用户名: 密码: 验证码:
高压SF_6断路器动态电弧混沌现象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有触点开关电器作为发、输、配、用电力系统中主要的控制与保护电器,其开断与介质恢复特性是影响系统安全可靠、稳定、高效运行的重要因素之一。高压断路器是发电厂、变电所及电力系统中重要的控制和保护设备,SF6断路器在高压、超高压电力系统中占据着主导地位。随着SF6断路器电压等级的不断提高,短路开断能力是衡量高压SF6断路器产品性能的最基本和最重要的技术指标。
     作为有触点开关电器,开断过程中不可避免产生电弧,在开断过程中,电弧的发生与发展决定了能量、密度、压力和温度在灭弧室内空间和时间的分布,从而成为决定短路开断成功与否的重要因素之一,且电弧演变行为的时空演变具有混沌特征。本文从混沌角度出发,以高压SF6断路器大电流开断中吹弧气流动力学行为与动态电弧演变历程为主要研究对象,对非定常、非线性电弧分岔、激波及湍动气流动力学行为展开具体研究,以探讨复杂灭弧系统气流参数演变内在物理本质和运动规律。主要研究内容如下:
     1.灭弧系统内动态电弧混沌现象物理数学表征。基于SF6断路器开断过程中灭弧系统内非定常、非线性方程组(N-S方程)描述,采用Fourier级数展开式逼近原函数的性质,推演并表征灭弧系统动态电弧混沌特性,定量分析灭弧系统非线性复杂系统失稳后所产生分岔行为,找到灭弧系统通向混沌的两种典型途径,即:倍周期分岔和概周期过程。
     2.动态电弧混沌行为主要影响因素的确定与描述。计及洛仑兹力、SF6灭弧与绝缘介质物性参数对电弧等离子体影响,基于动量守恒方程、能量守恒方程、Maxwell方程及电流密度方程,采用ACS理论将非线性电弧模型线性化表征,定量描述SF6电弧不稳定性,建立混沌电弧数学模型,发现激波是导致灭弧室出现混沌行为的根源之一。调整混沌电弧数学模型的SF6电弧物性参数值,得到状态变量随时间变化的时间历程图、Lyapunov指数图,高压SF6断路器在开断过程电弧出现了更为复杂、多样化的非线性现象,最终体现出SF6断路器电弧混沌特征。采用对照分析手段,对电弧等离子体进行变物性参数数值实验,找寻电弧混沌特征。研究相空间下混沌动态电弧行为特征、分岔、运动域及变轨迹,描述起弧、燃弧至熄弧遍历态行为。
     3.激波与混沌动力学行为相关性研究。采用分离变量法求解灭弧系统内吹弧气体流动方程基本解,基于有限体积法求解不同喷口流路下气流场马赫数分布,得到典型行程下激波处密度、压力、速度及温度场空间分布,研究激波不稳定性所致灭弧系统混沌态、概周期态及周期态演变过程,得到激波混沌态对介质恢复特性影响。基于机构与灭弧系统联合仿真,研究开断进程中激波处时间序列带宽变化对混沌动力学行为影响,提出混沌特性调控方向。
     4.开关电弧混沌特性实验研究。基于可拆卸灭弧系统搭建混沌特性实验平台,在线采集燃弧过程中电参数,利用相空间理论进行数据分析,将仿真模拟与实验研究相结合,研究灭弧系统内在混沌态行为与特征。开断电流越大,电弧温度上升越快,最大lyapunov指数越大,混沌特征越强;断路器灭弧室内的吹弧气流速度越大,最大lyapunov指数越大,混沌特征就越强;断路器喷口上下游的压力差越大,灭弧室内吹弧气流的速度越大,混沌特征越明显。
     通过以上几方面深入研究,从理论上分析了高压SF6电弧的不稳定性及其非线性系统中的混沌现象,揭示了高压SF6断路器激波处的分岔路径和混沌运动形成机制,对高压SF6断路器合理设计具有重要的探索意义。
Switch is an important and protective electrical device in the generation, transmission,distribution and utilization power systems, its interruption performance and dielectricrecovery property are crucial to the effective operation, safety and stability of the system.SF6circuit breaker (CB) is an important control and protective device in the electricalpower systems, and its interruption performance is the key consideration for the reliableoperation of the system.
