thornton JM, Edwards MS, Taylor WR, et al. Location of continuous antigenic determinants in the protruding regions of proteins. EMBO J 1986, 5(2): 409-413.
    [85] van Reis R, Leonard LC., Hsu CC, Builder, SE. Industrial scale harvest ofproteins from mammalian cell culture by tangential flow filtration. Biotechnol. Bioeng. 1991.38: 413–422.
    [86] Verdaguer N, Mateu MG, Andreu D, Giralt E, Domingo E, Fita I. Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO J. 1995 14(8): 1690-6.
    [87] Verdaguer N, Mateu MG, Bravo J, Domingo E, Fita I. Induced pocket to accommodate the cell attachment Arg-Gly-Asp motif in a neutralizing antibody against foot-and-mouth-disease virus. J Mol Biol. 1996; 256(2): 364-76
    [88] Williams KM, Bigley EC 3rd, Raybourne RB. Identification of murine B-cell and T-cell epitopes of Escherichia coli outer membrane protein F with synthetic polypeptides. Infect Immun, 2000, (68): 2535-2545.
    [89] WU YZ, ZHU XH. A new approach for B-cell epitope prediction in viral proteins. Chinese Science Bulletin 1995, 40 (9): 761-763.
    [90] Yamazaki K, Nguyen T, Podack ER. Cutting edge: tumor secreted heat shock-fusion protein elicits CD8 cells for rejection. J Immunol. 1999, 163(10): 5178-82
    [91] Yang MC, Tong JH. Loose ultrafiltration of proteins using hydrolyzed polyacrylonitrile hollow fiber. J membr Sci. 1997 132: 63-71.
    [92] J.E. Thole, W.J. Keulen, J. De Bruyn, A.H. Kolk, D.G. Groothuis, L.G. Berwald, R.H. Tiesjema, J.D. van Embden, Characterization, sequence determination, and immunogenicity of a 64-kilodalton protein of Mycobacterium bovis BCG expressed in escherichia coli K-12. Infect Immun 1987, 55:1466-1475.
    [93] F.C. Portaro, M.A. Hayashi, L.J. De Arauz, M.S. Palma, M.T. Assakura, C.L. Silva, A.C. de Camargo, The Mycobacterium leprae hsp65 displays proteolytic activity. Mutagenesis studies indicate that the M. leprae hsp65 proteolytic activity is catalytically related to the HslVU protease.Biochemistry 2002,41:7400-7406.
    [94] R. Qamra, S.C. Mande, Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. J Bacteriol 186 (2004) 8105-8113.
    [95] Ashkar AA, Bauer S, Mitchell WJ, Vieira J, Rosenthal KL. Local delivery of CpG oligodeoxynucleotides induces rapid changes in the genital mucosa and inhibits replication, but not entry, of herpes simplex virus type 2[J]. J Virol. 2003, 77(16):8948-8956.
    [96] Auf G, Chen L, Fornes P, Le Clanche C, Delattre JY, Carpentier AF. CpG-oligodeoxynucleotide rejection of a neuroblastoma in A/J mice does not induce a paraneoplastic disease[J]. Neurosci Lett. 2002,327(3): 189-192.
    [97] Ballas ZK, Krieg AM, Warren T, Rasmussen W, Davis HL, Waldschmidt M, Weiner GJ. Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs[J]. J Immunol. 2001, 167(9): 4878-4886
    [98] Bao M, Zhang Y, Wan M, Dai L, Hu X, Wu X, Wang L, Deng P, Wang J, Chen J, Liu Y, Yu Y, Wang L. Anti-SARS-CoV immunity induced by a novel CpG oligodeoxynucleotide[J]. Clin Immunol. 2006, 118(2-3):180-187.
    [99] Becker Y. A point of view: HIV-1/AIDS is an allergy but CpG ODN treatments may inhibit virus replication and reactivate the adaptive immunity--hypothesis and implications[J]. Virus Genes. 2005, 30(1): 127-131
    [100] Cong Z, Wan M, Wu X, Wang L, Hu X, Yang F, Bao M, Zhang X, Chen J, Wang L, Yu Y. A CpG oligodeoxynucleotide inducing anti-coxsackie B3 virus activity in human peripheral blood mononuclear cells [J]. FEMS Immunol Med Microbiol. 2007, 51(1):26-34.
