用户名: 密码: 验证码:
脉冲激光烧蚀及靶材光学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲激光沉积技术(Pulsed Laser Deposition,简称PLD技术)是近年来一种发展极为迅速的薄膜制备技术。这项技术较其他薄膜制备技术有激光能量高、薄膜的化学成分比与靶材一致、沉积速率高、基片温度要求低等多种优点。PLD技术制备薄膜的过程可划分为三个阶段:激光烧蚀、等离子体膨胀、薄膜沉积。我们课题组在制备出高质量的KTN薄膜材料的同时,以极大的精力将重点放在PLD机理的研究。建立了能够统一描述三个阶段的自洽的动力学模型Zhang-Li模型。并且,对PLD技术的每个阶段的物理机制和物理图象都进行了深入的研究。
     本文的研究主要集中在激光烧蚀阶段的材料固体光学性质的变化,及其对靶材烧蚀的影响。在充分考虑靶材吸收率和吸收系数随温度的演化规律的基础上,进一步针对超短脉冲激光(皮秒级和飞秒级)所带来的热传导的新的物理图象和多脉冲的累积效应,深入地探讨了激光烧蚀新的热传导规律和特点,建立了新的物理模型,理论预言和相关实验符合很好,并且为今后的理论发展提供了良好的物理平台。
     具体的讲,主要做了以下三方面的工作:
     首先,详细研究了脉冲激光与物质相互作用过程中靶材的烧蚀特点,分别从能量守恒和经典的电磁理论两个角度出发,给出了靶材吸收率和吸收系数随靶材温度动态变化的理论公式,结合恰当的边界条件,用有限差分法和分析法两种方法讨论了吸收系数和吸收率随时间的演化规律对靶材温度和融化深度的影响。
     其次,分析了皮秒级脉冲激光与材料发生烧蚀的物理图象,在考虑热传导的非傅立叶效应(即靶材中热传导速度的有限性)的基础上,建立了带有热源项的非傅立叶导热模型,研究了在高频脉冲激光烧蚀制备薄膜时,靶材温度分布的演化规律。
     最后,针对飞秒级多脉冲激光的烧蚀特点,提出了描述多脉冲飞秒激光烧蚀的一个新的物理模型。模型特点是:考虑了靶材吸收率的变化和蒸发效应对靶材温度的影响,尤为重要的是首次将多脉冲激光看作以脉冲持续时间和两脉冲间隔时间为周期的连续过程,并将每个周期的激光烧蚀分为三个不同的阶段:脉冲作用阶段(离子温度和电子温度之差增大)、双温持续阶段和傅立叶热传导阶段。利用此模型研究了靶材温度随脉冲个数的演化关系,并且着重研究了多脉冲激光烧蚀过程中的能量剩余现象。
     通过以上研究,我们发现,
     1.当靶材在脉冲激光辐照下发生烧蚀时,
     靶材吸收率和吸收系数随靶材温度呈现动态变化。当入射激光输入能量密度为高斯分布时,在脉冲开始和结尾阶段,系统状态主要取决于脉冲激光的能量输入,考虑吸收率和不考虑吸收率两种情况下的理论结果与实验结果偏差不大;在脉冲激光较长的中间阶段,忽略靶材吸收率的变化对于最终的模拟结果有重要影响,导致结果与实验数据有较大差异。
     2.当靶材在皮秒级脉冲激光的辐照下发生烧蚀时,
     a非傅立叶热传导的影响表现在热传导有一个滞后时间(热传导弛豫时间),越深的位置,滞后时间越长。从靶材温度随时间的演化趋势来看,在小于一个脉冲的时间区间,非傅立叶模型下靶材熔融前的温度上升速度明显高于通常的傅立叶热传导情况。并且,随着弛豫时间的增加,靶材的非傅立叶效应越来越明显。
     b在激光辐射10-11秒后,热源项对靶材表面温度的影响越来越显著。比较无源项模型的结果,靶材表面的温度上升越来越快。
     3.当靶材在飞秒级脉冲激光的辐照下发生烧蚀时,
     a在单脉冲激光作用下,电子和晶格两个子系统温度统一之后,由于热传导和蒸发效应的存在,靶材温度将会下降;并且在其他条件不变的前提下,无论随着激光功率密度还是脉冲宽度的增加,靶材温度所需的耦合时间都会增大。
     b在多脉冲激光作用下,电声耦合时间之后的靶材温度随着脉冲个数依次上升,充分证明,在飞秒多脉冲激光作用下,若后表面绝热,材料内存在能量积累效应。
Pulsed laser deposition method is a new thin-film preparation technology with many advantages, and it has been developing very quickly. The PLD technique has so many advantages, such as high pulsed laser energy density, similarity between target and prepared thin film components, the high deposition rate, and lower substrate temperature. The whole process can be divided into three stages: laser ablation, plasma expansion and film growth. Combined PLD technology with other techniques, high-quality KTN thin films are prepared by our group. Based on accumulated experimental experiences, our researches emphasis is laid on theoretical mechanism on PLD technology. Recently, a more integrated Zhang-Li (Z-L) model has been proposed. Every stage of PLD processes are considered as a uniform whole in this model. At the same time, the physics mechanism and image of every state of PLD processes is investigated detailed.
     The paper aims in the ablation process of PLD. Based on consulting other experiments, Zhang-Li model and local theoretical works of other researchers, physical phenomena in ablation stage are completely studied in detail, such as the target optical characteristic, and two new models are present to describe the heat conduction in ablation. Three works are fulfilled:
     Firstly, the physical picture of ablation stage is discussed. The dynamic absorptance and absorption coefficient as the function of irradiation time and incident laser intensity are derived from two points of view: law of conservation of energy, and Maxwell Equations with Lambert Beer’s law respectively. By finite difference and analytical method, the effect of dynamic absorptance and absorption coefficient on target temperature and melt depth is studied. The calculated results demonstrate that the effect of the dynamic absorptance and absorption coefficient on PLA is notable:
     Secondly, a non-Fourier conduction model with heat source term is presented to study the target temperature evolvement when the target is radiated by picosecond pulsed laser. By Laplace transform, the analytical expression of the space- and time-dependence of temperature is derived. The corresponding physical mechanism is analyzed.
     Lastly, a new theoretical model of multipulse femtosecond laser ablation has been developed to describe the behavior of target temperature. The characteristic of this model is that, the femtosecond laser ablation is considered as a periodic process,and the periods is the laser pulse and the interval between two pulse. Every pulse is divided into three different phases (pulse laser irradiation stage, two temperature continue stage, Fourier heat conduction stage). In this model, the temperature dependence of the absorptance and the vaporization is considered.
     The results of above investigation shows that
     1. As the target is ablated by pulse laser,
     as the Gaussian distribution is introduced to describe the incident laser intensity,the dynamic absorptance and absorption coefficient show little effect on PLA due to the small intensity at the beginning and the end of a pulse,while in the longer middle period of a pulse, the dynamic absorptance and absorption coefficient exhibit their effect on the state of the system due to the steady incident laser intensity. Their effect on the temperature after melting is larger than that before melting.
     2. As the target is ablated by picosecond pulsed laser,
     a. The effect of non-Fourier conduction behaves mainly that there is a delay of heat conduction in the inner target, and the deeper the target is, the longer the delay time is. The non-Fourier temperature is distinctly higher than that of the Fourier heat conduction model.
     b. The effect of heat source term becomes more and more remarkable after the target is radiated for 10-11 s in the condition of this paper. Compared to the results of the model without heat source term, the increase of surface temperature obtained by non-Fourier model is quicker.
     3. As the target is ablated by femosecond pulsed laser,
     a. For single pulse laser irradiation, the target temperature will decrease for the heat conduction and vaporization after the coupling time of electron and lattice. With the increase of either laser intensity or laser width, the coupling time becomes longer.
     b. For multipulse laser irradiation, the target temperature after coupling time ascends with the pulse number. This proves that energy residua indeed play an important role. And the descending of target temperature will be rapid more and more due to the evaporation.
