用户名: 密码: 验证码:
用于液相样品中痕量金属元素探测的基底辅助LIBS方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,简称LIBS)是基于高功率脉冲激光与物质相互作用产生瞬态等离子体,通过分析等离子体发射光谱中原子、离子的特征谱线,实现对待测物质定性与定量分析的一种光谱技术。LIBS作为一项新兴的化学成分分析技术,因其具有快速响应、无需样品预处理、多元素同时分析以及可用于现场实时、无接触原位探测等优势,已经被广泛应用到各个领域,并取得了不同程度的成功。然而LIBS对液相样品检测时,由于等离子体受到液体内部压力、波动、吸收以及溅射等因素的影响,其寿命与空气中相比大大缩短,相应的探测灵敏度也明显降低。本论文针对液相样品中的痕量金属元素探测灵敏度低的问题,发展了两种基底辅助LIBS的增强方法,即滤纸富集辅助和铝靶基底间接烧蚀辅助LIBS方法,以期达到LIBS对液相样品中金属元素痕量探测的目的,主要的研究工作如下。
     针对水溶液中痕量重金属探测,发展了以滤纸富集辅助的LIBS方法。该方法是将溶液滴到滤纸基底表面,滤纸基底一方面改变激发环境,提高烧蚀效果,同时伴随着一定的水分浸湿和蒸发以实现取样富集,从而改善了取样效果乃至探测灵敏度。应用该方法实现了水中Mn、Cu、Cd、Cr、Pb及Zn重金属元素的增强探测,相比对液体样品直接探测时,检测限降低了十几倍,基本达到了国家污水中重金属元素允许排放浓度的检测标准。同时,为了评估该方法应用到水体中的多种重金属元素进行同时探测时基体效应的影响,利用该方法对混合水溶液中Cd、Cr、Cu、Mn元素同时进行了探测,得出基体效应对不同元素的定标曲线和探测极限产生了不同程度的影响,但是对于探测的准确度影响较小,使得探测值与实际值之间的误差在5%左右,探测值处于一定的置信区间内。并且该方法也应用到更复杂水体海水溶液中的Mn的探测,获得了定量分析结果。结果表明,滤纸富集辅助LIBS增强方法可望发展成一种应用到水体环境中痕量重金属元素探测的有效方法。
     针对相对于水溶液较为难探测粘稠性油样品中的痕量金属元素,论文作者在法国里昂第一大学访学期内,发展了以铝靶为基底的间接烧蚀的LIBS增强方法,从方法的物理机制到增强探测的应用开展了系列的工作。实验中将粘稠性油样品均匀的涂抹在铝靶基底的表面,形成一层大约15微米的油膜,激光聚焦在铝靶上产生的高温等离子体继而间接烧蚀油膜,因此将该增强方法命名为铝靶基底辅助的间接烧蚀LIBS方法。所获得的等离子体元素辐射、特征参数以及成像的时空分辨演化特性分析,表明在等离子体扩展的前期,油膜将会对等离子体的扩展有一定的限制作用,随着延时的增加,限制作用逐渐消失,正是金属等离子体与油膜相互作用之后,在其外围形成一个等离子体温度相对较高的区域(大约15000K),相当于对冷却的等离子体二次激发,延长了等离子体的寿命。在了解了间接烧蚀诱导的等离子体的物理演化过程的基础上,确定了探测油膜中元素最强辐射的空间位置即等离子体距离铝靶表面2mm和演化的时间即探测延时2μs。
     为了评估间接烧蚀辅助LIBS的增强能力,利用得到的最佳探测条件,该方法对机油中的磨损金属元素的进行了探测。选取含有12种痕量磨损金属元素的标准机油为样品,确定每种元素最佳的分析谱线,绘制了相应的定标曲线并计算了每种元素的探测限,结果显示在机油中,镁、铜和银的探测限达到了ppm量级以下,其他元素的探测限也在几个ppm量级,与用滤纸分析机油的结果相比,探测限都有了不同的程度的改善,甚至优于其双脉冲LIBS探测的结果。论文还对油样品中所含的多种痕量金属元素进行了同时的探测,获得了相应的定标曲线,同时选取完全不同的油种为样品,对不同油种中基体效应的影响进行了评估,得到铝靶为基底的间接烧蚀LIBS方法在应用到不同油种中金属元素的探测时,其之间的基体效应对最终的定量分析结果影响较弱,几乎可以忽略。结果表明铝靶基底间接烧蚀辅助LIBS方法可望成为一种探测粘稠性液体中痕量金属元素的有效方法。
     本论文对以上的研究工作的基础上,还对滤纸富集辅助LIBS和铝靶基底间接烧蚀辅助LIBS这两种方法的应用进行了展望,对如何提高探测方法的稳定性和适应性是以后努力工作的方向。并在有关铝靶基底间接烧蚀辅助LIBS方法研究中,鉴别间接烧蚀产生的等离子体与击穿铝靶产生的等离子体的深入研究的方案未能实施,这是本论文的一个遗憾,期望在未来的工作中可进一步的研究。
Laser-induced breakdown spectroscopy (LIBS) is a newly developed technique forelement analysis. It is based on the analysis of spectral emission from laser inducedplasma produced by the ablation of investigated substance with a high power laser pulse.LIBS has drawn growing attention in the past tens of years as a rapid, on-line, sensitive,and multi-elements analysis method with no or little sample preparation. It has beenextensively used for a wide range of scientific and industrial applications with differentdegrees of success. However, due to complex process of the ablation in bulk, the lifetimeof plasma is relatively short which result in poor detection sensitivity compared with thatin air. In this thesis, in order to improve the detection sensitivity of trace metal elementsin liquid samples, two enhanced approaches named substrate-assisted LIBS weredeveloped.