    [101] Droemann D, Albrecht D, Gerdes J, Ulmer AJ, Branscheid D, Vollmer E, Dalhoff K, Zabel P, Goldmann T. Human lung cancer cells express functionally active Toll-like receptor 9 [J].. Respir Res. 2005,4;61-68.
    [102] Du YC, Lin P, Zhang J, Lu YR, Ning QZ, Wang Q. Fusion ofCpG-ODN-stimulating dendritic cells with Lewis lung cancer cells can enhance anti-tumor immune responses [J]. Tissue Antigens. 2006, 67(5):368-376.
    [103] El Andaloussi A, Sonabend AM, Han Y, Lesniak MS. Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors [J]. Glia. 2006, 54(6):526-535.
    [104] Flynn B, Wang V, Sacks DL, Seder RA, Verthelyi D. Prevention and treatment of cutaneous leishmaniasis in primates by using synthetic type D/A oligodeoxynucleotides expressing CpG motifs [J]. Infect Immun. 2005, 73(8):4948-4954.
    [105] Friedberg JW, Kim H, McCauley M, Hessel EM, Sims P, Fisher DC, Nadler LM, Coffman RL, Freedman AS. Combination immunotherapy with a CpG oligonucleotide (1018 ISS) and rituximab in patients with non-Hodgkin lymphoma: increased interferon-alpha/beta-inducible gene expression, without significant toxicity [J]. Blood. 2005, 105(2):489-495.
    [106] Gramzinski RA, Doolan DL, Sedegah M, Davis HL, Krieg AM, Hoffman SL. Interleukin-12 and gamma interferon-dependent protection against malaria conferred by CpG oligodeoxynucleotide in mice [J]. Infect Immun. 2001, 69(3): 1643-1649.
    [107] Grandjenette C, Kennel A, Faure GC, BénéMC, Feugier P. Expression of functional toll-like receptors by B-chronic lymphocytic leukemia cells [J]. Haematologica. 2007 Sep;92(9):1279-81.
    [108] Gurney KB, Colantonio AD, Blom B, Spits H, Uittenbogaart CH. Endogenous IFN-alpha production by plasmacytoid dendritic cells exerts an antiviral effect on thymic HIV-1 infection [J]. J Immunol. 2004, 173(12): 7269-7276.
    [109] Harris TH, Mansfield JM, Paulnock DM. CpG oligodeoxynucleotide treatment enhances innate resistance and acquired immunity to African trypanosomes [J]. Infect Immun. 2007, 75(5):2366-2373.
    [110] Heckelsmiller K, Rall K, Beck S, Schlamp A, Seiderer J, Jahrsdorfer B, Krug A, Rothenfusser S, Endres S, Hartmann G. Peritumoral CpG DNA elicits a coordinated response of CD8 T cells and innate effectors to cure established tumors in a murine colon carcinoma model. J Immunol. 2002, 169(7): 3892-3899.
    [111] Isogawa M, Robek MD, Furuichi Y, Chisari FV. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo [J]. J Virol. 2005, 79(11): 7269-7272.
    [112] Ito S, Ishii KJ, Gursel M, Shirotra H, Ihata A, Klinman DM. CpG oligodeoxynucleotides enhance neonatal resistance to Listeria infection [J].. J Immunol. 2005, 174(2): 777-782.
    [113] Ito S, Ishii KJ, Ihata A, Klinman DM. Contribution of nitric oxide to CpG-mediated protection against Listeria monocytogenes [J]. Infect Immun. 2005, 73(6):3803-38035.
    [114] Ito S, Pedras-Vasconcelos J, Klinman DM. CpG oligodeoxynucleotides increase the susceptibility of normal mice to infection by Candida albicans [J]. Infect Immun. 2005b Sep;73(9):6154-6156.