引文
[1] R.H. Hohig, J.R. Woolston. Laser-induced emission of electrons, ions and neutral atoms from solid surfaces. Appl.Phys.Lett., 1963, 2(7): 138-139
    [2] H.M. Smith, A.F. Turner. Vacuum deposition thin film using a ruby laser. Appl. Opt., 1965, 4(1):147-148
    [3] D.Dijkkamp, T. Venkateasan, X.D. Wu. Preparation of Y-Ba-Cu oxide supper-conductior thin films using pulsed laser evaporation from high Tc bulk material. Appl.Phys. Lett., 1987, 51(8): 619-621
    [4] T.Dietz, R.Smalley. Laser production of supersonic metal cluster beams. Journal of Chemistry Physics, 1981, 74: 6511-6512
    [5] A.Matsunawa, S. Katayama. Laser production of metallic ultrafine particles.Transaction of JWRI, 1986, 15: 233-244
    [6] D.B.Chrisey, G.K. Hubler. Pulsed Laser Deposition of Thin Films. New York:J. Willey, 1994,1-24
    [7] D.H. Lowdes, D.B. Geohegan, A.A.Puretzky et al. Synthesis of Novel Thin-Film Materials by Pulsed Laser Deposition. Science, 1996, 273: 898-903
    [8] Z. Paszti, Z.E. Horvath, G. peto et al. Pressure dependent formation of small Cu and Ag particles during laser ablation. Applied Surface Science,1996,109-110: 67-73
    [9] H. Ferkel, J. Naser, W.Riehemann. Laser induced solid solution of binary nanoparticle system Al2O3-ZrO2. Nanostructured Materials, 1997, 8: 457-464
    [10] S.Li, M.S. EI-Shall. Synthesis of nanoparticles by reactive laser vaporization: silicon namocrystals in polymers and properties of gallium and tungsten oxides. Applied Surface Science, 1998, 127-129: 330-338
    [11] J.L.Horn, D.W.Chapelle, C.A.Grimes et al. Curie temperature enhancement in Fe3C nanoparticles nade by laser pyrolysis. IEEE Transaction on Magnetics, 1997, 33: 3736-3738.
    [12] T. P. Duffey, T. G. McNeela, T. Yamamoto et al. Absorption spectroscopic measurements of plume density and temperature in production of manocrystalline NbAl3 by laser ablation deposition. Physical Review B, 1995, 51: 14652-14663
    [13] Yang Jian-ping, Chen Zhi-gang, X.Z. Li et al. Preparation of nano-sized Ce0.8Gd0.2O1.9 powders by atomization co-deposition method, Electronic Components & Materials, 2007, 26(2): 17-19
    [14] A.G. Gnedovets, E.B Kulbatskii, I.Smurov et al. Particles synthesis in erosive laser plasma in a high pressure atmosphere. Applied Surface Science, 1996, 96-98: 272-279
    [15]S.Yilmaz, T.Venkatesan. Pulsed laser deposition of stoichiometric potassium-tantalate-niobate films from segmented evaporation targets. Appl. Phys. Lett., 1991, 58(22): 2479-2481.
