用户名: 密码: 验证码:
改性活性炭纤维(ACF)吸附气态汞的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤造成的汞污染对生态环境具有极大的危害,随着人们环护意识的增强,汞污染问题逐渐得到重视。吸附剂喷射法是目前烟气汞排放控制的研究热点之一。在吸附剂研究方面,除活性炭外,还没有研究出可以推广使用的高效廉价吸附剂。因此,寻找有应用前景的高效烟气汞吸附剂,对于推动燃煤汞污染排放控制技术的发展将有重要的意义。
     本文主要利用浸渍法制备9种改性活性炭纤维样品,气态汞吸附实验对比各样品的汞吸附容量,通过扫描电镜分析(Scanning Electron Microscopy, SEM)及X光电子能谱分析(X-ray Photoelectron Spectronscopy, XPS)深入研究影响吸附性能的表面结构特性和化学特性,揭示样品改性与气态汞吸附性能间的内在规律。主要工作和成果如下:
     1.SEM分析发现,载银后Ag颗粒直径、载银量随AgNO3浓度的升高而增大;结晶点数量随浓度的升高而增多,且较多地分布在微孔边缘和交界处。XPS分析表明,载银后纤维表面出现Ag-O-C配位键,其中的Ag先一步与气态汞发生汞齐作用,极大地提升了载银吸附剂的吸附性能。
     2.ACF-MnO2样品的SEM扫描图中基本无颗粒附着物,但元素能谱分析(Energy Dispersive Spectrometry, EDS)表明样品表面存在少量Mn元素;ACF-MoO_3表面附着着颗粒状物质。XPS分析表明,ACF-MoO_3样品表面存在MoO_3。
     3.由XPS分析结果的S2p谱可知,ACF-MoS2样品表面存在3种化学状态的S即S2-、S和SO_4~(2-),结合Mo3d谱信息,可知硫化后ACF-MoS2表面存在MoS2物质,但硫化不完全,ACF-MoS2纤维表面还存在少量MoO_3。
     4.吸附气态汞实验表明ACF-MoS2是9种改性样品中汞吸附能力最强的吸附剂。由XPS的分析结果可知,改性后样品表面负载了MoS2和少量单质S提高了吸附剂的汞吸附容量。此外,由于银汞齐具有良好的热脱附性,可以循环再生,因此在合适的改性条件下,载银活性炭纤维也是一种很有前景的高效吸附剂。
Mercury pollution caused by coal combustion has brought great harm to environment.With strengthening of people’s concept in environment protection, mercury pollution is becoming more of a concern. Currently, adsorbent injection has been a focal point of researches on mercury control in flue gases. And besides the activated carbon (AC), there have no adsorbents with high efficiency, low price and wide adaptability. Therefore, it is significant to find high efficient and broad prospect adsorbents.
     In this paper, 9 kinds of modified ACF samples were obtained by impregnation and their adsoption capacities were determined with vapor mercury adsorption expriments. The interaction between sample modification and adsorption performance was revealed via futher study of surface structure properties and chemical characteries using scanning electron microscopy (SEM) and X-ray photoelectron spectronscopy (XPS). The main works and achievements were as follows:
     1. Acorrding to SEM micrographs, silver particles were mainly distributed in the edge and at the junction of microporous of ACF surfaces, particle size and amount of active points on ACF increased with higher AgNO3 solution. XPS spectra results suggested that Ag-O-C formed on surface of ACFs during the modification, Ag of coordination bond took a lead to combine with mercury and then improved adsorption performance.
     2. There were no particle deposits investigated on SEM image of ACF-MnO2, but the results of EDS indicated that a spot of Mn existed; while several particles adhered to ACF-MoO_3. And XPS spectra results indicated that MoO_3 was on surface of ACF-MoO_3.
     3. It was clear from S2p of XPS, there were three chemical states of S, namely S2-, S and SO42-, on the surface of ACF-MoS2. Based on the information of Mo3d, sulphur treatment was not completely carried out and ACF-MoS2 contained both MoO_3 and MoS2.
     4. The vapor mercury adsorption experiments indicated ACF-MoS2 was the best adsorbent among the 9 modified samples. After modification, MoS2 and a little S were impregnated into ACF-MoS2, which enhanced the adorsption. Because of favorable thermal desorption, silver supported ACF could be regenerated and was a promising and effective adsorbent with suitable modification.
引文
[1]陶铿编译.化工生产中汞污染防治[M].石油化工工业出版社, 1978.