     Paper enrichment assisted LIBS was developed for detection of heavy metals in aqueoussolutions. As aqueous solutions were dipped into paper substrate, the ablation conditionwas improved, avoiding the adverse factors for the direct detection of liquid samples. Thewater was then evaporated from the substrate, so the sampling and detection sensitivitywere improved by the enrichment effect of paper substrate. Sub-ppm detection of heavymetal elements in aqueous solutions was obtained using this approach. Limits of detection(LODs) of almost elements were down to the highest concentration of each element inwastewater discharged according to the national standards. In order to evaluate the matrixeffect existed in mixed solution of many metals, this approach was also used to detectsimultaneously heavy metal elements in aqueous solutions. The results showed that thecalibration curve and limit of detection were affected for each element by matrix effect.However, the measured concentration of heavy metal elements in mixed solutions had agood agreement to the real value and the relative error was about5%, which exhibitedgood measurement accuracy of this approach. The approach was also used to detect Mn inseawater solution and calibration curve was plotted. All results indicated that the paperenrichment assisted LIBS was expected as a feasible approach for the detection of heavymetal elements in aqueous solutions.
     Aluminum substrate assisted indirect ablation LIBS was developed for detection of trace metal elements in viscous liquids, which was achieved in Lyon1University. In this thesis,the physics mechanism of this approach was first investigated, and the enhanced detectionwas then achieved. In experiment, oil samples prepared was smeared with the help of aglass slide as uniformly as possible on the polished surface of an aluminum target to forma uniform thin layer with the thickness of the layer as about15μm. A laser pulse isfocused slightly under the surface of the target which induces a hot aluminum plasma.The interaction between the aluminum plasma and the layer leads to an indirectbreakdown of the oil layer, which was therefore named as aluminum substrate assistedindirect ablation LIBS. After the evolution of the plasma, one gets a mixture of thealuminum plamsa and the layer plamsa with very high temperature (about15000K) forthe sensitive detection of elements contained in the oil layer. As temporal and spatialdynamics of plasma induced by this approach were investiated, we had obtained thesensitive detection of elements from the oil layer with a detection delay of2μs and a fiberposition of2mm above the target surface.
     In order to evaluate the enhancement effect of this approach, this approach was used forthe detection of wear metals in engine oils and the calibration curves were plotted. Thestandard engine oils were prepared, including12trace wear metallic elements. Weobtained the analytical line of each element and the corresponding calibration curves. Theresults showed that the LODs for wear metals in engine oils were in the several ppmlevels. Especially, the LODs for the3elements (Mg, Cu and Ag) are determined lowerthan μg/g, i.e. in the sub-ppm level. Comparison with the previously published datashowed moreover the efficiency of the introduced ablation configuration as one of themost suitable methods for highly sensitive and precise wear metal analysis in oils.Furthermore, the matrix effect induced in different oils was investigated. It suggested thatthe analytical results were hardly affected by matrix effect among different oils. Allresults indicated that aluminum substrate assisted indirect ablation LIBS was expected asa feasible approach for the detection of trace metallic elements in viscous liquids.
     Besides, in this thesis, both approaches of paper enrichment assisted LIBS and aluminumsubstrate indirect ablation assisted LIBS are also discussed on how to improve thestability and flexibility for the application. For aluminum substrate indirect ablationassisted LIBS, the indirect ablation plasma produced with aluminum substrate is notimplemented, which is a pity, and will be done in further research work.
