用户名: 密码: 验证码:
改性壳聚糖吸附剂脱除烟气中汞的实验与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
未来的几十年煤炭仍将是我国能源消费的主体,由煤炭燃烧而产生的环境污染问题也必将存在。燃煤电站是人为汞排放污染的主要来源,已对生态环境和人类健康造成了极大危害。目前,中国已经成为亚洲乃至全球人为汞排放最多的国家之一。美国、加拿大等西方发达国家已将燃煤电站汞排放控制列入日程,而我国在这方面的研究与电厂试验还比较薄弱。因此,加快开展优良吸附剂的研制和实验工作是非常必要的,其意义重大而深远。
     本文详细地介绍了国内外燃煤电站汞排放减少的方法,着重叙述了近年来广泛研究的固体吸附剂及其脱汞性能;系统综述了壳聚糖(CTS)的改性方法及其在重金属脱除领域的应用;深入了解了量子化学理论在单质汞(Hg0)的氧化与吸附和壳聚糖/贵金属吸附剂吸附重金属方面的研究;分析了改性壳聚糖吸附剂脱除燃煤烟气中Hg0的可行性。
     论文制备了五种改性壳聚糖吸附剂(铜模板改性壳聚糖吸附剂、硅基改性壳聚糖吸附剂、碘(溴)和酸改性壳聚糖吸附剂、碘和酸改性膨润土/壳聚糖吸附剂和银改性膨润土/壳聚糖吸附剂),采用N2吸附-脱附、傅里叶变换红外(FTIR)、热重分析(TGA)、X-射线衍射(XRD)、X-射线荧光探针(XRF)和扫描电镜(SEM)等方法对吸附剂进行表征。结果表明:改性后,壳聚糖、硅基改性壳聚糖和膨润土/壳聚糖的比表面积均发生不同程度的减小。FTIR分析显示铜模板吸附剂改性中N原子参与了Cu2+的配位;壳聚糖中的氨基与硫酸和碘发生了化学反应,形成了具有磺酸根和碘两种活性位的良好吸附剂。TGA表明经硫酸和碘化钾改性后,吸附剂的热稳定性发生降低;而负载膨润土后,吸附剂的热稳定性大大提高。XRD分析发现经盐酸和硫酸溶液浸渍后,其结晶度降低;铜模板改性壳聚糖吸附剂、碘和酸改性壳聚糖吸附剂的晶相也发生不同程度的变化,这说明改性破坏了壳聚糖分子内的氢键,进而影响了其晶体结构;在碘和硫酸改性的吸附剂中,发现了单质碘(I2)的存在,进一步说明碘化钾、硫酸和壳聚糖之间发生了化学反应;XPS结果表明碘和硫酸改性的壳聚糖吸附剂中,N原子提供电子,S原子则接受电子。XRF表明硅烷化有利于硅基改性壳聚糖吸附剂引入更多的含硫含氯官能团。
     采用VM3000在线测汞仪,在固定床实验台架上进行了N2氛围下吸附剂的筛选实验。结果表明:未经任何处理的壳聚糖原样对Hg0仅有较弱的物理吸附;铜模板CTS吸附剂因空缺Cu2+而具有“记忆功能”,增加了该类吸附剂的脱汞能力。对于硅基改性CTS吸附剂,氧气的加入使其脱汞效率有明显提高。随着硫酸含量的增加,碘和硫酸改性壳聚糖吸附剂的脱汞效率逐渐提高,但硫酸的含量并不是越多越好;不论是矿物吸附剂还是壳聚糖吸附剂,碘改性吸附剂的脱汞效果均比溴改性吸附剂的脱汞效果好。银改性膨润土/壳聚糖吸附剂在较高温度下的脱汞效果较差,然而该吸附剂在较低温度下的脱汞效果良好。模拟烟气下的脱汞实验研究表明,SO2对吸附剂的脱汞有稍许抑制作用;而HCl对吸附剂的脱汞有稍许促进作用;H2O和NO对碘和酸改性膨润土/壳聚糖与银改性膨润土/壳聚糖吸附剂均有促进作用,但这两种气体对银改性吸附剂的促进作用更大。
     根据碘和酸改性CTS吸附剂的特征,采用密度泛函理论(DFT)系统地开展了几种可能活性位吸附Hg0的量子化学研究。计算发现,CTS的1#、2#和3#位对Hg0的吸附能力非常弱;CTS的氨基对H+和HI的吸附能力较强,其吸附能分别约为991和74kJ/mol;而CTS对I2仅有较弱的物理吸附;以上改性复合物对Hg0均没有吸附能力。壳聚糖对H+和I2同时吸附的能力非常强,其吸附能约为1020 kJ/mol;吸附剂CTS-H+-I2的最高占据分子轨道(HOMO)主要由I1的p轨道组成;吸附Hg0后,Hg0的d轨道对整体的HOMO有较大贡献。CTS-H+-I2对Hg0具有较强的吸附能力,其吸附能约为127kJ/mol。
     单原子贵金属(Ag、Au、Pd和Pt)在壳聚糖三个活性位的吸附及其复合后吸附Hg0的量子化学研究表明,Ag和Au在CTS 2#位的吸附能最大,Pd在CTS 3#位的吸附能最大,而Pt在CTS 1#位的吸附能最大。除Pt外,各吸附位对同一种贵金属的吸附能力相差不多;同一贵金属改性的CTS吸附剂在不同吸附位之间对Hg0的吸附能相差亦不多。壳聚糖对贵金属及贵金属改性壳聚糖对Hg0吸附能的大小顺序均为:Pt>Pd > Au> Ag。贵金属负载沸石M-T3对Hg0吸附能的大小顺序为:Au-T3> Cu-T3>Ag-T3;对于单吸附质的吸附系统,吸附能、贵金属与吸附质的键长和Mulliken电荷之间有明显的线性关系。NO的出现会促进Hg0的吸附,而SO2则会抑制其吸附,这和实验得到的结论是一致的。
Most of fuel consumed in China will be coal for several decades in future. The serious environmental pollution caused by coal combustion will be inevitable. As the largest source of anthropogenic mercury emissions, mercury emitted from coal-fired power plants has been identified as a hazardous pollutant to both human health and environment. At present, China is one of the largest source regions that release mercury into the atmosphere. Some measures and rules have been taken to control the mercury emissions from coal-fired power plants in some western developed countries, such as American, and Canada. However, the sifting of effective sorbents and researches of in situ full-scale demonstration for mercury control in coal-fired power plants are still weak in China. Therefore, it is necessary and important to find out the effective sorbents on mercury capture and to understand the mechanism of mercury removal.
     In this paper, several measures of mercury removal from coal-fired power plant were presented in detail. The solid sorbents researched extensively and their performances on mercury removal were emphatically introduced. The method of chitosan (CTS) modification and their applications on heavy metals removal were systematically summarized. The quantum chemistry theory studies on oxidation/adsorption of elemental mercury (Hg0) and the mechanism of CTS sorbents for heavy metals adsorption were deeply discussed. The possibility of modified chitosan sorbent on Hg0 capture from flue gases was analyzed.