    [2] Chemical and Enginnering News, 20-21, 2003.
    [3] Pacyna E G, Pacyna J M, Steenhuisen F. Global anthropogenic mercury emission inventory for 2000[J]. Atmosphere Environment, 2006, 40: 4048-4063.
    [4]于祥明,阮奇.煤炭需求逐渐转旺,我国今年煤炭产量近30亿吨[EB/OL]. http://www.drcnet.com.cn/DRCnet.common.web/DocView.aspx?DocID=2084799&LeafID=3047&ChnID=1025.
    [5] Belkin H E, Finkelman R B, Zheng B. Mercury in People’s Republic of China Coal[J]. The Geological Society of America Abstract, 2005, 37(7): 48.
    [6]蒋靖坤,郝吉明,吴烨.中国燃煤汞排放清单的初步建立[J].环境科学, 2005, 26(2): 34-39.
    [7]任建莉,周劲松,骆仲泱,等.燃煤电站汞排放量的预测模型[J].动力工程, 2005, 25(4): 587-592.
    [8]胡长兴.燃煤电站汞排放及活性炭稳定吸附机理研究[D].浙江大学博士学位论文, 2007.
    [9] Sager. M. Fuel, 1993, 72(9): 1327-1330.
    [10] United Nations Environment Programm Chemicals: Global Mercury Assessment, issued by UNEP Chemicals, Geneva, Switzerland, 2002, 10.
    [11]杨祥花,江贻满,杨立国,等.燃煤汞形态分布和排放特性研究[J].洁净煤燃烧与发电技术, 2005, 6: 13-16.
    [12] EPA. RIN 20602AJ65205 Standards of performance for new and existing stationary sources: electric utility steam generating units[S]. Washington DC: EPA, 2005.
    [13] EPA. RIN 20602AL76203 Rule to reduce interstate transport of fine particulate matter and ozone[S]. Washington DC: EPA, 2004.
    [14]金峰,曾汉才,钟毅,等.颗粒活性炭对汞的吸附实验研究[J].电力科学与工程, 2003(1): 1-4.
    [15]唐修义,黄文辉等著.中国煤中微量元素[M].北京:商务印书馆, 2004.
    [16] Finkelman R B, Swaine D J, Goodarzi F. Modes of occurrence of environmentally-sensitive trace elements in coal. In: Environmental aspects of trace elements in coal. Dordrecht, Kulwer Academic Publishers, 1995: 24-50.
    [17]罗颖都,李忠民等编译,煤的化学和物理脱硫[M].北京:煤炭工业出版社, 1984.
    [18]毛健雄,毛健全,赵树民编著.煤的清洁燃烧[M].北京:中国科学出版社, 2000.
    [19]曹征彦,汪肇平,沈嘉龙,等编.中国洁净煤技术[M].北京:中国物资出版社, 1998.
    [20] Toole-O’neil B, Tewalt S J, Finkleman R B, Mercury concentration in coal—unraveling the puzzle[J].Fuel, 1999, (78): 47-74.
    [21]边蔚,任爱玲.燃煤电厂汞排放控制技术的研究进展[J].河北工业科技, 2008, 25(6):401-404.
    [22] Matsumura Y. Adsorption of mercury vapor on the surface of activated 153 carbons modified by oxidation or iodization[J]. Atomspheric Environment, 1974(8): 1321-1327.
    [23]高洪亮,周劲松,骆仲泱,等.燃煤烟气中汞在活性炭上的吸附特性[J].燃煤科学技术, 2006, 34(5): 49-52.
    [24] Miller S J, Dunham G E, Olson E S, et al. Mercury sorbent development in coal-fired boilers, In: Proceedings of the Conference on Air Quality Mercury, Trace Elements and Particulate Matter, McLean, VA, 1998.
    [25] Rostam-Abadi M, Chen S G, His H C, et al. Novel vapor phase mercury sorbents. In: Proceedings of the EPRI-DOE-EPA Combined Utility Air Pollutant Control. Washington DC: 1997, TR-108683-V3.
    [26]胡长兴,周劲松,骆仲泱,等.烟气脱汞过程中活性炭喷射量的影响因素[J].化工学报, 2005, 56(II): 2172-2177.
    [27]任建莉,周劲松,骆仲泱,等.活性炭吸附烟气中气态汞的试验研究[J].中国电机工程学报, 2004, 24(2): 171-175.