引文
[1] Hahn D W, Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part II: review ofinstrumental and methodological approaches to material analysis and applications to differentfields[J]. Applied Spectroscopy,2012,66(4):347-419.
    [2] Harmon R S, DeLucia F C, McManus C E, et al. Laser-induced breakdown spectroscopy–Anemerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, andenvironmental applications[J]. Applied geochemistry,2006,21(5):730-747.
    [3] http://www.nasa.gov/mission_pages/msl/news/msl20120819b.html
    [4] Thornton B, Sakka T, Takahashi T, et al. Laser-induced breakdown spectroscopy for in situchemical analysis at sea[C]//Underwater Technology Symposium (UT),2013IEEE International.IEEE,2013:1-7.
    [5] Miziolek, Andrzej W, Vincenzo P, Israel S. Laser induced breakdown spectroscopy[M]. CambridgeUniversity Press,2006.
    [6] Singh J P, Thakur S N. Laser-induced Breakdown Spectroscopy[M]. Netherlands: Elsevier Science,2007.
    [7] Lazic V, Jovicevic S, Fantoni R, et al. Efficient plasma and bubble generation underwater by anoptimized laser excitation and its application for liquid analyses by laser-induced breakdownspectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2007,62(12):1433-1442.
    [8] Beddows D C S, Samek O, Li ka M, et al. Single-pulse laser-induced breakdown spectroscopy ofsamples submerged in water using a single-fibre light delivery system[J]. Spectrochimica ActaPart B: Atomic Spectroscopy,2002,57(9):1461-1471.
    [9] Sakka T, Oguchi H, Masai S, et al. Use of a long-duration ns pulse for efficient emission of spectrallines from the laser ablation plume in water[J]. Applied physics letters,2006,88(6):061120.
    [10] Ito Y, Ueki O, Nakamura S. Determination of colloidal iron in water by laser-induced breakdownspectroscopy[J]. Analytica chimica acta,1995,299(3):401-405.
    [11] Yaroshchyk P, Morrison R J S, Body D, et al. Quantitative determination of wear metals in engineoils using laser-induced breakdown spectroscopy: a comparison between liquid jets and staticliquids[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2005,60(7):986-992.
    [12] Chen Z, Li H, Liu M, et al. Fast and sensitive trace metal analysis in aqueous solutions bylaser-induced breakdown spectroscopy using wood slice substrates[J]. Spectrochimica Acta PartB: Atomic Spectroscopy,2008,63(1):64-68.
    [13] Cáceres J O, Tornero López J, Telle H H, et al. Quantitative analysis of trace metal ions in iceusing laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: AtomicSpectroscopy,2001,56(6):831-838.
    [14] Díaz Pace D M, D'Angelo C A, Bertuccelli D, et al. Analysis of heavy metals in liquids usinglaser induced breakdown spectroscopy by liquid-to-solid matrix conversion[J]. SpectrochimicaActa Part B: Atomic Spectroscopy,2006,61(8):929-933.
    [15] Aguirre M A, Legnaioli S, Almodóvar F, et al. Elemental analysis by surface-enhancedlaser-induced breakdown spectroscopy combined with liquid-liquid microextraction[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2013,79–80:88–93.
    [16] Wal R L V, Ticich T M, West J R, et al. Trace metal detection by laser-induced breakdownspectroscopy[J]. Applied Spectroscopy,1999,53(10):1226-1236.
    [17] Yaroshchyk P, Morrison R J S, Body D, et al. Quantitative determination of wear metals in engineoils using LIBS: the use of paper substrates and a comparison between single-and double-pulseLIBS[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2005,60(11):1482-1485.
    [18]钟石磊,卢渊,程凯,等.超声波雾化辅助液体样品激光诱导击穿光谱技术研究[J].光谱学与光谱分析,2011,31(6):1458-1462.
    [19] Lu Y, Li Y, Wu J, et al. Guided conversion to enhance cation detection in water usinglaser-induced breakdown spectroscopy[J]. Applied Optics,2010,49(13): C75-C79.
    [20] Griem H R, Plasma Spectroscopy[M], McGraw-Hill, NewYork,1989.
    [21] Brech F, Cross L. Optical microemission stimulated by a ruby laser. Applied Spectroscopy [J],1962,16:59.
    [22Harilal S S, Bindhu C V, Tillack M S, et al. Internal structure and expansion dynamics of laserablation plumes into ambient gases[J]. Journal of Applied Physics,2003,93(5):2380-2388.
    [23] Galbacs G, Jedlinszki N, Herrera K, et al. A study of ablation, spatial, and temporal characteristicsof laser-induced plasmas generated by multiple collinear pulses[J]. Applied spectroscopy,2010,64(2):161-172.
