用户名: 密码: 验证码:
高效燃煤固硫添加剂的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的能源结构是以煤炭为主,煤炭燃烧以后排放SO2造成的大气污染已经成为一个相当严重的问题,对燃煤固硫问题进行深入研究,控制SO2的排放已势在必行。在现有的脱硫技术中,干法钙基固硫技术工艺简单、脱硫成本低,特别适合生活燃煤、小型工业窑炉以及老锅炉的固硫改造。然而单一的钙基固硫剂钙利用率低,固硫效果有限,影响了该技术的发展,采用在钙基固硫剂中加入助剂制成复合固硫剂来提高固硫效率是一种较为经济可行的方法。
     本文通过对三种单一物质和两种固体废弃物对钙基固硫剂的固硫促进效果的考察,发现碱金属盐以及稻草灰(RSA)都是很好的钙基固硫添加剂,相比而言,RSA/钙基复合固硫剂更适合民用燃煤固硫。考察了各工艺条件诸如RSA与CaCO3的配比、Ca/S摩尔比以及燃烧情况等对RSA/CaCO3复合固硫剂固硫效果的影响,并利用RSA/CaCO3复合固硫剂进行了现场的民用型煤固硫实验,还利用XRD对固硫灰渣的物相成分进行了分析。此外,还对钙基固硫剂进行调质处理,大大提高了其在高温阶段(1100℃以上)的固硫效果。
     实验结果表明:CaCO3与RSA的最佳配比为10:1;Ca/S摩尔比最佳取值范围为1.5-2.5;复合固硫剂的最佳固硫温度为800℃-900℃;在固硫煤样中加入4%的水分能够得到较佳的固硫效果;最佳空气流量为150ml/min。当Ca/S为2.0、空气流量150ml/min时,复合固硫剂在800℃的固硫率达到70%以上。民用型煤固硫实验结果显示,本固硫剂对无烟煤烟煤都有很好的固硫效果,固硫率高达90%。固硫灰渣XRD图谱显示在1000℃以下,主要固硫产物为CaSO4,而1100℃时固硫灰渣中有高温物相2Ca2SiO4·CaSO4的生成。通过对CaCO3调质处理,1100℃时钙基固硫剂的固硫率能够由16%左右增加到40%,1250℃时的固硫率也能够达到20%。XRD分析显示,煅烧熔融使粉煤灰得到了活化,而在1250℃时固硫灰渣的XRD图谱中出现了3CaO·Al2O3·CaSO4的吸收峰。
Coal is the main energy in china’s energy structure. SO2 from coal combustion is one of the major air pollutants, leading to serious environmental pollution. Thus, it is urgent to control the emission of SO2. Among all kinds of desulphurization technologies, dry calcium-based retention technique is the most suitable one for civil coal combustion, small-scale industrial furnace as well as old boiler due to its simple process and low cost. However, low desulfurization efficiency and low utilization ratio of calcium have limited the development of this technology when using calcium-based absorbent alone. A new economic method, doping some additives into the Ca-based absorbent, has been developed to resolve this problem.
     It was found that alkali metal salts and rice straw ash(RSA) are both appropriate calcium-based absorbent additives, by investigating the desulphurization promoting of three different pure chemical additives and two different solid wastes. Compared with pure chemical additives, RSA is more suitable for civilian coal. The effect of rice straw ash ratio, Ca/S, combustion conditions were investigated, and civil briquette experiments were carried out at the scene. The phases of the sulfur retention ash were also analyzed by XRD. The calcium-based sulfur retention absorbent was treated by Acetic acid and activated fly ash (FA), and the sulfur retention efficiency was greatly improved when the temperature is above 1100℃.