     During the interruption, the spacial and time distribution of energy, density, pressureand temperature in arc quenching chamber were determined by the formation anddevelopment of arc, which was the key factor to determine the successful interruption ofthe breaker.Arc is inevitably generated during interruption and its developing behaviorexists chaotic characteristics. In this thesis, taking the dynamic behavior of gas flow andevolvement of dynamic arc during large current interruption in SF6CB as investigationsubject, unsteady and nonlinear arc bifurcation, shock wave and dynamic behavior ofturbulent gas flow in the system were studied to discuss the physical essence andmovement law of gas flow in the complex arc extinguish system. The main contentscovers:
     1.Physical and mathematical description of the dynamic arc chaotic behavior in arcextinguish system. Based on the unsteady and nonlinear N-S equations in arc extinguishchamber during the interruption of SF6CB, the chaotic characteristics of dynamic arc in arcextinguish system was deduced and described using the convergence of Fourier series. Thearc bifurcation happened after the instability of the complex nonlinear system in SF6arcextinguish chamber were quantitatively analyzed and two typical ways to chaos in arcextinguish system were found, that is, period-doubling bifurcation and almostperiodic.
     2.Determination of the factors influencing the chaotic behavior of dynamic arc. Byintroducing Maxwell and current density equations in the conservation of momentum andenergy equations and considering the effect of Lorentz force, SF6arc extinguishment andphysical parameters of insulation dielectrics on arc plasma, the nonlinear equations in arc model were linearized using ACS theory to analyze the instability of SF6arc and themathematical arc model based was derived to describe the chaotic behavior. By adjustingthe physical parameter of arc plasma, the dynamic arc behavior was simulated andcompared to obtain the arc chaotic characteristics. The chaotic behaviors of dynamic arc inphase space, bifurcation and existence domain of arc movement track were investigated todescribe process of the arc starting, erosion and extinguishment.
     3. Correlation analysis of shock wave and chaotic dynamic behaviors. Thefundamental solution of the equations describing the gas flow in arc extinguish chamberwas resolved using separation of variables method. The distribution of Mach number in gasflow field under different nozzle circuit were simulated using finite volume method (FVM),the pressure, density, velocity and temperature distribution of gas flow under differentopen strokes were obtained. The periodic, quasi-periodic and chaotic arc evolvement in arcextinguish chamber due to the instability of shock wave were investigated, which provedthat the shock wave is one of the origin leading to the chaotic dynamic behaviors. Theeffect of chaotic shock wave on the dielectric recovery property and the effect of timeseries variation at shock wave during interruption on the chaotic dynamic behavior wereobtained. Based the joint simulation for hydraulic actuator and arc quenching chamber, thecontrolling strategies of the chaotic characteristics were proposed to improve theinterruption performance of SF6CB.
     4.Experimental study on the chaotic characteristics of switching arc. An experimentalplatform was established based on a demountable arc quenching chamber to investigate thechaotic behavior in the system. The electrical data of arc during arcing process werecollected and analyzed using the phase space theory. By combining the simulation andexperimental study, the arc chaotic behavior and characteristics in arc extinguish systemwere researched. The results showed that with increase of current and gas flow velocityin the system, the arc temperature and pressure ratio in the SF6CB nozzle increased andthe chaotic behavior became more evident accordingly. Above results suggested that moreevident chaotic behavior in SF6CB will contribute to the better interruption of SF6CB.
     In a word, the physical essence of SF6arc was discussed and the arc instability andthe chaotic behavior in nonlinear system for SF6CB were theoretically studied in this work. The bifurcation at shock wave and formation mechanism of chaos in SF6wereexplained. All these results provide important guidance for the proper design of SF6CB.
引文
[1]王尔智.高压SF6断路器介质恢复特性的数值模拟[M].北京:科学出版社,2012.
    [2]曹云东.电器学原理[M].北京:机械工业出版社,2012.
    [3]曹云东,刘晓明,王尔智.能量流电弧模型及SF6断路器在短路开断下的应用研究[J].中国电机工程学报,2005,25(2):93~97.