    [24] Casavola A R, Colonna G, Cristofolini A, et al. Modeling laser-induced plasma expansion underequilibrium conditions[J]. Journal of Thermophysics and Heat Transfer,2008,22(3):407-413.
    [25] Miziolek A, Palleschi V, Schechter I. Laser-induced Breakdown Spectroscopy (LIBS):Fundamentals and Applications[M]. New York: Cambridge University Press,2006.
    [26] Yu J, Ma Q L, Motto-Ros V, et al. Generation and expansion of laser-induced plasma as aspectroscopic emission source[J]. Frontiers of Physics,2012,7(6):649-669.
    [27]陆同兴,路轶群.激光光谱技术原理及应用[M].安徽:中国科学技术大学出版社.2006
    [28] Griem H R, Principles of Plasma Spectroscopy[M], Cambridge University Press, Cambridge,1997.
    [29] Griem H R, Plasma Spectroscopy[M], NewYork,1989.
    [30]冉俊霞,董丽芳,张少朋,等.仪器展宽对大气压等离子体电子密度测量的影响[J].原子与分子物理学报,2008,25(3):651-655.
    [31] Lochte-Holtgreven W. Plasma Diagnostics [M], North Holland,1968.
    [32] Konjevi N. Plasma broadening and shifting of non-hydrogenic spectral lines: present status andapplications[J]. Physics Reports,1999,316(6):339-401.
    [33] Konjevi N, Dimitrijevic M S, Wiese W L. Experimental Stark Widths and Shifts for SpectralLines of Neutral Atoms:(a Critical Review of Selected Data for the Period1976to1982)[M].American Chemical Society and the American Institute of Physics for the National Bureau ofStandards,1984.
    [34] Griem H R, Spectral Line Broadening by Plasmas[M], Academic Press, NewYork,1974.
    [35] Ashkenazy J, Kipper R, Caner M. Spectroscopic measurements of electron density of capillaryplasma based on Stark broadening of hydrogen lines[J]. Physical Review A,1991,43(10):5568.
    [36] Kepple P, Griem H R. Improved Stark profile calculations for the hydrogen lines H, Hβ, Hγ, andH [J]. Physical Review,1968,173(1):317.
    [37] Yal in, Crosley D R, Smith G P, et al. Influence of ambient conditions on the laser air spark[J].Applied Physics B: Lasers and Optics,1999,68(1):121-130.
    [38] Aragón C, Aguilera J A. Characterization of laser induced plasmas by optical emissionspectroscopy: A review of experiments and methods[J]. Spectrochimica Acta Part B: AtomicSpectroscopy,2008,63(9):893-916.
    [39] Tognoni E, Palleschi V, Corsi M, et al. From sample to signal in laser-induced breakdownspectroscopy: a complex route to quantitative analysis[J]. Laser-induced breakdown spectroscopy:Fundamentals and applications, Chapter3, Cambridge University Press,2006.
    [40] Harmon R S, DeLucia F C, McManus C E, et al. Laser-induced breakdown spectroscopy–Anemerging chemical sensor technology for real-time field-portable, geochemical, mineralogical,and environmental applications[J]. Applied geochemistry,2006,21(5):730-747.
    [41] Death D L, Cunningham A P, Pollard L J. Multi-element analysis of iron ore pellets bylaser-induced breakdown spectroscopy and principal components regression[J]. SpectrochimicaActa Part B: Atomic Spectroscopy,2008,63(7):763-769.
    [42] Radziemski L J, Cremers D A. Laser Induced Plasma and Applications[M],, New York,1989.
    [43] Smith D C, Meyerand R G, Jr. Principles of Laser Plasma[M], New York,1976.
    [44] Fisher B T, Johnsen H A, Buckley S G, et al. Temporal gating for the optimization oflaser-induced breakdown spectroscopy detection and analysis of toxic metals[J]. AppliedSpectroscopy,2001,55(10):1312-1319.
    [45] Martin M Z, Wullschleger S D, Garten Jr C T, et al. Laser-induced breakdown spectroscopy forthe environmental determination of total carbon and nitrogen in soils[J]. Applied Optics,2003,42(12):2072-2077.
    [46] Senesi G S, Dell’Aglio M, Gaudiuso R, et al. Heavy metal concentrations in soils as determinedby laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium[J].Environmental research,2009,109(4):413-420.
    [47] Trevizan L C, Santos D, Samad R E, et al. Evaluation of laser induced breakdown spectroscopyfor the determination of macronutrients in plant materials[J]. Spectrochimica Acta Part B: AtomicSpectroscopy,2008,63(10):1151-1158.