     The results of the experiment show that the optimize process conditions of RSA/ CaCO3 sulfur retention absorbent are as fellow: mass ratio of CaCO3 and straw ash is 10:1, the Ca/S ratio is between 1.5-2.5, the temperature is between 800℃-900℃,the amount of additional water is 4%, and the air flow is 150 ml/min. The sulfur retention rate of RSA/CaCO3 is above 70%, When Ca/S = 2.0, the air flow is 150 ml/min and the temperature is 800℃.
     The Civil briquette experiments results show that, the sulfur retention absorbent has the higher sulfur retention efficiency to both anthracite and bituminous coal, which reached to 90%. The sulfur retention rate increased from 16% to 40% at 1100℃by acetate-quality processing and activated FA; when the temperature is 1250℃, the sulfur rate reached to 20%.
     The XRD patterns indicated that, the main form of sulfur in the sulfur retention ash are CaSO4 when temperature is below 1000℃; 2Ca2SiO4·CaSO4 is found when the sulfur retention temperature is 1100℃; the absorption peaks of 3CaO·Al2O3·CaSO4 are also found When the temperature rises to 1250℃.
引文
[1]中国能源战略研究课题组.中国能源战略研究[M].北京:中国电力出版社, 1996.
    [2]国家环环境保护局. 2007年全国环境统计概要[M].北京:中国环境出版社, 2007.
    [3]王金南,曹东,杨金田等.环境中国2020[M].北京:中国环境科学出版社, 2004.
    [4]国家环境保护总局.中国环境状况公报[M].北京.
    [5]国家环境保护局. GB3095-1996,环境空气质量标准[M].北京:中国环境出版社,1996.
    [6]郝吉明,王书肖,陆永琪.煤二氧化硫污染控制技术手册[M].北京:化学工业出版社, 2001.
    [7]王金南,杨金田.氧化硫排放交易-中国的可行性[M].中国环境科学出版社, 2002.
    [8]雷仲存.工业脱硫技术[M].北京:化学工业出版社, 2001.
    [9]姚强.洁净煤技术[M].北京:化学工业出版社, 2005.
    [10]刘炳江,郝吉明,贺克斌等.中国酸雨和二氧化硫污染控制区区划及实施政策研究[J].中国环境科学, 1998, 18(1):1-7.
    [11] U.S.EPA. Flue Gas Desulfurization Technology for Control of Sulfur Oxides Research[J]. Development and Demonstration. EPA 1600/f-95/013
    [12]王成师.我国选煤技术现状与发展趋势[J].选煤技术, 2006, 6:55-59.
    [13]徐海.浅谈选煤技术[J].内蒙古科技与经济, 2007, 134:77-78.
    [14] Levent M, Kaya ?, Kocakerim M, et al. Optimization of desulphurization of Artvin–Yusufeli lignite with acidic hydrogen peroxide solutions[J]. Fuel , 1986 (7-8) :983-992.
    [15]张国杰,张永发,谢克昌.高硫煤加氢热解脱硫研究[J].化学工程, 2006, 34(4):55-58.
    [16] Jorjani E, Rezai B, Vossoughi M, et al. Desulfurization of Tabas coal with microwave irradiation/peroxyaceticacid washing at 25,55 and 85℃, fuel, 2004,83(7-8):943-949.
    [17] Bodman S, Monsef-Mirzai P, Manak H, et al. Does microwave heating have a rolein functional group reactions of coal[J]. Fuel, 76(13):1315-1318.
    [18]何德文,蒋崇文,朱南文.真脱除煤炭中硫的实验研究[J].中南大学学报(自然科学版), 2005, 5:812-815.
    [19]李国辉,胡杰南.煤的微生物法脱硫研究进展[J].化学进展, 1997,9(1):79-89.
    [20]俞珠峰.洁净煤技术发展及应用[M].北京:化学工业出版社, 2004.
    [21] Yang R T, Shen M S. Fluidized-bed combustion of coal with lime additive: catalytic sulfation of lime with iron compounds and coal ash[J]. Ind. Eng. Chem. Process Des. Dev, 1978, 12(8): 915-918.