    [16] J.A. Greer, M.D. Tabal. Large-area pulsed laser deposition: Techniques and application. J.Vac.Sci.Technol A, 1995, 13(3): 1175-1181
    [17] R.Jordan, D.Cole, J.G.Lunney. Pulsed laser deposition of particulate-free thin films using a curved magnetic filter. Appl.Sur. Sci., 1997, 109/110: 403-407
    [18]吴凌晖,吴嘉达,伍长征等.金属表面激光烧蚀的发射光谱分析.应用激光,1994, 4: 149
    [19] W. Mroz, A. Prokopiuk, M. Mularczyk-Oliwa et al. Nickel- and iron-based intermetallics deposited using KrF laser. Applied Surface Science, 2002, 197/198: 371-375
    [20] A.A. Puretzky, D.B. Geohegan, H. Schittenhelm et al. Time-resolved diagnostics of single wall carbon nanotube synthesis by laser vaporization. Applied Surface Science, 2002, 197/198:552-562
    [21] R.G. Song, M. Yamaguchi, O. Nishimura et al. Effect of laser ablated copper nanoparticles on polymerization of 1, 1, 3, 3tetraphenyl, 1, 3-disilacyclobutane. Applied Physics A: Materials Science & Processing, 2004, 78: 867-875
    [22] W. Marine, J.M.S. DAniello, J. Marfaing. Picosecond YAG laser photoablation ofamorphous silicon. Applied Surface Science, 1990, 46(1-4): 239-244
    [23] N.N. Nedialkov, S.E. Lmanova, P.A. Atananov et al. Laser ablation of iron by ultrashort laser pulses.Thin Solid Films. 2004,453/454: 496~500
    [24] M. Weingartoer, R. Elschner, O. Bostanjoglo. Patterning of silicon---differences between nanosecond and femtosecond laser pulses. Applied Surface Science, 2002, 138-139: 499-502
    [25] K. Ozono, M. Obara, A. Usui et al. High-speed ablation etching of GaN semiconductor using femtosecond laser. Optics Communications, 2001, 189: 103~106
    [26] K. Venkatakrishnan, T. Tan, B.K.A. Ngoi. Fentosecond pulsed laser ablation of thin gold & lm. Optics & Laser Technology, 2002, 34: 199-202
    [27] F. Garrelie, A.S. Loir, C. Donnet et al. Femtosecond pulsed laser deposition of diamond-like carbon thin films for tribological applications. Surface and Coatings Technology, 2003, 163-164: 306~312
    [28] A.S. Loir, E.F. Garr, C. Donnet et al. Deposition of tetrahedral diamond-like carbon thin films by femtosecond laser ablation for applications of hip joints. Thin Solid Films, 2004,453-454: 531-536
    [29] R.K. Singh, J. Narayan. Pulsed laser ebaporation technique for deposition of thin films: Physics and theoretical model. Phys.Rev. B, 1990, 41(13): 317-320
    [30]马卫东,张端明等,高取向KTN薄膜的PLD法制备研究.华中理工大学学报,1998, 26:7-9
    [31]马卫东,王世敏,张端明等,用脉冲准分子激光在P-Si(100)衬底上沉积高取向KTN薄膜,科学通报,1998, 43(3): 259-262
    [32] D.M. Zhang, Z.H. Li, M.J. Zhang et al, The Technical Study of Preparing the KTN films on Transparent Monocry Stalline Quarts (100). Ceramic Bulletin, 2001, 80(2): 57-61
    [33]钟志成,张端明,刘素玲等,用Sol-Gel法制备粉料及KTN陶瓷烧结研究.华中理工大学学报, 1998, 26: 101-103
    [34]关丽,张端明,李智华等. PLD制膜过程中靶材等离子体羽辉的动力学模.华中科技大学学报,2001,29(9):103-105
    [35] D.M. Zhang, G.B. Liu, Z.H. Li et al. Expansion of plasma into a vacuum in ns pulsed laser deposition, Plasma Source Science and Technology, 2006 (Submitted)
    [36] D.M. Zhang, L. Guan, Z.H. Li, B.M.Yu. Monte Carlo Simulation of Growth of Thin Film Prepared by Pulsed Laser. Chin.Phys.Lett. 2003, 20(2), 263-266
    [37] D.M. Zhang, L. Guan, Z.H. Li et al. Influence of kinetic energy and substrate temperature on thin film growth in pulsed laser deposition, Sur.Coat.Techn., 2006, 200: 4027-4031
    [38] L. Guan, D.M. Zhang, Z.H. Li et al., A new scaling behavior in film growth process in pulsed laser deposition. Phys. Rew. Lett., 2006, (submitted)
    [39] X.Y. Tan, D.M. Zhang, Z.H. Li et al, Vaporization effect studying on high-power nanosecond pulsed laser deposition. Physica B, 2005, 358: 86-92
    [40] L. Li, D.M. Zhang, Z.H. Li et al. Effect of the dynamic absorptance of a metallic target surface on pulsed laser ablation. Phys. Stat. Sol. (a), 2006, 203(5): 906-918.