    [48] Lei W, Motto-Ros V, Boueri M, et al. Time-resolved characterization of laser-induced plasmafrom fresh potatoes[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2009,64(9):891-898.
    [49] Wisbrun R, Schechter I, Niessner R, et al. Detector for trace elemental analysis of solidenvironmental samples by laser plasma spectroscopy[J]. Analytical Chemistry,1994,66(18):2964-2975.
    [50] Cremers D A, Ebinger M H, Breshears D D, et al. Measuring total soil carbon with laser-inducedbreakdown spectroscopy (LIBS)[J]. Journal of Environmental Quality,2001,30(6):2202-2206.
    [51] Ebinger M H, Norfleet M L, Breshears D D, et al. Extending the applicability of laser-inducedbreakdown spectroscopy for total soil carbon measurement[J]. Soil Science Society of AmericaJournal,2003,67(5):1616-1619.
    [52] Bel’kov M V, Burakov V S, Kiris V V, et al. Determination of carbon in soil by laser spectralanalysis[J]. Journal of Applied Spectroscopy,2008,75(2):275-282.
    [53] Rosenwasser S, Asimellis G, Bromley B, et al. Development of a method for automatedquantitative analysis of ores using LIBS[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2001,56(6):707-714.
    [54] McMillan N J, Harmon R S, De Lucia F C, et al. Laser-induced breakdown spectroscopy analysisof minerals: carbonates and silicates[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2007,62(12):1528-1536.
    [55] Gottfried J L, Harmon R S. Multivariate analysis of laser-induced breakdown spectroscopychemical signatures for geomaterial classification[J]. Spectrochimica Acta Part B: AtomicSpectroscopy,2009,64(10):1009-1019.
    [56] Panne U, Neuhauser R E, Theisen M, et al. Analysis of heavy metal aerosols on filters bylaser-induced plasma spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2001,56(6):839-850.
    [57] Hybl J D, Lithgow G A, Buckley S G. Laser-induced breakdown spectroscopy detection andclassification of biological aerosols[J]. Applied spectroscopy,2003,57(10):1207-1215.
    [58] Dixon P B, Hahn D W. Feasibility of detection and identification of individual bioaerosols usinglaser-induced breakdown spectroscopy[J]. Analytical chemistry,2005,77(2):631-638.
    [59] Nú ez M H, Cavalli P, Petrucci G, et al. Analysis of sulfuric acid aerosols by laser-inducedbreakdown spectroscopy and laser-induced photofragmentation[J]. Applied Spectroscopy,2000,54(12):1805-1816.
    [60] Morel S, Leone N, Adam P, et al. Detection of bacteria by time-resolved laser-induced breakdownspectroscopy[J]. Applied optics,2003,42(30):6184-6191.
    [61] Baudelet M, Yu J, Bossu M, et al. Discrimination of microbiological samples using femtosecondlaser-induced breakdown spectroscopy[J]. Applied physics letters,2006,89(16):163903-163903-3.
    [62] Blevins L G, Shaddix C R, Sickafoose S M, et al. Laser-induced breakdown spectroscopy at hightemperatures in industrial boilers and furnaces[J]. Applied optics,2003,42(30):6107-6118.
    [63] Stankova A, Gilon N, Dutruch L, et al. A simple LIBS method for fast quantitative analysis of flyashes[J]. Fuel,2010,89(11):3468-3474.
    [64] Wang Q, Jander P, Fricke-Begemann C, et al. Comparison of1064nm and266nm excitation oflaser-induced plasmas for several types of plastics and one explosive[J]. Spectrochimica Acta PartB: Atomic Spectroscopy,2008,63(10):1011-1015.
    [65] Michalakou A, Stavropoulos P, Couris S. Laser-induced breakdown spectroscopy in reactiveflows of hydrocarbon-air mixtures[J]. Applied Physics Letters,2008,92(8):081501-081501-3.
    [66] Ctvrtnickova T, Mateo M P, Ya ez A, et al. Characterization of coal fly ash components bylaser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2009,64(10):1093-1097.
    [67] Dockery C R, Goode S R. Laser-induced breakdown spectroscopy for the detection of gunshotresidues on the hands of a shooter[J]. Applied optics,2003,42(30):6153-6158.
    [68] Bridge C M, Powell J, Steele K L, et al. Forensic comparative glass analysis by laser-inducedbreakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2007,62(12):1419-1425.