     Five types of modified chitosan sorbents were synthesized using several advantages of chitosan. There are copper-templated CTS sorbent, silicon-modified CTS sorbent, iodine (or bromide) and acid modified CTS sorbent, iodine and acid modified bentonite (B)/CTS sorbent, and silver-modified B/CTS sorbent. The characterization of these sorbents was analyzed using N2 adsorption and desorption method, Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), Thermogravimetric analysis (TGA), X-ray fluorescence (XRF), and Scanning electron microscope (SEM), et al. The results show that the surface areas of CTS, silicon-modified CTS, and B/CTS sorbent decrease after modification. The FTIR spectra demonstrate that the reaction of amide of CTS and Cu2+ occurs in the process of copper-templated CTS sorbent preparation. And the chemical reaction of iodine and sulfate ion with the amide of CTS occurs. TGA indicates that the thermal stability of CTS decreases after modifying by H2SO4, and potassium iodide, while it can be increased greatly when bentonite supported on the chitosan. XRD spectra show that the area under amorphous decreases after modification. This is caused by the fact that inter- and extra-molecular hydrogen bonds are destroyed due to the presence of H2SO4. Furthermore, the peak of I2 is observed in the iodine and H2SO4 modified CTS sorbent, which implies the occurrence of the interaction between H2SO4, KI and chitosan. XPS analysis reveals that nitrogen atom provides electron pair, and sulfur atom inclines to accept the electron. More active sites, such as S and Cl, can be easily obtained after silanization in silicon-modified CTS sorbent.
     Adsorption experiments of vapor-phase elemental mercury (Hg0) were studied using these sorbents in a laboratory-scale fixed-bed reactor with nitrogen as gas sources. VM3000 online mercury analyzer was applied to detect the inlet and outlet Hg0 concentrations. The results show that the parent CTS has no effect on Hg0 removal. The copper-templated CTS sorbents, which have memory function for Cu2+ vacancy, can adsorb the metal ion or vapor-phase metal which has similar radius as copper ion. These changes can improve the Hg0 and Hg2+ capture efficiency greatly. For the silicon-modified CTS sorbent, mercury removal efficiency improves with the presence of O2. For the iodine or bromide-modified CTS sorbents, mercury removal efficiency of CTS sorbents could be significantly promoted when appropriate amount of H2SO4 was added. Generally, the iodine and acid modified sorbents demonstrate higher mercury capture efficiency than that of bromine and acid modified sorbents. Silver-modified B/CTS sorbents exhibit somewhat poor mercury removal efficiency at higher reaction temperature, while they show higher mercury capture performance at room temperature. The results obtained under simulated flue gases show that presence of SO2 has negative effect on Hg0 removal. Somehow positive effect occurs when HC1 is added. For iodine and acid modified B/CTS and silver-modified B/CTS sorbents, both H2O and NO can enhance the adsorption of Hg0. Compared to iodine and acid modified B/CTS sorbents, silver-modified B/CTS sorbents show a more significant change caused by H2O and NO.