    [28] Sinha R K, Walker P L. Removal of mercury by sulfurized carbons[J]. Carbon, 1972, 10: 754-756.
    [29]高洪亮,周劲松,骆仲泱,等.改性活性炭对模拟燃煤烟气中汞吸附的实验研究[J].中国电机工程学报, 2007,27(08):26-30.
    [30] Radisava V. Douglas P S. Vapor-phase elemental mercury adsorption by activated carbon impregnate with chloride and chelateing agents[J]. Carbon, 2001, 39:3~14.
    [31]徐采栋.汞冶金的理论基础[M].上海:上海科学技术出版社,1964.
    [32] Meia Z, Shen Z M, Zhao Q J. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon[J]. Journal of Hazardous Materials, 2008, 152: 721-729.
    [33]杨晓燕,陈焕钦,梅慈云.渗银活性炭的制备及性能研究[J].净水技术, 1996,55(1): 8-11.
    [34]韩月香,诸永泉,谈定生,等.吸附法治理汞废气的机理研究[J].上海大学学报(自然科学版), 2002, 8(3): 205-208.
    [35]诸永泉.载银活性炭法处理含汞废气[J].上海环境科学, 1994,13(2): 31-32.
    [36]刘文宏,范必威,周崇松.银在活性炭上的吸附与表征[J].贵金属, 2004,25(1): 1-6.
    [37] Valente N J, Carrott P J M, Ribeiro Carrott M M L, et al. Mercury removal from aqueous solution and flue gas by adsorption on activated carbon fibres[J]. Applied Surface Science 252(2006): 6046-6052.
    [38]许绿丝,钟毅,金峰,等.催化活性炭纤维脱硫除汞性能试验研究[J].安全与环境科学, 2004, 4(2): 10-12.
    [39]李晓菁,陈杰瑢,王志强,等.远程氮等离子体改性活性炭纤维及其吸附性能研究[J].催化环保, 2004, 24(6): 403-407.
    [40] Ai Gye L, Pratim B, Elizabeth H. Comparison of Hg0 Capture Efficiencies of Three in situ Generated Sorbents[J]. Environmental and Energy Engineering, 2001, 47(4): 954-961.
    [41] Ryu S K, Kim S Y, Li Z J, et al. Characterization of Silver-Containing Pitch-Based Activated Carbon Fibers[J], Journal of Colloid and Interface Science 220, 1999: 157-162.
    [42]况敏,杨国华,张志学,等.银负载对活性炭纤维汞吸附性能的影响[J].环境工程学报, 2008, 2(7): 983-988.
    [43]况敏,杨国华,陈武军,等.吸汞载银活性炭纤维和吸汞活性炭纤维的热脱附特性研究[J].燃料化学学报, 2008, 36(4): 468-473.
    [44]王立刚,陈昌和.飞灰残炭对零价汞蒸汽的吸附特征[J].北京科技大学学报, 2004, 26(4): 353-356.
    [45] Maroto-Valer M M, Zhang Y Z, Evan J G, et al. Effect of porous structure and surface functionality onthe mercury capacity of a fly ash carbon and its activated sample[J]. Fuel, 2005, 84: 105-108.
    [46]乔瑜,徐明厚,冯荣,等. Hg/O/H/Cl系统中汞的氧化动力学研究[J].中国电机工程学报, 2002, 22(12): 138-151.
    [47]杨宏旻,曹晏,潘伟平.吸附剂的汞吸附特性试验[J].燃烧科学与技术, 2006, 12(6): 486-490.
    [48]王立刚,徐雪,王凡,等.燃煤飞灰粒径分布函数的分形特征及其对吸附性能的影响[J].环境化学, 2008, 27(2): 215-217.
    [49]李猛,刘晶,郑楚光.未燃尽炭表面吸附汞的机理研究[J].工程热物理学报, 2007, 28(5): 882-884.
    [50] Turchi C S, Albiston J, Broderick T E, et al. Removal of mercury from coal-combustion flue gas using regenerable sorbents, The air& waste management assiciation’s 92nd annual meeting & exhibition, St. Louis, Missouri, June 20-24, 1999, 99-121-1.
    [51] Aeschliman D, Norton G. Collection and thermal evolution behaviors of different mercury species captured with gold[J]. Environmental science technology, 1999, (33), 2278-2283.
    [52] Carey T R, Richardson C F. Stability of mercury captured on sorbent surfaces, The air& waste management assiciation’s 92nd annual meeting & exhibition, St. Louis, Missouri, June 20-24, 1999, 99-82-1.