    [41] L. Li, D.M. Zhang, Z.H. Li et al. The investigation of optical characteristics of metal target in high power laser ablation. Physica B, 2006, 383: 194-201.
    [42] D.M. Zhang, L. Li, Z.H. Li et al. Non-Fourier heat conduction studying on high-power short-pulse laser ablation considering heat source effect. Eur. Phys. J. Appl. Phys. , 2006, 33: 91-96
    [43] D.M. Zhang, L. Li, Z.H. Li et al. Variation of the target absorptance and target temperature distribution before melting in the pulsed laser ablation process. Acta Physica Sinica, 2005, 54: 1283-1289
    [44] D.M. Zhang, L. Li, Z.H. Li et al. Non-Fourier conduction model with thermal source term of ultra short high power pulsed laser ablation and temperature evolvement before melting. Physica B, 2006, 364: 285-293.
    [45] D.M. Zhang, D. Liu, Z.H. Li et al. A new model of pulsed laser ablation and plasma shielding. Physica B, 2005, 362: 82-87
    [46] Y.B. Zeldovich, Y.P. Raizer. Physics of Shock Waves and High-Temperature Hydrodynamics Phenomena, Vol.1, New York, Academic Press, 1966, 29-35
    [47] D.M. Zhang,Z.H. Li, B. M. Yu et al. Dynamic simulation on the preparation process of thin films by pulsed laser, Science in China (Ser. A), 2001, 44(11): 1485-1496
    [48] D.D. Joseph, L. Preziosi, Rev. Mod. Phys. Addendum to the paper "Heat waves" (Rev. Mod. Phys. 61, 41 (1989)). 1990, 62: 375-391
    [49] Y. Hirayama, M. Obaraa. Heat-affected zone and ablation rate of copper ablatedwith femtosecond laser. Journalof Applied Physics, 2005, 97: 064903-064608
    [50] A. P. Kanavin, I. V. Smetanin. Heat transport in metals irradiated by ultrashort laser pulses. Physical Review B, 1998, 57: 14698-14703
    [51] S. I. Anisimov, B. L. Kapeliovich, T. L. Perelman et al. Electron emission from metal surfaces exposed to ultra short laser pulses. Sov. Phys. JETP, 1974, 39: 375-378
    [52] H.E. Elsayed-Ali, M.A. Pessot. Time-Resolved Observation of Electron-Phonon Relaxation in Copper. Physical Review Letters, 1987, 58: 1212-1215
    [53] P.B. Corkum, N.K. Sherman. Thermal Response of Metals to Ultrashort-Pulse Laser Excitation, Physical Review Letters, 1988, 61: 2886-2889
    [54] J. Gudde, J.G. Müller. Damage threshold dependence on electron-phonon coupling in Au and Ni films. Applied Surface Sinence, 1998, 127-129: 40-45
    [55] D.M. Zhang, D.Z. Hu, L. Li et al. A unified model in the pulsed laser ablation process. Physica B.Submitted.