     According to the possible adsorption sites of iodine and acid modified CTS sorbent, the adsorption of Hg0 on modified CTS sorbent was investigated systematically by Density Functional Theory (DFT). The results show that the adsorption abilities in the sites 1#,2#, and 3# of parent CTS for Hg0 are very small. It is found that the amide of CTS exhibits higher adsorption abilities for H+ and HI, and their adsorption energies are 991 and 74kJ/mol, respectively. While for I2, the physical adsorption phenomenon is found. These sorbents modified by H+, HI, or I2 all have little effect on Hg0 removal. CTS reveals an excellent adsorption performance for H+ and I2 simultaneously and the adsorption energy is 1020 kJ/mol. The main contribution to the highest occupied molecular orbital (HOMO) of CTS-H+-I2 complex is from the p orbital of I atom near the amide of CTS. There is a significant contribution from the d orbital of Hg0 atom in CTS-H+-I2-Hg complex after Hg0 adsorption. The complex of CTS-H+-I2 displays a big binding energy of 127kJ/mol for Hg0 adsorption.
     Furthermore, theoretical explorations of single noble metal (Ag, Au, Pd, and Pt) on the three sites of CTS, respectively, and Hg0 adsorption on the single noble metal-CTS complexes were also conducted by DFT method. The results show that among the three sites of CTS, the site 2# of CTS exhibits the biggest adsorption energies for Ag and Au atoms, respectively. While for Pt and Pd atoms, the sites are 1# and 3#, respectively. It has been found that, in each site, the adsorption energies of noble metal on CTS are almost the same except Pt atom. Similarly, the adsorption energies of Hg0 on noble metal-CTS complexes are also the same. It has been found that, in each site, the adsorption energies of Hg0 on noble metal-CTS complexes occur in the following order:Pt> Pd> Au> Ag, which is also consistent with order of the adsorption energies of noble metal on CTS. It has been found that the adsorption energies of Hg0 on three M-T3 clusters occur in the following order:Au-T3> Cu-T3> Ag-T3. For the individual adsorption system, a clear correlation between adsorption energy and M-Hg distance (and Mulliken charges) is found. Hg0 adsorption energy is substantially increased upon NO being preadsorbed on M-T3 surface, however, a significant weakening of the Hg0 bonding to the sites takes place in the vicinity of a bound SO2 molecule. These phenomena are in agreement with the experimental results.
引文
[1]崔荣国,刘树臣,王淑玲,等.我国能源消费现状与趋势.2008,(5):49-53
    [2]http://zls.mep.gov.cn/hjtj/nb/2008tjnb/201004/t20100421_188500.htm
    [3]http://www.kiiik.com/info/1157327.html
    [4]http://news.bjx.com.cn/html/20100125/241777.shtml
    [5]刘晶.燃烧过程中痕量元素释放反应机理及动力学模拟的研究.华中科技大学博士论文.2007
    [6]Home R A. The chemistry of our environment. John Wiley & Sons, New York.1978
    [7]Wu Y, Wang S X, Streets D G, et al. Trends in Anthropogenic Mercury Emissions in China from 1995 to 2003. Environ. Sci. Technol.2006,40:5312-5318
    [8]Streets D G, Zhang Q, Wu Ye. Projections of Global Mercury Emissions in 2050. Environ. Sci. Technol.,2009,43:2983-2988
    [9]Sundseth K, Pacyna J M, Pacyna E G, et al. Economic benefits from decreased mercury emissions:Projections for 2020. Journal of Cleaner Production,2010,18: 386-394
    [10]Pacyna E G, Pacyna J M, Sundseth K, et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment,2009, doi:10.1016/j.atmosenv.2009.06.009
    [11]郭欣,郑楚光,贾小红,等.300MW煤粉锅炉烟气中汞形态分析的实验研究.中国电机工程学报,2004,24:185-188
    [12]http://hanyu.iciba.com/wiki/126386.shtml
    [13]刘昕,蒋勇.美国燃煤火力发电厂汞控制技术的发展及现状.高科技与产业化.2009,(3):92-95
    [14]Clean Air Mercury Rule. U.S. Environmental Protection Agency:Washington D.C., 2005. http://www.epa.gov/air/mercuryrule/index.htm
    [15]郑楚光,徐明厚,张军营,等.燃煤痕量元素的排放与控制.武汉:湖北科学技术出版社.2002
    [16]Schroeder W H, Munthe J. Atmospheric mercury:an overview. Atmospheric Environment,1998,32:809-822
    [17]Jaffe D, Prestbo Eric, Swartzendruber Phil, et al. Export of atmospheric mercury from Asia. Atmospheric Environment,2005,39:3029-3038
    [18]Weiss-Penzias P, Jaffe D A, McClintick A, et al. Gaseous elemental mercury in the marine boundary layer:evidence for rapid removal in anthropogenic pollution. Environmental Science and Technology,2003,37:3755-3763
    [19]Wei Liu. Development of novel adsorbents for the control of vapor-phase mercury emissions. A Dissertation for the Degree of Doctor of Philosophy in Chemical Engineering, University of Pittsburgh, Pittsburgh
    [20]Pavlish J H, Sondreal E A, Mann M D, et al. Status review of mercury control options for coal-fired power plants. Fuel Processing Technology,2003,82:89-165
    [21]王运军,段钰锋,杨立国,等.燃煤电站布袋除尘器和静电除尘器脱汞性能比较.燃料化学学报.2008,36:23-29
    [22]Rong Yan, Haicai Zeng, Qiumei Yu. The fate of trace elements during several coal pretreatment processes. Energy and Fuels,2002,16:1160-1166.