    [4] Swanson B W, Roidt R M.Boundary layer analysis of a SF6circuit breaker arc[J].IEEETransactions on PAS,1972,9(4):1086~1090.
    [5]刘晓明,王尔智,曹云东.高压SF6断路器动态电弧模型研究[J].中国电机工程学报,2004,24(2):102~106.
    [6] Vandersluis L,Rutgers W R.Comparison of test circuits for high voltage circuit breakers bynumerical calculations with arc models[J].IEEE Transactions on Power Delivery,1992,7(4):2037~2045.
    [7]吕小青等.混沌理论在焊接中的研究现状及发展趋势[J].焊接,2008,24(8):22~25.
    [8]徐轶.磁控溅射和离子镀TiAIN涂层的往复滑动摩擦学行为研究[D].成都:西南交通大学,2006.
    [9]郜传厚等.高炉冶炼过程的混沌性解析[J].物理学报,2005,54(4):1490~1495.
    [10]张瑞祥等.开关柜故障电弧检测与预警方法的新进展[J].电气制造,2002,7:36~38.
    [11][美]C.格里博格,J.A.约克.混沌对科学和社会的冲击[M].湖南科学技术出版社,2001.
    [12]王光瑞,陈式刚.混沌的控制、同步与利用[M].北京:国防工业出版社,2001.
    [13]李月,杨宝俊.混沌振子检测引论[M].北京:电子工业出版社,2004.
    [14]刘曾荣等.混沌的微扰判据[M].上海:上海科技教育出版社,1994.
    [15] Lorenz EN..Deterministic nonperiod flow[J].Journal of the Atmospheric Sciences,1963,20:130-141.
    [16] Ruelle D,Takens F.Communications of Mathematical Physics[J].Nature,1971,20:167~192.
    [17] May R.Simple mathematical models with very complicated dynamics[J].Nature,1976,261:45~467.
    [18] LiT Y,Yorke J A.Period three implics chaos[J].American Mathematieal Monthly,1975,82(10):985~992.
    [19] Feigenbaum M J.Quantitative universality for a class of non-linear transformations[J].Journal ofstatistic alphysics,1978,19(1):25~52.
    [20] Chen G.Yet another chaotic attracto[J]r.Int J Bifurcat Chaos,1999,9:1465~1470.
    [21] Qi G, Du S, Chen.G.On A Four-Dimensional Chaotic system[J].Chaos,Solition&Fractals.2005,23:1671~1682.
    [22] Li Y X,Tang K S,Chen G.Generating Hyperchaos Via State Feedback Control[J].Bifurcation&Chaos,2005,15(10):3367~3375.
    [23] Chen A M,Lu J A,Yu S M.Generating Hyperchaotic LüAttractor Via State FeedbackControl[J].Physica A,2006,364:103~110.
    [24] Ghosh D.Adaptive scheme for synchronization-based multiparameter estimation from a singlechaotic time series and its applications[J].Physical Review E,2008,78(5):56-61.
    [25] Suire G, Cederbaum G.Periodic and chaotic behavior of viscoelastic nonlinear bars underharmonic excitations[J].Int Mech Sci,1995,37:352~772.
    [26]程昌钧等.粘弹性矩形板的混沌和超混沌行为[J].力学学报,1998,30(6):690~698.
    [27] Grassberger P, Procaccia I. Characterization of strange attractors[J].Physical ReviewLetters.1983,50(5):346~349.
    [28] Packard H, Crutchfisld J P, Farmer J D e1al.Geometry from a time series[J].Physical ReviewLetters,1980,45:712~716.
    [29]马天,汪守宏等.非线性演化方程的稳定性与分歧[J].科学出版社,2007.
    [30]张琪昌等.分岔与混沌理论及应用[M].天津大学出版社,2006.
    [31] Tucker W.The Lorenz attractor exists[J].C.R.Aead.Sei.Paris,1999,328:1197~1202.
    [32] Stewart L.The Lorenz attractor exists[J].Nature,2000,406:948~949.
    [33] Zhou T S,Chen G R,Tang Y.Chens attractor exists[J].Int.J.Bifur.Chaos,2004,14:3167~3178.