    [56]孙承纬.激光辐照效应.第一版,北京:国防工业出版社, 2002,18-21
    [57]杨礼兵,刘绪发,张可星等.铝靶激光反射率的动态研究.强激光与粒子束,1994,6(1): 99-106
    [58]黄延禄,杨福华,梁工英等.用原位法测定铝合金对激光的吸收率.中国激光,2003,30(5): 449-453
    [59] A. Y. Vorobyev, C.L. Guo. Enhanced absorptance of gold following multipulse femtosecond laser ablation. Physical Review B 2005, 72:195422-195427
    [60] D. Bergstroma, J. Powell, A.F.H. Kaplan. The absorptance of steels to Nd:YLF and Nd:YAG laser light at room temperature. Applied Surface Science, 2007, 253: 5017–5028
    [61] T. Visan, D. Sporea, G. Dumitru. Computing method for evaluating the absorption coefficent of infrared optical elements. Infrared Physics & Technology, 1998, 39: 335-346
    [62] G.J. Lunney, R. Jordan. Pulsed laser ablation of metals. Applied Surface Science, 1998, 127–129: 941–946
    [63] A.F. Hassan, M.M. El-nicklawy. A general problem of pulse laser heating of a slab. Optics&LaserTechnology, 1993, 25: 155-162
    [64]郑启光,辜建辉.激光与物质相互作用.第一版,武汉:华中理工大学出版社,1996,13-14
    [65]陆彦文,陆启生.编著,军用激光技术.第1版,北京:国防工业出版社,1999,31-38
    [66]陆建激光与材料相互作用物理学.第1版,北京:机械工业出版社,1996,18-20
    [67] H.G. Dreehsen, C. Hartwich, J.H.S. Uhlenbusch. Measurement of the optical constants of Al above the melting point atλ= 10.6μm. J Appl Phys. 1984, 56(1): 238-240
    [68]邹德宁,雷永平,梁工英等.用数值计算技术和试错法确定金属材料表面对激光的吸收率.金属学报,2001,37(7):737-740
    [69] A. Frenk, A.F.A. Hoadley, J.D. Wagniere. In-Situ Techique for Measuring the Absorption during Laser Surface Remlting. Metallurgical Transactions B, 1991, 22B:139-142
    [70]C.A. Huntington, T.W. Eagar. Laser welding of Aluminum and Aluminum Alloys. Welding Journal, 1983, 62(4):105-107
    [71]P.A.A. Khan, T. Debroy. Absorption of CO2 laser beam by Aisi 4340 steel. MetallTrans B, 1985, 16B:853-856
    [72]M. Bruckner, J.H. Schafer, J. Uhlenbusch. Ellipsometric measurement of the optical constants of solid and molten aluminum and copper atλ= 10.6μm. J Appl Phys, 1989, 66(3): 1326-1332
    [73] J.G. Lunney, R. Jordan. Thermal model of pulsed laser ablation: back flux contribution. Appl. Surf. Sci., 1998, 127-129: 941
    [74] J. Xu, X.W. Wang. Simulation of ballistic and non-Fourier thermal transport in ultra-fast laser heating. Physica B, 2004, 351: 213-226
    [75] Z.H. Li., D.M. Zhang, B.M Yu,L. Guan. Characteristics of plasma shock waves generated in the pulsed laser ablation process. Chin. Phys. Let., 2002, 19(12): 1841-1843.
    [76]张端明,侯思普,李智华等,脉冲激光制备薄膜材料的烧蚀机理研究.物理学报,2004,53(7):2237-2243
    [77] S. Nettesheim, R. Zenobi et al. Pulsed laser heating of surfaces: nanosecond timescale temperature measurement using black body radiation. Chemical Physics Letters, 1996, 255: 39-44
    [78]CRC handbook of chemistry and physics, 72nd Ed., Boca Raton, CRC Press, FL, 1992
    [79] H.N. Bransch. In Proceeding of the International Congress on the Applications of Laser and Electron-Optics, 1992 (ICALEO’92): Laser Materials Processing, Laser Institute of America, Oriando, Florida, 1992: 70-76
    [80] J. Xie, A. Kar. Mathematical modeling of melting during laser materials processing. J. Appl. Phy., 1997, 81: 3015-3022
    [81] J.S.D. Groot, S.M. Cameron. Distributed absorption model for moderate to high laser powers. Phys. Fluids. B, 1992, 4 (3): 701-707
    [82] D.M. Zhang, X.Y. Tan,Z.H. Li et al. Thermal regime and effect studying on the ablation process of thin films prepared by nanosecond pulsed laser. Physica B, 2005, 357: 348-355
    [83] S. Amoruso, V.Berardi, R.Bruzzese et al. XeF excimer laser ablation of metallic targets probed by energy-selective time-of-flight mass spectrometry. Appl. Surf. Sci., 1999, 138-139: 250-255
    [84] C. Daniel, F. Mucklich, Z. Liu. Periodical micro-nano-structuring of metallic surfaces by interfering laser beams Appl. Surf. Sci., 2003, 208-209: 317.