    [23]Yudovich Y E, Ketris M P. Mercury in coal:a review Part 2. Coal use and environmental problems. International Journal of Coal Geology,2005,62:135-165
    [24]韩军,徐明厚.燃煤痕量元素排放的控制研究.动力工程,2003,23:2744-2751
    [25]Timpe R C, Mann M D, Pavlish J H, et al. Organic sulfur and HAP removal from coal using hydrothermal treatment, Fuel Process. Technol.,2001,73:127-141
    [26]Dronen L C, Moore A E, Kozliak E I, et al. An assessment of acid wash and bioleaching pre-treating options to remove mercury from coal. Fuel,2004,83: 181-186
    [27]Hoffart A, Seames W, Kozliak E, et al. A two-step acid mercury removal process for pulverized coal. Fuel,2006,85:1166-1173
    [28]Guffey F D, Bland A E. Thermal pretreatment of low-ranked coal for control of mercury emissions. Fuel Processing Technology,2004,85:521-531
    [29]Merdes A C, Keener T C, Khang S, et al. Investigation into the fate of mercury in bituminous coal during mild pyrolysis. Fuel,1998,77:1783-1792
    [30]Wang M, Keener T C, Khang S. The effect of coal volatility on mercury removal from bituminous coal during mild pyrolysis. Fuel Processing Technology,2000,67: 147-161
    [31]Iwashita A, Tanamachi S, Nakajima T, et al. Removal of mercury from coal by mild pyrolysis and leaching behavior of mercury. Fuel,2004,83:631-638
    [32]Sekine Y, Sakajiri K, Kikuchi E, et al. Release behavior of trace elements from coal during high-temperature processing. Powder Technology,2008,180:210-215
    [33]Cheng Zhang, Gang Chen, Rajender Gupta, et al. Emission Control of Mercury and Sulfur by Mild Thermal Upgrading of Coal. Energy and Fuels,2009,23:766-773
    [34]Park J Y, Won J H, Lee T G Mercury analysis of various types of coal using acid extraction and pyrolysis methods. Energy and Fuels,2006,20:2413-2416
    [35]陈进生,袁东星,李权龙,等.燃煤烟气净化设施对汞排放特性的影响.中国电机工程学报,2004,28:72-76
    [36]田贺忠.利用湿式静电除尘器(ESP)脱除汞.国际电力,2005,9:62-64
    [37]Meij R. The fate of mercury in coal-fired power plants and the influence of wet flue-gas desulfurization. Water Air Soil Pollut.,1991,56:1-33
    [38]DeVito M S, Withum J A, Statnick R M. Flue gas Hg measurements from coal-fired boilers equipped with wet scrubbers, Int. J. Environ. Pollut.,2002,17:126-142
    [39]杨宏旻,Liu K L, Cao Y,等.电站烟气脱硫装置的脱汞特性试验.动力工程,2005,26:554-557
    [40]Hall B. The gas phase oxidation of elemental mercury by ozone. Water Air Soil Pollut.,1995,80:301-315
    [41]McLarnon C R, Horvath M L, Boyle P D., Electro-catalytic oxidation technology applied to mercury and trace elements removal from flue gas. In:Proceedings of the Air Quality Ⅱ:Mercury, Trace Elements, and Particulate Matter Conference,2000, September 19-21, McLean, VA, pp. A4-A6
    [42]Jeong J, Jurng J. Removal of gaseous elemental mercury by dielectric barrier discharge. Chemosphere,2007,68:2007-2010
    [43]Byun Y C, Ko K B, Cho M H, et al. Oxidation of elemental mercury using atmospheric pressure non-thermal plasma. Chemosphere,2008,72:652-658
    [44]Granite E J, Pennline H W. Photochemical Removal of Mercury from Flue Gas. Ind. Eng. Chem. Res.2002,41:5470-5476
    [45]McLarnon C R, Granite E J, Pennline H W. The PCO process for photochemical removal of mercury from flue gas. Fuel Processing Technology,2005,87:85-89
    [46]Li Y, Wu C Y. Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO2-TiO2 nanocomposite. Environ. Sci. Technol.,2006,40:6444-6448
    [47]Li Y, Murphy P, Wu C Y. Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite. Fuel Process. Technol., 2008,89:567-573