    [34] Yang X S,Tang Y.Horseshoes in picewise continuous maps[J].ChaosSolitions&Fractals,2004,19(4):841~845.
    [35] Yang X S.Metric horseshoe[J].ChaosSolitons&Fractals,2004,20(5):1149~1156.
    [36]周慧良等.热射流拟序结构中混沌现象的实验研究[J].力学学报,1999,31(5):603~610.
    [37]张波等.BUCKDC/DC变换器分岔和混沌的精确离散模型及实验研究[J].电机工程学报,2003,23(12):99~103.
    [38]何运成等.柔性梁和板结构非线性振动实验研究[J].北京:北京工业大学,2009.
    [39]张勤磊等.带温度分布的声弹性波能级动力学实验研究[[J].温州大学学报,2008,29(5):1~6.
    [40]刘勇等.基于泄漏电流递归分析的绝缘子状态检测研究[J].力学学报,1998,30(6):690~698.
    [41]韩伟,徐松源,陈丽红.工程中混沌现象及混沌应用的研究现状与展望[J].电机与控制学报,2001,5(4):251~255.
    [42]钟宏杰,崔艳.混沌的特征、道路与应用[J].天津纷织工学院学报,1996,15(1):63~67.
    [43]刘廷柱.非线性动力学[M].上海:上海交通大学出版社,2000年.
    [44]曹国云,王冲,陈陈.中心流形方法降维分析电压崩溃中分岔[J].中国电机工程学报,2002,22(7):40~43.
    [45]张卫东等.电力系统混沌振荡的参数分析[J].电网技术,2000,24(12):17~20.
    [46]李开富,李立,陈永.平面R2机器人中的混沌运动现象[J].四川工业学院学报,2002(l):6~9.
    [47]曹志彤等.电机运动系统的混沌特性[J].中国电机工程学报,1998,18(5):319~322.
    [48]任海鹏,刘丁,李洁.永磁同步电动机中混沌运动的延迟反馈控制[J].中国电机工程学报,2003,23(6):175~178.
    [49]蔡彬,陈德桂,吴锐等.开关柜内部故障电弧的在线检测和保护装置[J].电工技术学报,2005,20(10):83~87.
    [50]方志,邱毓昌,王辉.介质阻挡放电的放电过程仿真研究[J].高电压技术,2006,32(8):62~65.
    [51]顾文业,王志敏,顾晓安.应用超声波测量法判断变压器内部局部放电的研究[J].噪声与振动控制,2003,23(2):46~48.
    [52] Rutgers W R,vanderSluis L.Modeling of witching arcs during high current interruption.Proceedings of the10th conference on Gas discharges and their Applications[J].Swansea,l992,I:6~9.
    [53] Vandersluis L, Rutgers W R.The comparison of test circuits with arc models[J]. IEEETransactions on Power Delivery,1995,10(l):280-285.
    [54] Tseng KJ, Wang Y.Dynamic electric arc model for electronic circuit simulation[J].ElectronicsLerters,1996,32(8):750~707.
    [55] Kamiya T.Study on the simple identification and the variation of the Parameters of the aredischarge in a circuit breaker[J].IEEE Japan,2001,8(11):1545~1552.
    [56] Leslie S,Frost R W.Composition and transport properties of SF6and their use in a simplifiedEnthalpy flow arc model.Proeeedings of the IEEE,1971,59(4):474~485.
    [57] Ragaller K,Egli W, Brand K P.Dieleetric Recovery of an axially blown SF6arc after currentzero[J].PartⅡ:Theoretical investigations,IEEE Transactions on Plasma Seience,1982,10(3):154~161.
    [58] Sehade E, Ragaller K.Dielectric recovery of an axially blown SF6arc after current zero.Part1:Experimental investigation[J].IEEE Transactions on Plasma Seience,1982,10(3):141~147.
    [59] Salinas A R,Pruente J.Enhancing circuit breaker reliability through effective mechanismmaintenance and lubrication[J].Transmission and Distribution Conference and Exposition,IEEE/PES,2001,(l):578~587.
    [60] Mitchell R R,Tuma D T.Transient Two-dimensional calculations of properties of forcedconvection stabilized electric Aics[J].IEEETrans on Plasma Science,1985,13(4):207~220.