    [85]郭硕鸿.电动力学.第一版,北京:高等教育出版社,1979,19-20
    [86] E. G. Gamaly, A. V. Rode, B. Lutter-Davies. Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Physics of Plasmas, 2002, 9(3): 949
    [87]李景德,沈韩,陈敏.电解质理论.第1版,北京:科学出版社,2003,84-87
    [88] B.H. Billings, H.P.R. Frederikse. American Institute of Physics Handbook, 3rd Edition, McGraw-Hill, N.Y.,1972
    [89] G.C.P. Berger, H. Hugel. Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation. J. Phys. D: Appl. Phys., 1995, 28: 794
    [90] S. Nettesheim, R. Zenobi. Pulsed laser heating of surfaces: nanosecond timescale temperature measurement using black body radiation. Chem. Phys. Lett., 1996, 255: 39-44
    [91] N.M. Bulgakova, A.V. Bulgakov. Pulsed laser ablation of solids: transition from normal vaporization to phase explosion. Applied Physics A, 2001, 73: 199
    [92]J. Singh, B.N. Bhat, R. Poorman, A. Kar et al. Laser glazing of vacuum plasma spray coated NARloy-Z. Surf.Coat. Technol., 1996, 79: 35-49
    [93]姜任秋,刘登瀛.快速加热微小尺度内的热传导问题理论研究.中国工程热物理学会传热传质学学术会议论文集.苏州,1996.
    [94] A.M. Mullis. Rapid Solidification within the Framework of a Hyperbolic Conduction Model. Int. J. Heat and Mass Transfer, 1997, 40: 4085-4094
    [95]姜任秋.热传导、质扩散、动量传递中的瞬态冲击效应.第1版,北京:科学出版社,1997,36-53.
    [96] A.M. Mullis. A model for spontaneous grain refinement in alloy systems at low undercooling. Materials Science & Engineering A, 1997, 226-228:804-808
    [97] A. Saidane, S.H. Pulko. Preventing dielectric damage of low-k organic siloxane by passivation treatment. Microelectronic Engineering, 2000, 51-52: 469-475
    [98]蒋方眀,刘登瀛.非傅立叶导热的最新研究进展.力学进展,2002,32(1):128-140
    [99] A.V. Luikov. Application of irreversible thermodynamics methods to investigation of heat and mass transfer. Int.J.Heat Mass Transfer, 1966, 9: 139-152
    [100] Z.H. Li, D.M. Zhang, Z.J. Chen et al. Acta Physical Science, 2001, 50: 1950
    [101] W.M. Nosenler. Heat Transfer hand book (Science Press, 1985).