    [69] Rodriguez-Celis E M, Gornushkin I B, Heitmann U M, et al. Laser induced breakdownspectroscopy as a tool for discrimination of glass for forensic applications[J]. Analytical andbioanalytical chemistry,2008,391(5):1961-1968.
    [70] Barnett C, Cahoon E, Almirall J R. Wavelength dependence on the elemental analysis of glass bylaser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2008,63(10):1016-1023.
    [71] Jantzi S C, Almirall J R. Characterization and forensic analysis of soil samples usinglaser-induced breakdown spectroscopy (LIBS)[J]. Analytical and bioanalytical chemistry,2011,400(10):3341-3351.
    [72] De Carvalho G G A, Nunes L C, de Souza P F, et al. Evaluation of laser induced breakdownspectrometry for the determination of macro and micronutrients in pharmaceutical tablets[J].Journal of Analytical Atomic Spectrometry,2010,25(6):803-809.
    [73] Dubey A, Keyvan G, Hsia R, et al. Analysis of pharmaceutical tablet coating uniformity bylaser-induced breakdown spectroscopy (LIBS)[J]. Journal of Pharmaceutical Innovation,2011,6(2):77-87.
    [74] St-Onge L, Kwong E, Sabsabi M, et al. Quantitative analysis of pharmaceutical products bylaser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2002,57(7):1131-1140.
    [76] St-Onge L, Archambault J F, Kwong E, et al. Rapid quantitative analysis of magnesium stearate intablets using laser-induced breakdown spectroscopy[J]. J Pharm Pharm Sci,2005,8(2):272-88.
    [76] Qin Z, Caruso J A, Lai B, et al. Trace metal imaging with high spatial resolution: applications inbiomedicine[J]. Metallomics,2011,3(1):28-37.
    [77] Rehse S J, Diedrich J, Palchaudhuri S. Identification and discrimination of Pseudomonasaeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2007,62(10):1169-1176.
    [78] Abdel-Salam Z A, Galmed A H, Tognoni E, et al. Estimation of calcified tissues hardness viacalcium and magnesium ionic to atomic line intensity ratio in laser induced breakdown spectra[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2007,62(12):1343-1347.
    [79] Yueh F Y, Zheng H, Singh J P, et al. Preliminary evaluation of laser-induced breakdownspectroscopy for tissue classification[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2009,64(10):1059-1067.
    [80] Whitehouse A I, Young J, Botheroyd I M, et al. Remote material analysis of nuclear power stationsteam generator tubes by laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2001,56(6):821-830.
    [81] Mercadier L, Hermann J, Grisolia C, et al. Plume segregation observed in hydrogen anddeuterium containing plasmas produced by laser ablation of carbon fiber tiles from a fusionreactor[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2010,65(8):715-720.
    [82] Hernandez C, Roche H, Pocheau C, et al. Development of a Laser Ablation System Kit (LASK)for Tokamak in vessel tritium and dust inventory control[J]. Fusion Engineering and Design,2009,84(2):939-942.
    [83] Kim Y I, Yoon D J, Lee S S, et al. Application of laser-induced breakdown spectroscopy fordetecting leakage of boric acid[J]. NDT&E International,2011,44(3):311-314.
    [84] Roberts D E, Du Plessis A, Steyn J, et al. Femtosecond laser induced breakdown spectroscopy ofsilver within surrogate high temperature gas reactor fuel coated particles[J]. Spectrochimica ActaPart B: Atomic Spectroscopy,2010,65(11):918-926.
    [85] Oujja M, Vila A, Rebollar E, et al. Identification of inks and structural characterization ofcontemporary artistic prints by laser-induced breakdown spectroscopy[J]. Spectrochimica ActaPart B: Atomic Spectroscopy,2005,60(7):1140-1148.
    [86] Lazic V, Fantoni R, Colao F, et al. Quantitative laser induced breakdown spectroscopy analysis ofancient marbles and corrections for the variability of plasma parameters and of ablation rate[J].Journal of analytical atomic spectrometry,2004,19(4):429-436.
    [87] http://laser.uma.es/INDEX.PHP/
    [88] http://www.oceanoptics.com/Products/libs.asp
    [89] http://www.appliedspectra.com/products/rt100-hp.html
    [90] http://www.stellarnet-inc.com/pressrel_2004.htm
    [91] http://www.ivea-solution.cn/mobilibs.php
    [92] Huang J S, Lin K C. Laser-induced breakdown spectroscopy of liquid droplets: correlationanalysis with plasma-induced current versus continuum background[J]. Journal of AnalyticalAtomic Spectrometry,2005,20(1):53-59.