    [61] Karetta F,Lind M.Simulation of the gas dynamic and electromagnetic processes in low voltageswitching arcs[J].IEEE Transactions on components and packing technologies,Manufact.Technology,1998,21(3):96~103.
    [62] Manfred L,,Matthias S.Three Dimensiona Simulation of Arc Motion Between Arc RunnersIncluding the Influence of magnetic Material[J].IEEE Transactions on components and packingtechnologies,2002,25(9):409~414.
    [63] Karetta F.Simulation of arc motion between divergent arc runners[J].In: Proc.19th Int. Conf.Elect. Contact Phenon,Nürnberg, Germany,1998.
    [64]荣命哲,杨武,金黎.高气压电弧状态转换规律的蝴蝶型突变模型[J].高压电器,199912(1):59~62.
    [65] Thom R. Structural stability and morphogenesis[C].New York:Wesley,1975.
    [66]杨涌等.SF6断路器喷口电弧熄灭过程的数字模拟[J].中国电机工程学报,2000,5(20):9~13.
    [67]王其平等..特高电压SF6断路器灭弧室的发展及其全场域数值分析[J].西安交通大学学报,1996,30(4):38~47.
    [68]张俊民等.自能膨胀式断路器喷口烧蚀的数学模型[J].清华大学学报,2002,9(42):1172~1175.
    [69]张俊民,荣命哲,王其平.高压SF6自能膨胀式断路器无载开断过程中灭弧室内气流场的数值分析[J].电工电能新技术,2000,4(9):12~16.
    [70]张俊民,杨涌,王其平.高压SF6自能膨胀式断路器及其数值分析技术[J].中国电力,2000,33(4):38~42.
    [71]韩书漠等.自能式SF6断路器开断过程的分析[J].清华大学学报(自然科学版),2000,40(7):8~11.
    [72]刘晓明.高压SF6断路器电弧动态数学模型及喷口结构优化设计[D].沈阳:沈阳工业大学,2003.
    [73]曹云东,王尔智.高压断路器气流场有限体积及TVD格式法的研究[J].电工技术学报,2002,17(1):68~73.
    [74]刘晓明,曹云东,王尔智.高压SF6断路器电弧与气流相互作用研究[J].中国电机工程学报,2005,25(7):151~155.
    [75] Liu X M,Cao Y D, Wen FY, Wang EZ.Optimization of Extra-High-Voltage SF6CircuitBreaker Based on Improved Genetic Algorithm[J].IEEE Trans. On Magnetics,2008,44(6):1138~1141.
    [76]金立军等.SF6断路器无载分闸灭室气流场控制的研究[J].高电压技术,2001,27(3):75~80.
    [77]王立军等.大电流真空电弧磁流体动力学模型与仿真[J].电机工程学报,2006,26(22):174~179.
    [78]杨茜等.低压断路器中空气电弧重击穿现象的仿真与实验研究[J].电机工程学报,2006,27(6):84~87.
    [79] O’Neill E.Nonlinear deterministic modeling of highly varying loads[J].America:Arizona StateUniversity,1999.
    [80] O’Neill E,Heydt G T,Kostelich E J.Nonlinear deterministic modeling of highly varyingloads[J].IEEE Trans,on Power Delivery,1999,14(2):537~542.
    [81] Ozgun O,Ali A.Development of an arc furnace model for power quality studies[J].IEEE PowerEngineering Society Summer Meeting,1999,7:507~511.
    [82] Ozgun O.New models and simulation techniques for power quality assessment[J].America:Texas A&M University,2001.
    [83] Ozgun O,Ali A.Flicker study using a novel arc furnace model[J]. IEEE Transactions on Power,Delivery,2002,17(4):1158~1163.
    [84]宁元中,梁颖,吴昊.电弧炉的混合仿真模型[J].四川大学学报,2005,37(1):85~89.
    [85] Mediana A,Gomez-martinez M A,Fuerteesquivel C R.Application of bifurcations theory toassess nonlinear oscillations produced by AC electric arc furnaces[J].IEEE Transactions onPower Delivery,2005,20(2):801~806.
    [86] Gomez-martinez M A,Mediana A,Fuerteesquivel C R.AC arc furnace stability a on bifurcationtheory[J].IEEE Proc.Gener.Transm.Distrib,2006,153(4):463~468.