    [22] Desal N J, Yang R T. Catalytic fluidized-bed combustion. enhancement of sulfation ofcalcium oxide by iron oxide[J]. Ind. Eng. Chem. Process Des. Dev, 1983, 22(2):119~123.
    [23]肖佩林,李书年.铁硅系添加剂对型煤燃烧时硫行为的影响[J].环境科学学报.1996,16(1):97-102
    [24]刘随芹,崔凤海,陈亚飞. MHS系列燃煤固硫添加剂的研制[J].煤化工. 2000, 4:24-29.
    [25]李存儒,刘世斌.复合金属氧化物脱硫剂脱除SO2的研究[J].燃料化学学报, 1998, 26(4):381-384.
    [26] Vincent R G. Retention of sulfur by laboratory-prepared ash from low-rank coal. Fuel,1986, 65(11):1618-1619.
    [27]林国珍,肖佩林,王庆广等.型煤高温固硫终产物Ca-Fe-S-Si-O体系的表征[J].环境科学, 1994,15(3):15-18.
    [28]姚青松.燃烧固硫技术的原理[J].污染防治技术, 1998, 17(4):14-17.
    [29]王军.碱性固硫剂的固硫效果分析[J].重庆环境科学, 1991, 13(4):23-25.
    [30]李宁,刘维屏,钱剑青.煤燃烧中硅酸盐A的高温固硫促进作用[J].上海环境科学,1998,17(12):21-23.
    [31]常丽萍,朱素渝. Fe2O3-SiO2对燃煤过程中石灰石固硫特性的影响[J].环境化学, 1998, 17(6):532-536.
    [32] Paolo D, Gennaro D M, Pado G. An investigation of the influence of sodium chloride on the desulphurization properties of limestone[J]. Fuel, 1992, 71(7):831-834.
    [33]周俊虎,范浩杰.姚强等.氧化钙燃烧固硫添加剂的研究[J].环境科学学报, 1997, 17(3):284-288.
    [34]傅勇,林国珍,庄亚辉.型煤燃烧固硫的钠离子效应[J].环境化学, 1994, 12(4):492-496.
    [35] Stouffer M R, Heeyoung Y. An investigation of CaO sulfation mechanisms in boiler sorbent injection[J]. AIChE J, 1989, 35(8):1253-1262.
    [36]范浩杰,姚强.碱金属化合物添加剂对氧化改固硫影响的试验研究[J].燃烧科学与技术, 1997, 3(1):105-111.
    [37]唐海香,张荣光,张荣曾等.添加剂对CaCO3固硫效果的影响[J].中国安全科学学报, 2006, 16(5):117-120.
    [38] David A, Jozewicz W. Structural changes in surfactant-modified sorbents during furnace injection[J]. AIChE J, 1989, 35(3):500-506.
    [39] Sasaoka E, Sada N. Novel Preparation Method of Macroporous Lime from Limestone for High-temperature Desulfurization[J]. Industrial & Engineering Chemistry Research, 1997, 36(9):3639-3646.
    [40]王春波,沈湘林,陈伟鸿. EtOH调质CaO粒径对其脱硫效果影响的实验研究[J].热能动力工程, 2000, 15(6):630-633.
    [41] Juan A, Vanessa F, Francisco G L, et al. Study of modified calcium hydroxides for enhancing SO2 removal during sorbent injection in pulverized coal boilers[J]. Fuel,1997, 76(3):257-265.
    [42]张彦威,房殿奇,任有中.复合固硫剂的实验室脱硫试验[J].洁净煤术, 2002,8(2):48-51.
    [43]陈鸿伟,王春波.复合调质提高CaO固硫率的试验研究[J].环境科学学报, 1999, 19(4):357-361.
    [44]贾瑜,张同祥,钱剑青等.钙基固硫剂的制备及其固硫效果[J].燃料化学学报, 2003, 31(4):381-384.
    [45]曹长江.高硫煤的脱硫工艺研究[D].天津大学硕士论文, 2006.