    [93] Pearman W, Scaffidi J, Angel S M. Dual-pulse laser-induced breakdown spectroscopy in bulkaqueous solution with an orthogonal beam geometry[J]. Applied optics,2003,42(30):6085-6093.
    [94] St-Onge L, Kwong E, Sabsabi M, et al. Rapid analysis of liquid formulations containing sodiumchloride using laser-induced breakdown spectroscopy[J]. Journal of pharmaceutical andbiomedical analysis,2004,36(2):277-284.
    [95] Cremers D A, Radziemski L J, Loree T R. Spectrochemical analysis of liquids using the laserspark[J]. Applied Spectroscopy,1984,38(5):721-729.
    [96] Giacomo A D, Dell’Aglio M, Colao F, et al. Double-pulse LIBS in bulk water and on submergedbronze samples[J]. Applied surface science,2005,247(1):157-162.
    [97] Casavola A, De Giacomo A, Dell'Aglio M, et al. Experimental investigation and modelling ofdouble pulse laser induced plasma spectroscopy under water[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2005,60(7):975-985.
    [98] Oguchi H, Sakka T, Ogata Y H. Effects of pulse duration upon the plume formation by the laserablation of Cu in water[J]. Journal of Applied Physics,2007,102(2):023306.
    [99] Alamelu D, Sarkar A, Aggarwal S K. Laser-induced breakdown spectroscopy for simultaneousdetermination of Sm, Eu and Gd in aqueous solution[J]. Talanta,2008,77(1):256-261.
    [100] Sarkar A, Alamelu D, Aggarwal S K. Determination of thorium and uranium in solution bylaser-induced breakdown spectrometry[J]. Applied optics,2008,47(31): G58-G64.
    [101] Zhu D, Wu L, Wang B, et al. Determination of Ca and Mg in aqueous solution by laser-inducedbreakdown spectroscopy using absorbent paper substrates[J]. Applied Optics,2011,50(29):5695-5699.
    [102] Lee Y, Oh S W, Han S H. Laser-Induced Breakdown Spectroscopy (LIBS) of Heavy Metal Ionsat the Sub-Parts per Million Level in Water[J]. Applied spectroscopy,2012,66(12):1385-1396.
    [103] Pu X Y, Cheung N H. ArF laser induced plasma spectroscopy of lead ions in aqueous solutions:plume reheating with a second Nd: YAG laser pulse[J]. Applied spectroscopy,2003,57(5):588-590.
    [104] Aras N, Ye iller S, Ate D A, et al. Ultrasonic nebulization-sample introduction system forquantitative analysis of liquid samples by laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2012,74:87-94.
    [105] Rai V N, Kunnar A, Yueh F Y, Singh J P. Enhancement in the sensitivity of LIBS using magneticfield and sequential double laser pulse. LIBS2002[C], ThE24-1-3.
    [106] Chen Z, Li H, Zhao F, et al. Ultra-sensitive trace metal analysis of water by laser-inducedbreakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface[J].Journal of Analytical Atomic Spectrometry,2008,23(6):871-875.
    [107] Nishi T, Sakka T, Oguchi H, et al. In situ electrode surface analysis by laser-induced breakdownspectroscopy[J]. Journal of The Electrochemical Society,2008,155(11): F237-F240.
    [108] Dockery C R, Pender J E, Goode S R. Speciation of chromium via laser-induced breakdownspectroscopy of ion exchange polymer membranes[J]. Applied spectroscopy,2005,59(2):252-257.
    [109] Kim D, Oh B, Lee H. Effect of liquid film on near-threshold laser ablation of a solid surface[J].Applied surface science,2004,222(1):138-147.
    [110] Kang H W, Welch A J. Effect of liquid thickness on laser ablation efficiency[J]. Journal ofapplied physics,2007,101(8):083101-083101-4.
    [111] Kang H W, Lee H, Welch A J. Laser ablation in a liquid-confined environment using ananosecond laser pulse[J]. Journal of Applied Physics,2008,103(8):083101-083101-6.
    [112] Berthe L, Fabbro R, Peyre P, et al. Shock waves from a water-confined laser-generated plasma[J].Journal of Applied Physics,1997,82(6):2826-2832.
    [113] Kruusing A. Underwater and water-assisted laser processing: part1—general features, steamcleaning and shock processing[J]. Optics and Lasers in Engineering,2004,41(2):307-327.
    [114] Kruusing A. Underwater and water-assisted laser processing: Part2—Etching, cutting and rarelyused methods[J]. Optics and Lasers in Engineering,2004,41(2):329-352.
    [115] Cabalín L M, González A, Lazic V, Lasern J J. Laser‐induced breakdown spectroscopy ofmetals covered by water droplets[J]. Spectrochimica Acta Part B,2012,74–75:95–102.