    [115] Jahrsdorfer B, Mühlenhoff L, Blackwell SE, Wagner M, Poeck H, Hartmann E, Jox R, Giese T, Emmerich B, Endres S, Weiner GJ, Hartmann G. B-cell lymphomas differ in their responsiveness to CpG oligodeoxynucleotides [J]. Clin Cancer Res. 2005 Feb 15;11(4):1490-1499.
    [116] Kawarada Y, Ganss R, Garbi N, Sacher T, Arnold B, Hammerling GJ. NK- and CD8(+) T cell-mediated eradication of established tumors by peritumoral injection of CpG-containing oligodeoxynucleotides. J Immunol. 2001; 167(9): 5247-5253.
    [117] Krieg AM. Antiinfective applications of toll-like receptor 9 agonists [J]. Proc Am Thorac Soc. 2007, 4(3):289 -294.
    [118] Krieg AM. Development of TLR9 agonists for cancer therapy [J]. J Clin Invest. 2007 May;117(5):1184-94.
    [119] Krieg AM. Therapeutic potential of Toll-like receptor 9 activation [J]. Nat Rev Drug Discov. 2006, 5(6):471-84.
    [120] Lonsdorf AS, Kuekrek H, Stern BV, Boehm BO, Lehmann PV, Tary-Lehmann M. Intratumor CpG-oligodeoxynucleotide injection induces protective antitumor T cell immunity[J].. J Immunol. 2003; 171(8): 3941-3946.
    [121] Luganini A, Caposio P, Landolfo S, Gribaudo G . Phosphorothioate-modified oligodeoxynucleotides inhibit human cytomegalovirus replication by blocking virus entry [J]. Antimicrob Agents Chemother. 2008, 52(3):1111-1120.
    [122] Novakovi? S, Stegel V, Kopitar A, Ihan A, Novakovi? BJ. Preventive and therapeutic antitumor effect of tumor vaccine composed of CpG ODN class C and irradiated tumor cells is triggered through the APCs and activation of CTLs[J]. Vaccine. 2007, 25(49):8241-8256.
    [123] Pedras-Vasconcelos JA, Goucher D, Puig M, Tonelli LH, Wang V, Ito S, Verthelyi D. CpG oligodeoxynucleotides protect newborn mice from a lethal challenge with the neurotropic Tacaribe arenavirus [J]. J Immunol. 2006, 176(8):4940-4949.
    [124] Ren T, Wen ZK, Liu ZM, Liang YJ, Guo ZL, Xu L. Functional Expression of TLR9 is Associated to the Metastatic Potential of Human Lung Cancer Cell: Functional Active Role of TLR9 on Tumor Metastasis [J]. Cancer Biol Ther. 2007, 6(11).
    [125] Roda JM, Parihar R, Carson WE 3rd. CpG-containing oligodeoxynucleo- tides act through TLR9 to enhance the NK cell cytokine response to antibody-coated tumor cells [J]. J Immunol. 2005, 175(3): 1619-1627.
    [126] Wang JP, Hayashi T, Datta SK, Kornbluth RS, Raz E, Guiney DG. CpG oligonucleotides partially inhibit growth of Mycobacterium tuberculosis, but not Salmonella or Listeria, in human monocyte-derived macrophages [J]. FEMS Immunol Med Microbiol. 2005, 45(2):303-310.
    [127] Liang Yang, Luguo Sun, Xiuli Wu, Li Wang, Hongfei Wei, Min Wan, Peiyin Zhang, Yongli Yu, Liying Wang. Therapeutic injection of C-class CpG ODNin during lymph node area induces potent activation of immune cells and rejection of established breast cancer in mice[J]. Clinical Immunology. 2009, 132: 426-437.
    [128] Jay S Dela Cruz, Suk Ying Lau, Ernesto M Ramirez, Carla De Giovanni, Guido Forni, Sherie L Morrison, Manuel L Penichet. Protein vaccination with the HER2/neu extracellular a protective anti-HER2/neu immune response in mice [J]. Vaccine. 2003, 21:1317-1326.