    [102] R.K. Singh. Target ablation characteristics during pulsed laser deposition of thin films. Journa of Non-Crystalline Solids, 1994, 178: 199-209
    [103]A. Vedavarz, K. Mitra, S. Kumar. Hyperbolic temperature profiles for laser surface interactions. J. Appl. Phys., 1994, 76 (9): 5014-5021
    [104] P.J. Antaki. Solution for non-Fourier dual phase lag heat conduction in a semiinfinite slab with surface heat flux. Int. J. Heat Mass Transfer., 1998, 41: 2253-2258
    [105] J.P. Colombier, P. Combis et al. Hydrodynamic simulations of metal ablation by femtosecond laser irradiation. Physical Review B, 2005, 71: 165406-165411
    [106] D.E. Spence, P.N. Kean, W. Sibbett. 60 fs pulse generation from a self-mode-locked Ti: sapphire laser. Opt Lett., 1991, 16(1): 42~44
    [107] B.C. Stuart, M.D. Feit. Nanosecond-to-femtosecond laser induced breakdown in dielectrics. Phys. Rev. B, 1996, 53(4): 1749-1761
    [108] A.Y. Vorobyev, C. Guo. Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation. Applied Physics Letters, 2005, 86: 011916-011919
    [109] J.M. Elson, C. C. Sung. Intrinsic and roughness-induced absorption of electromagnetic radiation incident on optical surfaces. Appl. Opt., 1982, 21: 1496-1501
    [110] M. Bass, L. Liou. Calorimetric studies of light absorption by diamond turned Ag and Cu surfaces and analyses including surface roughness contributions. J.Appl.Phys., 1984, 56: 184-189
    [111] A.M. Prokhorov, V. I. Konov, O. Ursu et al. Laser Heating of Metals, Bristol, Adam Hilger, 1990
    [112] E.G. Gamaly, N.R. Madsen, M. Duering et al. Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface. Physical Review B, 2005, 71: 174405-174417
    [113] C.R. Cheng, X.F. Xu. Mechanisms of decomposition of metal during femtosecond laser ablation. Physical Review B, 2005, 72: 165415-165430
    [114] T.W. Trelenberg, L.N. Dinh. Femtosecond pulsed laser ablation of metal alloy and semiconductor targets. Applied Surface Science, 2004, 229: 268–274
    [115] Y. Hirayama, M. Obaraa. Heat-affected zone and ablation rate of copper ablatedwith femtosecond laser. Journal of Applied Physics, 2005, 97: 064903-064909
    [116] A.P. Kanavin, I.V. Smetanin. Heat transport in metals irradiated by ultrashort laser pulses. Physical Review B, 1998, 57:14698-14703
    [117] S.I. Anisimov, B.L. Kapeliovich, T. L. Perelman et al. Electron emission from metal surfaces exposed to ultra short laser pulses. Sov. Phys. JETP, 1974, 39: 375-378
    [118] H.E. Elsayed Ali, T.B. Norris, M.A. Pessot et al. Time resolved observation of electron phonon relaxation in coper. Phys. Rev. Lett., 1978, 58(12):1212-1215
    [119] J.R. Goldman. Ultrafast dynamics of laser-excited electron distributions in silicon. Physical Review Letters, 1994, 72:1364-1367
    [120] V.D. Linde , J. Bialkowski. Laser-solid interaction in the femtosecond time regime. Application Surface Sinence, 1997, 109-110: 1-10
    [121] B.N. Chichkov, C. Momma, S. Nolte et al. Femtosecond, picosecond, and nanosecond laser ablation of solids. Appl. Phys. A, 1996, 63:109-115
    [122] J. Gudde, J.G. Müller. Damage threshold dependence on electron-phonon coupling inAu and Ni films. Applied Surface Sinence, 1998, 127-129: 40-45
    [123] L.A. Falkovsky. Electron-lattice kinetics of metals heated by ultrashort laser pulses. J Exp Theor Phys, 1999, 88: 84-88
    [124] J.K. Chen, L.E. Grimes. Modeling of femtosecond laser-induced non-equibrium deformation in metal films. International Journal of Solids and Structures, 2002, 39: 3199-3216
    [125] R. Sauerbrey. Theory for the etching of organic materials by ultraviolet laser pulses. Applied Physics Letters, 1989, 55: 421-423
    [126] D.Y. Tzou, K.S. Chiu. Temperature-dependent thermal lagging in ultrafast laser heating. Int. J. Heat Mass Transfer, 2001, 44:1725-1734
    [127] J.K. Chen, J.E. Beraun, L. E. Grimes et al. Modeling of femtosecond laser induced non-equibrium deformation on metal films. International Journal of Solids and Structures, 2002, 39:3199-3216
    [128] X.C. Ni, C.Y. Wang. The Thermal Character Analysis of the Femtoswcond Laser Pulse Pharameters’s Effect on Metal Surface. Acta Photonica Sinica, 2006, 35(1):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700