    [48]Li Y, Wu C Y. Kinetic study for photocatalytic oxidation of elemental mercury on a SiO2-TiO2 nanocomposite. Environ. Eng. Sci.,2007,24:3-12
    [49]Lee T G. Biswas P. Hedrick E. Overall kinetics of heterogeneous elemental mercury reactions on TiO2 sorbent particles with UV irradiation. Ind. Eng. Chem. Res.,2004, 43:1411-1417
    [50]Seok H J, Eom Y, Lee T G. Photocatalytic oxidation of gas-phase elemental mercury by nanotitanosilicate fibers. Chemosphere,2008,71:969-974
    [51]Lee T G, Arar E, Biswas P. Comparison of Mercury Capture Efficiencies of Three Different In Situ Generated Sorbents. AIChE J.,2001,47:954-961
    [52]Yan R, Liang D T, Tsen L, et al. Bench-scale experimental evaluation of carbon performance on mercury vapour adsorption. Fuel,2004,83:2401-2409
    [53]Eswaran S, Stenger H G, Fan Z. Gas-phase mercury adsorption rate studies. Energy and Fuels,2007,21:852-857
    [54]王立刚,彭苏萍,陈昌和.燃煤飞灰对锅炉烟道气中Hg0的吸附特性.环境科学,2003,24:59-62
    [55]王泉海,邱建荣,杨剑锋,等.氧化钙添加剂对烟气中汞分布的影响.热能与动力工程,2004,19:249-251
    [56]Lee W, Bae G. Removal of elemental mercury (Hg0) by nanosized V2O5/TiO2 catalysts. Environ. Sci. Technol.,2009,43:1522-1527
    [57]Wu S J, Oya N, Ozaki M, et al. Development of iron oxide sorbents for Hg0 removal
    from coal derived fuel gas:sulfidation characteristics of iron oxide sorbents and activity for COS formation during Hg0 removal. Fuel,2007,86:2857-2863
    [58]Wu S J, Ozaki M, Uddin M. A, et al. Development of iron-based sorbents for Hg0 removal from coal derived fuel gas:Effect of hydrogen chloride. Fuel,2008,87: 467-474
    [59]Wu S J, Uddin M. A, Sasaoka E. Characteristics of the removal of mercury vapor in coal derived fuel gas over iron oxide sorbents. Fuel,2006,85:213-218
    [60]Mei Z J, Shen Z M, Yuan T, et al. Removal of vapor-phase elemental mercury by N-doped CuCoO4 loaded on activated carbon. Fuel Processing Technology,2007,88: 623-629
    [61]Mei Z J, Shen Z M, Zhao Q J, et al. Removing and recovering gas-phase elemental mercury by CuxCo3-xO4 (0.75    [62]Mei Z J, Shen Z M, Wang W H, et al. Novel sorbents of non-metal-doped spinel Co3O4 for the removal of gas-phase elemental mercury. Environ. Sci. Technol.,2008, 42:590-595
    [63]Qiao S H, Chen J, Li J F, et al. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/Alumina. Ind. Eng. Chem. Res.,2009,48: 3317-3322
    [64]Tian L H, Li C T, Li Q, et al. Removal of elemental mercury by activated carbon impregnated with CeO2. Fuel,2009,88:1687-1691
    [65]Otani Y, Emi H, Kanaoka C, et al. Removal of Mercury Vapor from Air with Sulfur-Impregnated Adsorbents. Environ. Sci. Technol.,1988,22:708-711
    [66]Krishnan S V, Gullett B K, Jorewlcz W. Sorption of elemental mercury by activated carbons. Environ. Scl. Technol.,1994,28:1506-1512
    [67]Vidic R D, Siler D P. Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents. Carbon,2001,39:3-14
    [68]Liu W, Vidic R D, Brown T D. Optimization of high temperature sulfur impregnation on activated carbon for permanent sequestration of elemental mercury vapors. Environ. Sci. Technol.,2000,34:483-488
    [69]Liu W, Vidic R D, Brown T D. Impact of flue gas conditions on mercury uptake by sulfur-impregnated activated carbon. Environ. Sci. Technol.,2000,34:154-159
    [70]Liu W, Vidic R D, Brown T D. Optimization of sulfur impregnation protocol for fixed-bed application of activated carbon-based sorbents for gas-phase mercury removal. Environ. Sci. Technol.,1998,32:531-538