    [53]江贻满,杨祥花,杨立国,等.燃煤烟气中汞吸附的研究综述[J].能源研究与利用, 2006, (5): 28~31.
    [54] Poulston S, Granite E J, Pennline H W, et al. Metal sorbents for high temperature mercury capture from fuel gas[J]. Fuel, 2007, 86: 2201-2203.
    [55] Ghorishi S B, Singer C F, Sedman C. Preparation and evaluation of modified lime and silica-lime sorbents for mercury vapor emission control, EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, Atlanta, Georgia, 1999.
    [56] Morency J. R., Panagiotou T. Control of mercury emissions in utility power plants, EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, Atlanta, Georgia, 1999.
    [57]任建莉,燃煤过程汞析出及模拟烟气中汞吸附脱除试验和机理研究[D].浙江大学博士学位论文, 2003.
    [58]高洪亮,模拟燃煤烟气中汞形态转化为脱除技术的实验及机理研究[D].浙江大学博士学位论文, 2004.
    [59] Sandhya E. Gas-phase mercury adsorption rate studies[J]. American Chemical Society, 2007, 2: 852-857.
    [60] Li R J, Zhou J S, Hu C X, et al, Application of novel sorbents for mercury vapor removal from simulated flue gases[J]. Chinese Society of Electrical Engineering, 2007, 2: 48-53.
    [61] Shannon D S. Adsorption of elemental mercury on pulverized fly ash, Dissertation, Uni. Utah, August 1999.
    [62] Senior C L. Oxidation of mercury across SCR catalysts in coal-fired power plants[J]. Journal of the Air& Waste Management Association. 2006, 56(1): 23-31.
    [63] Chen L, Duan Y F, Zhuo Y Q, et al. Mercury transformation across particulate control devices in six power plants of China: the co-effect of chlorine and ash composition[J]. Fuel, 2007, 86(4): 603-610.
    [64] Meij R. The fate of mercury in coal-fired power plants and the influence of wet flue-gas desulphurization[J]. Water, Air, and Soil Pollution, 1991, 56: 21-33.
    [65]周劲松,午旭杰,高洪亮.循环流化床锅炉汞排放及控制试验研究[J].热力发电, 2004, 1: 72-75.
    [66] John H P, Everett A S, Michael D M, et al. Status review of mercury control options for coal-fired power plants[J]. Fuel Processing Technology, 2003, 82(2/3): 89-165.
    [67] Senior C L. Johnson S A. Impact of carbon-in-ash on mercury removal across particulate control devices in coal-fired power plants[J]. Energy Fuels, 2005, 19(3): 859-863.
    [68] Meij R, Winkel H. Mercury emission from coal-fired power stations:The current state of the art in the Netherlands[J]. Science of the total Environment, 2005.
    [69] EPA,Selective Catalytic Reduction Mercury Field Sampling Project, Nov. 2004.
    [70]赵毅,于欢欢,贾吉林,等.烟气脱汞技术研究进展[J].中国电力, 2006, 39(12): 59-62.
    [71]陈进生,袁东星,李权龙,等.燃煤烟气净化设施对汞排放特性的影响[J].中国电机工程学报, 2008, 28(2): 72-76.
    [72]吴彦,占部武生.脉冲放电法消除汞蒸气的试验研究[J],环境科学学报, 1996, 16(2): 221-225.
    [73]岑可法院士.洁净煤燃烧发电技术报告.中国煤炭学会第二次洁净煤技术研讨会,杭州, 2001.
    [74] Swaie D J. Trace elements in coal. London: Butterworth, 1990: 109-113.
    [75] Granite E J, Pennline H W. Sorbents for mercury removal from flue gas [R]. Pittsburgh: National Energy Technology Laboratory, 1998.
    [76] Granite E J, Pennline H W, Hargis R. Novel sorbents for mercury removal from flue gas [J]. Industrial and Engineering Chemistry Research, 2000, 39(4): 1020-1029.
    [77]向飞,申哲民,梅志坚,等.活性炭负载催化剂对模拟烟气中单质汞的吸附[J].环境科学与技术, 2007, 30(9): 7-20.
    [78]杜希文,原续波.材料分析方法[M].天津:天津大学出版社, 2006.
    [79]周全法,刘维桥,尚通明.贵金属纳米材料[M].北京:化学工业出版社, 2008.
    [80]陈水挟,黄镇洲,粱瑾,等.银在活性炭纤维上的吸附及分布[J].新型炭材料, 2002, 17(3): 6-10.