    [87] Cheung P Y,Wong A Y.Chaotic behavior and period doubling in plasmas[J].Phys.Rev.Lett,1987,59(5):551~554.
    [88] Greiner F,Klinger T,Klostermann H et al.Experiments and particle in Cell simulation an Self-oseillations and period doubling in thermionic discharges at Low pressure[J].Phys.Rev.Lett,1993,70(20):3071~3074.
    [89] Thomas K, Christiane S.Chaos control and taming of turbulence in plasmadeviees[J].Phys.Plasmas,8(5):1961~1968.
    [90]向远鹏,曹彪等.短路过渡电弧的稳定性[J].焊接,2006(5):15~19.
    [91]蓝会立,张认成.基于混沌的故障电弧早期弧声检测方法研究[J].计算机测量与控制,2010,18(12):2716~2720.
    [92]赵玉新,易仕和等.激波与湍流相互作用的实验研究[J].科学通报,2007,52(2):140~143.
    [93]罗喜胜,,司廷等.激波管中Richtmyer-Meshkov不稳定性的实验研究[C].中国科协第235次青年科学家论坛,2011:55~59.
    [94]李睿劬,李存标等.平板边界层中湍流的发生与混沌动力学之间的联系[J].物理学报,2002,51(8):1743~1748.
    [95] Basu B, Foufoula-Georgiou S. Chaotic behavior in the flow along a wedge modeled by theBlasius equation[J].Nonlinear Processes in Geophysics,2011,18(2):171~178.
    [96] Broze J G.Chaos in a spatially-developing planemixing layer in proceedings of the summerprogram[J].Nonlinear Processes in Geophysics,1988:3~17.
    [97] Emami S, Rexler C et al.Experimntal investigation of in let-com bustor iso lator for a dualmodelscram jet at a Mach number[J]. Phys.Plasmas,95(5):155~161.
    [98]曹云东.500kV单断口SF6断路器介质恢复特性研究[D].沈阳:沈阳工业大学,2001.
    [99]王连鹏.SF_6高压断路器介质恢复特性数值模拟耦合计算及相关问题的研究[D].沈阳:沈阳工业大学,2008.
    [100]刘晓明等.喷口结构对超高压SF_6断路器压力特性的影响[J].高电压技术,2011,30(12):3093~3097.
    [101] Fourier J.translated with notes by Alexander Freeman[J].The Analytical Theory of Heat DoverPublication Inc,1955,1(2):333~464.
    [102]桂质亮等.傅里叶与19世纪早期法国数学物理学[J].科学技术与辩证法,1997(2):21~22.
    [103] Lorenz E N.Deterministic nonperiodic flow[J].Journal of the Atmospheric Sciences,1963,20(2):30~45.
    [104]韩修静,江波,毕勤胜.快慢型超混沌Lorenz系统分析[J].物理学报,2009,58(9):6006~6010.
    [105] Pyragas K.Continuous control of chaos by self-controlling feedback[J].Phys. Lett. A,1992,421~428.
    [106] Matias M A, Guemez J.Stabilization of chaos by proportional pulses in the systemvariables[J].Phys. Rev. Lett,1994,72(9):1455~1458.
    [107]陈关荣等. Lorenz系统族的动力学分析、控制与同步[M].北京:科学技术出版社,2003.
    [108] Arneodo P,Coullet H,Spiegel E A.The dynamics of triple convection. Geophys[J]. Astrophys.Fluid Dynann,1985,31(3):1~48.
    [109] Packard N H,Crtchifield J P,Farmer J D et al.Geometry from a time series[J].Phys. Rev.Lett,1980,45(3):712~716.
    [110] Takens F.Detecting strange attractor in turbulence.Lecture notes in Mathematics[J],1981,898(2):361~381.
    [111]车向凯等.工程技术中常用的数学方法[M].东北大学出版社,1994.
    [112] Richtmyer R, Taylor D. Instability in a shock acceleration of compressible offluids[J].Comm.Pure Appl Math1960,13(3):297~319.