    [71]Korpiel J A, Vidic R D. Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury. Environ. Sci. Technol.,1997,31:2319-2325
    [72]Lee S, Park Y. Gas-phase mercury removal by carbon-based sorbents. Fuel Processing Technology,2003,84:197-206
    [73]Skodras G, Diamantopoulou I, Natas P, et al. Postcombustion measures for cleaner solid fuels combustion:activated carbons for toxic pollutants removal from flue gases. Energy and Fuels,2005,19:2317-2327
    [74]Maroto-Valer M M, Zhang Y Z, Granite E J, et al. Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample. Fuel,2005,84:105-108
    [75]Abu-Daabes M A, Pinto N G. Synthesis and characterization of a nano-structured sorbent for the direct removal of mercury vapor from flue gases by chelation. Chemical Engineering Science,2005,60:1901-1910
    [76]Guijarro M I, Mendioroz S, Munoz V. Effect of Morphology of Sulfurized Materials in the Retention of Mercury from Gas Streams. Ind. Eng. Chem. Res.,1998,37: 1088-1094
    [77]Mendioroz S, Guijarro M I, Bermejo P J. Mercury retrieval from flue gas by monolithic adsorbents based on sulfurized sepiolite. Environ. Sci. Technol.,1999,33: 1697-1702
    [78]Baek J, Yoon J, Lee S, et al. Removal of vapor-phase elemental mercury by oil-fired fly ashes. Ind. Eng. Chem. Res.,2007,46:1390-1395
    [79]Jurng J S, Lee T G, Lee G W, et al. Mercury removal from incineration flue gas by organic and inorganic adsorbents. Chemosphere,2002,47:907-913
    [80]Meyer D E, Meeks N, Sikdar S, et al. Copper-doped silica materials silanized with bis-(triethoxy silyl propyl)-tetra sulfide for mercury vapor capture. Energy and Fuels, 2008,22:2290-2298
    [81]Makkuni A, Varma R S, Sikdar S K, et al. Vapor phase mercury sorption by organic sulfide modified bimetallic iron-copper nanoparticle aggregates. Ind. Eng. Chem. Res.,2007,46:1305-1315
    [82]Zeng H C, Jin F, Guo J. Removal of elemental mercury from coal combustion flue gas by choride-impregnated activated carbon. Fuel,2004,83:143-146
    [83]Lee S S, Lee J Y, Keemer T C. The effect of methods of preparation on the performance of cupric chloride-impregnated sorbents for the removal of mercury from flue gases. Fuel,2009,88:2053-2056
    [84]Lee J Y, Ju Y H, Lee S S, et al. Novel mercury oxidant and sorbent for mercury emissions control from coal-fired power plants. Water Air Soil Pollut:Focus,2008,8: 333-341
    [85]Lee S S, Lee J Y, Keemer T C. Novel sorbents for mercury emmissions control from coal-fired power plants. J. of Chinese Institute of Chemical Engineering,2008,39: 137-142
    [86]Ghorishi S B, Keeney R M, Serre S D. et al. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury. Environ. Sci. Technol.,2002,36:4454-4459
    [87]Lee S Y, Seo Y C, Jurng J S. Removal of gas-phase elemental mercury by iodine- and choride-impregnated activated carbon. Atmosphere Environment,2004,38: 4887-4893
    [88]孙巍,晏乃强,贾金平.载溴活性炭去除烟气中的单质汞.中国环境科学,2006,26:257-261
    [89]熊银伍,杜铭华,步学鹏,梁大明.改性活性焦脱除烟气中汞的实验研究.中国电机工程学报.2007,27:17-22
    [90]Poulston S, Granite E J, Pennline H W, et al. Metal sorbents for high temperature mercury capture from fuel gas. Fuel,2007,86:2201-2203
    [91]Zhao Y X, Mann M, Pavlish J, et al. Application of gold catalyst for mercury oxidation by chlorine. Environ. Sci. Technol.,2006,40,1603-1608
    [92]Yan T Y. A Novel Process for Hg Removal from Gases. Ind. Eng. Chem. Res.1994, 33:3010-3014.
    [93]Levlin M, Ikavalko E, Laitinen T. Adsorption of mercury on gold and slver surfaces.