    [81]符若文,曾汉民.活性炭纤维氧化还原机理初探[J].合成纤维工业, 1990, 13(3): 31-37.
    [82] Li Y H, Lee C W, Gullett B K. Importance of activated carbon’s oxygen surface functional groups on elemental me rcury adsorption[J]. Fuel, 2003, 82: 451-457.
    [83]周劲松,石祥建,高洪亮,等.改性蛭石对气态汞的吸附效果[J].动力工程, 2006, 26(4): 558-562.
    [84] Marsh H, Diez M A, Kuo K. Fundamental Issues in Control of Carbon Gasification Reactivity[M]. Kluwer Academic Publishes, 1991.
    [85] Rodriguez-Rrinoso F, Almela-Alarcon, et al. Extended Abstracts[C], 17th Biennial Conference Carbon, 1985, 273.
    [86]任建莉,周劲松.新型吸附剂脱除烟气中气态汞的试验研究[J].中国电机工程学报, 2007, 27(2): 48-53.
    [87]张鹏宇,曾汉才,张柳.活化处理的活性炭吸附汞的试验研究[J].电力科学与工程, 2004(02): 1-3.
    [88]孙巍,晏乃强,贾金平.载溴活性炭去除烟气中的单质汞[J].中国环境科学, 2006, 26(3): 257-261.
    [89]胡福增.材料表面与界面[M],上海:华东理工大学出版社, 2008.
    [90]刘世宏,王当憨,潘承璜. X射线光电子能谱分析[M].北京:科学出版社, 1988.
    [91] Jansen R J J, Bekkum H V. XPS of nitrogen-containing functional groups on activated carbon. Carbon, 1995, 33(8): 1021-1027.
    [92] Gerenser L J, Vac J. An X-ray photoemission spectroscopy study of chemical interactions at silver/plasma modified polyethylene interfaces: correlations with adhesion[J]. Science Technology,1988, A6(5): 2897-2903.
    [93]王建祺,吴文辉,冯大民.电子能谱学引论[M].北京:国防工业出版社, 1992.
    [94]任建莉,陈俊杰,罗誉娅,等.活性炭纤维脱除烟气中气态汞的试验研究[J].中国电机工程学报, 2010, 30(5): 28-34.
    [95]常铁军,高灵清,张海峰.材料现代研究方法[M].哈尔滨:哈尔滨工程大学出版社, 2005.
    [96]曾戎,岳中仁,曾汉民.活性炭纤维表面结构及其吸附银机理研究[J].合成纤维工业, 1998, 21(4): 1-4.
    [97] Hassett D J, Eylands K E. Mercury capture on coal combustion fly ash[J]. Fuel, 1999, 78(2): 243-248.
    [98] Tessmer C H, Vidic R D, Uranowski L J. Impact of oxygen-containing surface functional groups on activated carbon adsorption of phenols[J]. Environmental Science and Technology, 1997, 31(7): 1872-1878.
    [99] Dandekar A, Baker R T K, Vannice M A. Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS[J]. Carbon, 1998, 36(12): 1821-1831.
    [100] Kelemen S R, Freund H, Mims C A. The Dependence of Water Adsorption and Reaction on the Structure of the Carbon Substrate[J]. Vac Sci Technol, 1984, A(2): 987.
    [101] Kelemen S R. Freund H, Mims C A. The Interaction of Potassium Hydroxide with Clean and Oxidized Carbon Surfaces[J]. Catal, 1986, 97: 228.
    [102]冯丽娟,李先国,褚金芳,等.碳担载钼基催化剂的性质研究[J]. 1999,增刊: 211-216.
    [103]王海斗,刘家浚,徐滨士.复合镀渗MoS2薄膜及其组织性能分析[J].金属热处理, 2004, 29(4): 29-32.
    [104]商红岩,刘晨光,徐永强,等.活性炭负载的Co/Mo催化剂的加氢脱硫性能I.活性炭载体与γAl2O3的对比[J].催化学报, 2004, 25(5): 363-368.
    [105] Mustin-PH C, Donato-R DE, Benoit-R, et al. Applied surface Science, 1993, 68: 147-158.
    [106] Brox-I B, Olefjord-U, Jelverstam. Journal Electronchem Soc., 1985, 132(12): 2854-2861.
    [107] Beccaria-G A M, Castello-G P. British Corrosion Journal, 1995, 30(4): 283-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700