    [129]王俊英; HSP65-HER2对HER2~+和HER2~-肿瘤细胞的免疫选择[D];吉林大学; 2006年.
    [130]王学菊,王智博,卫红飞,吴秀丽,王莉,于永利,王丽颖. C型CpG单链寡核苷酸对肿瘤疫苗抑瘤效果的增强作用[J].细胞与分子免疫学杂志,2007, 23(4):338-340.
    [131]徐斌.茂原链轮丝菌转谷氨酰胺酶基因在大肠杆菌中的高效表达[J].生物工程学报,2005,21(5):794-798.
    [132]易建中,黄海斌等,A型口蹄疫VP1免疫活性肽基因串联片断的化学合成及克隆与表达[J].复旦学报(自然科学版),1997,36(5).
    [133]郑敏,金宁一,等,O型口蹄疫病毒VP1嵌合基因的构建及原核表达[J].中国兽医学报,2005,25(6):561-563.
    [134]刘庆军,张永光,口蹄疫病毒基因组结构及其功能.动物医学进展,2005 ,26 (5) :1-5.
    [135]韩磊,赵秀琴,等. 2001年各国口蹄疫疫情简介.2001.
    [136]尤永进,郑兆鑫,等,“O”型口蹄疫病毒生物合成多肽保护性抗体的免疫应答[J],上海农业学报,1997,13(4):1-3
    [137]尤永进,郑兆鑫,等,pXZ500融合蛋白提纯物和包涵体免疫效果比较[J],上海农学报,1997,13(4):4-6
    [138]杨志军,林炎,等.含T细胞表位和B细胞表位的抗O型FMDV基因工程疫苗诱导豚鼠产生免疫反应.复旦学报(自然科学版) 2000, 39(5).
    [139]董金杰,王永录等.亚洲Ⅰ型口蹄疫病毒VP1基因真核表达载体的构建及其免疫活性的初步分析.中国兽医科技,2005 ,35 (6) :461-464
    [140]韩姬,王加龙等. AsiaⅠ型口蹄疫病毒基因工程多肽疫苗的构建及其免疫原性分析[J].复旦学报(自然科学版),2008,47(5): 556-560.
    [141]吴在德,吴肇汉.外科学(第6版)[M ].北京:人民卫生出版社,2005: 875– 880.
    [142]项泽敏.热休克蛋白HSP65-HER2多表位融合蛋白的构建及其生物学活性研究[D].长春:吉林大学,2005.
    [143]梁兰, ,余蓉,邓璇,等.透析法体外复性抗凝溶栓双功能HV12p 2rPA融合蛋白[J].药物生物技术, 2009 ,16 (2) :140-143.
    [144]孙静,傅晶晶,霍烛,等.重组HIV-1跨膜蛋白Gp41包涵体纯化条件的优化[J].中国生物制品学杂志,2009, 22(9): 876-877.
    [145]陈昕,下游层析工艺中热原的去除.中国生物工程杂志. 2002, 22(4): 100-104
    [146]丁锡申,中国基因工程药物产业化发展历史、现状、存在的问题与国际差距和发展战略.生物工程进展. 1999. 19(1): 3-6.
    [147]国家药典委员会,《中华人民共和国药典》,化学工业出版社, 2005年版.
    [148]陆敏.化学制药工艺与反应器.北京:化学工业出版社,2005.6 P78-84
    [149]毛忠贵.生物工业下游技术.北京:中国轻工业出版社,1999.10,P260-262
    [150]向泽敏,吴秀丽,万敏,邓平,于永利,王丽颖.热休克蛋白65-MUC1抗原肽融合蛋白效力测定方法的建立.中国生物制品学杂志. 2005, 04: 332-335。
    [151]俞淑文,贾洪,张芳.基因工程药物的高度纯化方法.中国实用医药杂志. 2003, (14): 1306-1311.
    [152]朱长乐.超滤过程的膜污染和浓差极化.第一届全国膜和膜过程学术报告会文集. 1991. 33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700