    Fresenius J Anal Chem,1999,365:577-586
    [94]Liu Y, Kelly D J A, Yang H Q, et al. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant. Envrion. Sci. Technol.,2008,42: 6205-6210
    [95]Dong J, Xu Z H, Kuznicki S M, et al. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents. Environ. Sci. Technol.,2009,43: 3266-3271
    [96]任建莉,罗誉娅,陈俊杰,等.汞吸附过程中载银活性炭纤维的表面特征.中国电机工程学报.2009,29:71-76
    [97]况敏,杨国华,陈武军,等.吸汞载银活性炭纤维和吸汞活性炭纤维的热脱附特性研究.燃料化学学报,2008,36:468-473
    [98]Granite E J, Pennline H W, Hargis R A. Novel sorbents for mercury removal from flue gas. Ind. Eng. Chem. Res.,2000,39:1020-1029
    [99]王爱勤主编.甲壳素化学.北京:科学出版社,2008
    [100]蒋挺大编著.甲壳素.北京:化学工业出版社,2003
    [101]王爱勤,周金芬,愈贤达.完全脱乙酰化壳聚糖与Zn(Ⅱ)的配位作用.高分子学报,2000,(6):688-690
    [102]Sun S L, Wang A Q. Adsorption properties andmechanism of cross-linked carboxymethyl-chitosan resin with Zn (II) as template ion. Reactive and Functional Polymers,2006,66:819-826
    [103]Sun S L, Wang L, Wang A Q. Adsorption properties of crosslinked carboxymethyl-chitosan resin with Pb (II) as template ions. Journal of Hazardous Materials,2006, B136:930-937
    [104]Sun S L, Wang A Q. Adsorption kinetics of Cu (II) ions using N, O-carboxymethyl-chitosan resin. Journal of Hazardous Materials,2006, B131:103-111
    [105]Merrifield J D, Davids W G, MacRae J D, et al. Uptake of mercury by thiol-graftedchitosan gel beads. Water Research,2004,38:3132-3138
    [106]Jeon C, Holl W H. Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Research,2003,37:4770-4780
    [107]Jeon C, Park K H. Adsorption and desorption characteristics of mercury (II) aminated chitosan bead. Water Research,2005,39:3938-3944
    [108]Vieira R S, Beppu M M. Dynamic and static adsorption and desorption of Hg (II) ions on chitosan membranes and spheres. Water Research,2006,40:1726-1734
    [109]Vieira R S, Beppu M M. Mercury ion recovery using natural and crosslinked chitosan membranes. Adsorption,2005,11:731-736
    [110]Vieira R S, Beppu M M. Interaction of natural and crosslinked chitosan membranes with Hg (II). Colloids and surfaces A:Physicochem. Eng. Aspects,2006,279: 196-207
    [111]Li Y, Wang Y T, Liu H. Preparation of new crosslinked chitosan with crown ether and their adsorption for silver ion for antibacterial activities. Carbohydrate Polymers, 2003,53:425-430
    [112]Donia A M, Atia A A, Elwakeel K Z. Recovery of gold (III) and silver (I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy,2007,87: 197-206
    [113]Donia A M, Atia A A, Elwakeel K Z. Selective separation of mercury (II) using magnetic chitosan resin modified with Schiff's base derived from thioura and glutaraldehyde. Jounal of Hazardous Materials,2007,87:197-206
    [114]Jin L, Bai R B. Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir,2002,18:9765-9770
    [115]Li N, Bai R B. Liu C K. Enhanced and selective adsorption of mercury ions on chitosan beads grafted with polyacrylamide via surface-initiated atom transfer radical polymerization. Langmuir,2005,21:11780-11787
    [116]Trimukhe K D, Varma A J. A morphological study of heavy metal complexes of chitosan and crosslinked chitosans by SEM and WAXRD. Carbohydrate Polymers, 2008,71:698-702
    [117]Trimukhe K D, Varma A J. Complexation of heavy metals by crosslinked chitosans chitin and its deacetylated derivatives. Carbohydrate Polymers,2008,71:66-73
    [118]Inoue K, Yoshizuka K, Ohto K, et al. Solvent extraction of some metal ions with lipophilic chitosan chemically modified with functional groups of dithiocarbamate. Chemistry Letters,2001:698-699
    [119]Tian W, Zhang Y H, Szeto Y S, et al. A novel method to prepare chitosan/montmorillonite nanocomposites in the presence of hydroxy-aluminum oligomeric cations. Composites sicience and technology.2008,68:2917-2921
    [120]Darder M, Colilla M, Ruiz-Hitzky E. Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem. Mater.,2003,15:3774-3780
    [121]Darder M, Lopez-Blanco M, Aranda P, et al. Microfibrous chitosan-sepiolite nanocomposites. Chem. Mater.,2006,18:1602-1610
    [122]Darder M, Colilla M, Ruiz-Hitzky E. Chitosan-clay nanocomposites:application as electrochemical sensors. Applied Clay Science,2005,28:199-208
    [123]Monvisade P, Siriphannon P. Chitosan intercalated montmorillonite:Preparation, characterization and cationic dye adsorption. Applied Clay Science,2009,42: 427-431
    [124]Wang L, Wang A Q. Adsorption behaviors of Congo red on the N, O-carboxymethyl-chitosan/montmorillonite nanocomposite. Chemical Engineering Journal,2008,143: 43-50
    [125]Wang L, Wang A Q. Adsorption characteristics of Congo Red onto the chitosan /montmorillonite nanocomposite. Journal of Hazardous Materials,2007,147: 979-985
    [126]Zeng R, Rong M Z, Zhang M Q, et al. Laser ablation of polymer-based silver nanocomposites. Appl. Surf. Sci,2002,187:239-247