    [113] Meshkov E E.Instability of the interface of two gases accelerated by a shock wave.Izv. Akad.Nauk.SSSR Mekh Zhidk Gaza[J],1969,4(5):151~158.
    [114] Goldstein M E, Choi S W..Nonlinear evolution of interacting oblique wave on twodimensional shear layers[J]. Fluid Mech.,1989,20(3):97~120.
    [115] Lib S J.Nonlinear evolution of subsonic and supersonic disturbances on a compressiblefreelayer. Fluid Mech,1991,224(3):551~578.
    [116]王福军编著.计算流体动力学分析原理与应用[M].北京:清华大学出版社,2004,9.
    [117]约翰等.动态流体力学仿真[M].机械工业出版社,2007.
    [118]唐涛.高压SF6断路器介质恢复特性及其影响因素研究[D].沈阳:沈阳工业大学,2007.
    [119]秦奕青,蔡卫东,杨炳儒.非线性时间序列的相空间重构技术研究[M].系统仿真学报,2008,20(11):2969~2973.
    [120]吕金虎.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [121] Gross B, Grycz B,Miklossy K.Plasma Technology[J].London,U.K.: Iliffe Books,1968.
    [122] Beudet R,Drouet M G..Spatial distribution of the current in arc[J].IEEE Trans. PowerApplicat,1974,1054~1062.
    [123] Cobine J D,Burger E E.. Analysis of the electrode phenomenon in the high current arc[J]. J.Appl. Phys,1955,26:895~900.
    [124]丁旺才,谢建华.碰撞振动系统分岔和混沌的研究进展[J].力学进展,2005,35(4):513~524.
    [125] Leine R I,Van Campen D H.Discontinuous bifurcations of periodic solutions[J].Mathematicaland Computer Modeling,2002,36(1):259~273.
    [126] Suire G,Cederbaum G.Periodic and chaotic behavior of viscoelastic nonlinear bars underharmonic excitations[J].International Journal of Mechanical Sciences,1995,37:753~772.
    [127] Goldstein M E,Choi S W.Nonlinear evolution of interacting oblique wave on two dimensionalshear layers[J]. Fluid Mech,1989,207:97~120.
    [128] Lib S J.Nonlinear evolution of subsonic and supersonic disturbances on a compressible freelayer[J]. Fluid Mech,1991,224:551~578..
    [129] Mork B A,Stuehm D L.Application of nonlinear dynamics and chaos to ferroresonance indistribution systems[J].IEEE Transactions on Power Delivery,1994,9(2):1009~1017.
    [130] Mozaffari S,Sameti M,Soudack A C. Effect of initial conditionson chaotic ferroresonance inpower transformers.Generation.Transmission and Distribution[J].IEEE Proceedings,1997,144(5):456~460.
    [131] Liu F, Sun C X, Sima W X et al.Chaos control offerroresonance system based onRBF-maximum entropy clustering algorithm[J].Physics Letters A,2006,357(3):218~223.
    [132] Jacobson DAN. Examples of ferroresonance in a high voltagepower system[J].Power EngineerSociey General Meeting. Toronto,Canada: IEEE,2003,1206~1212.
    [133] Emin Z,Zahawi A L,Yu K T et al.Quantification ofthe chaotic behavior of ferroresonantvoltage transfomer circuits[J].IEEE Transactions on Circuits and Systems,2001,48(6):757~760.
    [134]任海鹏,刘丁.BOOST变换器中混沌现象及其控制的仿真研究[J].系统仿真学报,2004,,(11):7~12.
    [135] Fleteher P L,Degen W A.Summary of the final results and conclusions of the secondinternational enquiry on the reliability of high voltage circuit-breakers[J].Reliability ofTransmission And Distribution Equipment,1995,(29):24~30.
    [136] Panier J Y,,Zhang X D,Pellegrin H,Camarero R.Application of computation fluid dynamicstools to circuit breaker flow analysis[J].IEEE Transactions on Power Delivery,1998,10(4):111~113.
    [137]赵露泽.高压SF6断路器气流场与电场并行求解技术的研究[D]沈阳:沈阳工业大学,2005.
    [138]金立军,刘卫东等.SF6断路器无载分闸灭室气流场控制的研究[J].高电压技术,2001,27(3):75~80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700