    [116] Yaroshchyk P, Morrison R J S, Body D, et al. Quantitative determination of wear metals inengine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets andstatic liquids[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2005,60(7):986-992.
    [117] Fichet P, Mauchien P, Wagner J F, et al. Quantitative elemental determination in water and oil bylaser induced breakdown spectroscopy[J]. Analytica chimica acta,2001,429(2):269-278.
    [118] Hussain T, Gondal M A. Monitoring and assessment of toxic metals in Gulf War oil spillcontaminated soil using laser-induced breakdown spectroscopy[J]. Environmental monitoring andassessment,2008,136(1-3):391-399.
    [119] Po ízka P, Prochazka D, Pil t Z, et al. Application of laser-induced breakdown spectroscopy tothe analysis of algal biomass for industrial biotechnology[J]. Spectrochimica Acta Part B: AtomicSpectroscopy,2012,74:169-176.
    [120]修俊山,侯华明,钟石磊,等.以滤纸为基质利用LIBS定量分析水溶液中铅元素[J].中国激光,2011,38(8):234-239.
    [121] Vrenegor J, Noll R, Sturm V. Investigation of matrix effects in laser-induced breakdownspectroscopy plasmas of high-alloy steel for matrix and minor elements[J]. Spectrochimica ActaPart B: Atomic Spectroscopy,2005,60(7):1083-1091.
    [122] Fornarini L, Colao F, Fantoni R, et al. Calibration analysis of bronze samples by nanosecondlaser induced breakdown spectroscopy: a theoretical and experimental approach[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2005,60(7):1186-1201.
    [123] Fichet P, Mauchien P, Wagner J F, et al. Quantitative elemental determination in water and oil bylaser induced breakdown spectroscopy[J]. Analytica chimica acta,2001,429(2):269-278.
    [124] Charfi B, Harith M A. Panoramic laser-induced breakdown spectrometry of water[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2002,57(7):1141-1153.
    [125]卢渊,吴江来,李颖,等.基于激光诱导击穿光谱技术的土壤泥浆中Pb元素检测[J].光谱学与光谱分析,2009,29(11):3121.
    [126] Boumans P. Atomic emission detection limits; more than incidental analytical figures of merit!-Atutorial discussion of the differences and links between two complementary approaches[J].Spectrochimica Acta Part B: Atomic Spectroscopy,1991,46(6):917-939.
    [127] National Standardization Technical Committee.GB/T14848-9.Quality standard for ground water
    [S]. Beijing: China Standard Press,1994
    [128] http://physics.nist.gov/PhysRefData/ASD/lines_form.html.
    [129] P.R.C. G B.中华人民共和国国家标准污水综合排放标准[S].1996.
    [130]魏益华,张金艳,戴廷灿,等.离子色谱法测定地沟油和食用油中氯离子含量[J].食品科学,2011,32(12):213-215.
    [131] Haisch C, Niessner R, Matveev O I, et al. Element-specific determination of chlorine in gases bylaser-induced-breakdown-spectroscopy (LIBS)[J]. Fresenius' journal of analytical chemistry,1996,356(1):21-26.
    [132] Ma Q, Motto-Ros V, Laye F, et al. Ultraviolet versus infrared: Effects of ablation laserwavelength on the expansion of laser-induced plasma into one-atmosphere argon gas[J]. Journalof Applied Physics,2012,111(5):053301-053301-11.
    [133] Pichahchy A E, Cremers D A, Ferris M J. Elemental analysis of metals under water usinglaser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,1997,52(1):25-39.
    [134] Xiu J, Bai X, Negre E, et al. Indirect laser-induced breakdown of transparent thin gel layer forsensitive trace element detection[J]. Applied Physics Letters,2013,102:244101.
    [135] http://www.techlab.fr
    [136] Li L, Wang Z, Yuan T, et al. A simplified spectrum standardization method for laser-inducedbreakdown spectroscopy measurements[J]. Journal Of Analytical Atomic Spectrometry,2011,26(11):2274-2280.
    [137] Hou Z, Wang Z, Lui S, et al. Improving data stability and prediction accuracy in laser-inducedbreakdown spectroscopy by utilizing a combined atomic and ionic line algorithm[J]. Journal ofAnalytical Atomic Spectrometry,2013,28(1):107-113.
    [138] Xiu J, Motto-Ros V, Panczer G, et al. Feasibility of wear metal analysis in oils with parts permillion and sub-parts per million sensitivities using laser-induced breakdown spectroscopy of thinoil layer on metallic target[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2014,91:24-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700