    [46]邱宽嵘.燃煤二氧化硫释放和钙基脱硫剂的反应特征[J].环境污染与防治, 1994, 16(1):13-14.
    [47]许满贵,李建伟,葛岭梅.粉煤灰添加剂对石灰石脱硫的作用[J].西安矿业学院学报, 1998, 18(2):149-153.
    [48] Marsh D W, Ulrichson D L. Rate and Diffusional Study of the Reaction of Calcium Oxide with Sulfur Dioxide[J]. Chem Eng Sci, 1993, 40(3):423-433.
    [49] Allen D, Hayhurst A N. Reaction Between Gaseous Sulfur Dioxide and Solid CalciumOxide: Mechanism and Kinetics[J]. Chem Soc Farady Trans, 1996, 92(7):1227-1238.
    [50]韩翔宇,陈皓侃,李保庆.石灰石在煤燃烧过程中固硫反应机理研究进展[J].煤炭转化, 2000, 23(1):22-28.
    [51]李彩亭.散煤燃烧固硫和节能的探讨[J].环境污染与防治, 1989, 11(1):17- 19.
    [52]王国金.在煤硫化床燃烧过程中石灰石固硫机理的热力学分析[J].石油大学学报(自然科学版)1994, 18(3):128-130.
    [53] Dennis J S, Hayhurst A N. Mechanism of the Sulphation of Calcined Limestone Particles in Combustors[J]. Chem Eng Sci, 1990, 45(5):1175-1187.
    [54] Burorni M, Carugai A, Delpiero G etal. Behaviour of Calcium-Based Sorbents Towards SO2 Capture in a High Pressure Thermobalance[J]. Fuel, 1992, 71(4):919-925.
    [55] Snow M J, Longwell J P, Sarotim A F. Direct Sulphation of Calcium Carbonate[J]. Ind Eng Chem Res, 1988, 27(2):268-273.
    [56] Lee D C, Georgakis C. A Single Partical-Size Model for Sulfur Retention in Fluidized Bed Coal Combustors[J]. AIChE J, 1981, 27:472-480.
    [57]钟秦. CaO和SO2反应的热重法研究[J].应用化学, 1995, 12(3):36-39.
    [58]邱宽嵘,蒋玢. CaO颗粒脱硫化学反应研究[J].中国矿业大学学报, 1996, 25(4):93-94.
    [59] Borgwardt R H. Kinetics of the Reaction of SO2 with Calcium Limestone[J]. Environ Sci & Tech, 1970, 4(1): 59-63
    [60]刘金权,武增华,王立新. CaO超细高岭土复合固硫剂固硫动力学研究[J].燃料化学学报,2004, 32(4):424-428.
    [61]武增华,许玲,陈昌和.添加剂对氧化钙固硫促进作用的机理探讨[J].煤炭转化, 2000, 23(3):72-76.
    [62] Anthony E J, Granatstein D L. Sulfation phenomena in fluidized bed combustion systems[J]. Progress in Energy and Combustion Science, 2001, 27:205-236.
    [63]周俊虎,范浩杰,姚强等.氧化钙燃烧固硫添加剂的研究[J].环境科学学报, 1997, 17(3):284-288.
    [64] Shearer J A, Johnson J, Turner B C. Effects of Sodium Chloride on Limestone Calcination and Sulfation in Fluidized-bed Combustion[J]. Environ Sci& Technol, 1979, 13: 1113-1118.
    [65] Hsia C, Pierre G R S. Diffusion Through CaSO4 Formed Duringthe Reaction of CaO with SO2 and O2[J]. AIChE J, 1993, 39(4):698-705.
    [66] Borgwardt R H, Bruce K R. An Investigation of Product Layer Diffusivity for CaO Sulfation[J]. Ind Eng Chem Res, 1987, 26(10):1993-1994.
    [67]宋慧英,撒应禄.层燃型煤固硫模型[J].东南大学学报, 1991, 21(1):112-116.
    [68]张良全,成思危,严瑞. Fe2O3对型煤固硫作用的机理探讨[J].环境科学, 1997, 18: 65-68
    [69]陈亚非,高翔,骆仲泱等.金属氧化物对Ca(OH)2脱硫影响的研究[J].工程热物理学报, 1997, 18(4):517-520.
    [70] Tsuchiai H, Ishizuka T. Highly Active Absorbent for SO2 Removal Prepared from Coal Fly Ash[J]. Ind Eng Chem Res, 1995, 34:1404-1410.
    [71]刘妮,吕伟,路春美.型煤燃烧及固硫技术的研究[J].煤化工, 1998, 84(3):39-41.
    [72]秦国彤,贺林,路新瀛等.液态排渣立式旋风炉燃烧中脱硫研究[J].煤炭化, 2002, 25(1):45-47.
    [73]肖佩林,沈迪新,林国珍.高温固硫反应中锶化合物的促进作用[J].环境化学,1994, 13(5):389-394.
    [74]刘毫,邱建荣,谢峻林等.铝基矿物在钙基固硫过程中的固相反应机理分析[J].工程热物理学报, 2007, 28(2):351-353.
    [75]许玲,武增华,寇鹏等.以CaS为燃煤固硫产物的热力学可行性和实验探索[J].工程与技术, 2000,16-18.
    [76]刘泽常,高洪阁,王力等.高温条件下钙基固硫剂脱硫特性研究[J].煤炭转化, 1999, 22(4):54-56.
    [77] Dennis J S, Hayhurst A N. A Simplified analytical model for the rate of reaction of SO2 with limestone particles[J]. Chemical Engineering Science,1986, 41(1), 25-36.
    [78] Wen C Y, lshida. M. Reaction Rate of Sulfur Dioxide with Particles Containing Calcium Oxide[J]. Environmental Science & Technology, 1973, 7(8):73-78.
    [79] Christman P G, Edgar T F. Distributed Pore-Size Model for Sulphation of Limestone[J]. AIChE J, 1983, 29(3):388-395.
    [80] Alvfors P, Svedbery G.. Modeling of the Sulphation of Calcined Limestone and Dolomite-A Gas-Solid Reaction with Structural Changes in the Presence of Inert Solids[J]. Chem Eng Sci, 1988, 43(5):1183-1193.
    [81] Dam-Johansen K, Hansen P F B,Фstergaard K. High-Temperature Reaction Between Sulfur Dioxide and Limestone-ⅢA Grain-Micrograin Model and its Verification[J]. Chem Eng Sci, 1991, 46(3):855-59.
    [82]路美春,许炳松,石灰石固硫反应模型[J].化工学报, 1998, 49(1):65-72.
    [83] Hurtman M, Coughlin R W. Reaction of Sulfur Dioxide with Limestone and the Grain Model[J]. AICHE J 1976, 22(3):490-498.
    [84] Hartman M. Influence of Porosity of Calcium Carbonates on their Reactivety with Sulfur Dioxide[J]. Ind Eng Chem Proc, 1978, 17(4):411-419.
    [85]天津大学无机化学教研室.无机化学[M].北京:高等教育出版社,1992.
    [86]赵由才.固体废物污染控制与资源化[M].北京:化学工业出版社,2002
    [87]刘荣厚,牛卫生,张大雷.生物质热化学转换技术[M].北京:化学工业出版社,2005.
    [88]陈波.钙基吸收剂的固硫性能评价和优化研究[D],浙江大学硕士论文, 2004,
    [89]李文,韩翔宇,陈皓侃等.加压惰性气氛下CaO和SO2反应的热重研究[J].中国矿业大学学报,2002,31(4):364-366
    [90]李方文,魏先勋.粉煤灰改性吸附材料的研究[J].四川环境,2002, 21(2):37-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700