    [127]Cole D H, Shull K R, Baldo P, et al. Dynamic properties of a model polymer/metal nanocomposite:gold particles in poly (tert-butyl acrylate). Macromolecules,1999, 32:771-779
    [128]Hussain I, Brust M, Papworth A J, et al. Preparation of Acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir,2003,19:4831-4835
    [129]Yu S H, Yoshimura M, Moreno J M, Fujiwara T, et al. In situ fabrication and optical properties of a novel polystyrene/semiconductor nanocomposite embedded with cds nanowires by a soft solution processing route. Langmuir,2001,17:1700-1707
    [130]Huang H Z, Yuan Q, Yang X Q. Preparation and characterization of metal-chitosan nanocomposites. Colloids and Surfaces B:Biointerfaces,2004,39:31-37
    [131]Murugadoss A, Chattopadhyay A. A'green' chitosan-silver nanoparticle composite
    as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnology,2008, 19:015603-9
    [132]Two Y K, Chen Y W, Shih C M. Preparation of sliver nanoparticles using chitosan suspensions. Powder Technology,2008,185:251-257
    [133]Wei D W, Qian W P. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as mediaor agent. Colloids and surfaces B:biointerfaces,2008,62:136-142
    [134]Laudenslager M J, Schiffman J D, Schauer C L. Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles. Biomacromolecules,2008,9: 2682-2685
    [135]Wu S J, Liou T H, Mi F L. Synthesis of zero-valent copper-chitosan nanocomposites and their application for treatment of hexavalent chromium. Bioresource Technology, 2009,100:4348-4353
    [136]Geng B, Jin Z H, Li T L, et al. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere,2009,75:825-830
    [137]Adlim M, Bakar M A, Liew K Y, et al. Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. Journal of Molecular Catalysis A:Chemical,2004,212:141-149
    [138]Zhu B W, Lim T T, Feng J. Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica. Chemosphere, 2006,65:1137-1145
    [139]Sin E, Yi S S, Lee Y S. Chitosan-g-mPEG-supported palladium (0) catalyst for Suzuki cross-coupling reaction in water. Journal of Molecular Catalysis A:Chemical, 2010,315:99-104
    [140]闫爱芝.CO在Pd晶面的吸附及Ni-P合金析氢催化活性的量子化学研究,重庆大学硕士学位论文,2007
    [141]董秀丽.蛋白质与羟基磷灰石表面的相互作用机理研究.浙江大学博士学位论文,2008
    [142]赵艳玲.共轭碳材料与锂的相互作用及氢吸附的从头算研究.东北师范大学博士学位论文,2005
    [143]Sliger R N, Kramlich J C, Marinov N M. Towards the development of a chemical
    kinetic model for the homogeneous oxidation of mercury by chlorine species. Fuel Processing Technology,2000,65-66:423-438
    [144]Xu M H, Qiao Y, Zheng C G, et al. Modeling of homogeneous mercury speciation using detailed chemical kinetics. Combustion and Flame,2003,132:208-218
    [145]Padak B, Brunetti M, Lewis A, Wilcox J. Mercury binding on activated carbon. Environ. Prog.,2006,25:319-326
    [146]Rykova E A, Zaitsevskii A, Mosyagin N S, et al. Relativistic effective core potential calculations of Hg and eka-Hg (E112) interactions with gold:Spin-orbit density functional theory modeling of Hg-Aun and E112-Aun systems. Journal of Chemical-Physics,2006,125:241102
    [147]Peterson K, Puzzaruni C. Systematically convergent basis sets for transition metals.Ⅱ. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor. Chm. Acc,2005,114:283-296
    [148]Steckel J A. Density functional theory study of mercury adsorption on metal surfaces. Physical Review B,2008,77:115412
    [149]Zheng Y J, Ornstein R L, Leary J A. A density functional theory investigation of metal ion binding sites in monosaccharides. Journal of Molecular Structure: Theochem,1997,389:233-240
    [150]Braier N C, Jishi R A. Density functional studies of Cu2+ and Ni2+ biding to chitosan. Journal of Molecular Structure (Theochem),2000,499:51-55
    [151]Ilchenko N N, Leszczynski J. Ab initio study of interactions between D-glucosamine and Cd2+(H2O)n, n=0,2,4. Journal of Molecular Structure:Theochem,2004,683: 23-27
    [152]Wilxom J, Robles J, Marsden D J. Theoretically predicted rate constants for mercury oxidation by hydrogen chloride in coal combustion flue gases. Environ. Sci. Technol., 2003,37:4199-4204
    [153]Hranisavljevic J, Fontijn A. Kinetics of ground-state Cd reactions with Cl2, O2, and HC1 over wide temperature ranges. J. Phys. Chem.,1997,101:2323-2326
    [154]Balabanov N B, Peterson K A. Ab inito thermochemistry involving heavy atoms:an investigation of the reactions Hg+IX (X=I, Br, Cl, O). J. Phys. Chem. A,2003,107: 7465-7470
    [155]Shepler B C, Balabanov N B, Peterson K A. Mercury and reactive halogens:the thermochemisty of Hg+{Cl2, Br2, BrCl, ClO, and BrO}. J. Phys. Chem. A,2005, 109:10363-10372
    [156]Xu M H, Qiao Y, Liu J, et al. Kinetic calculation and modeling of trace element actions during combustion. Powder Technology,2008,180:157-163
    [157]Widmer N C, West J. Thermochemical study of mercury oxidation in utility boiler fuel gases,93rd Annual Meeting, Journal Air and Waste Management Association, Salt Lake City, Utah,2000
    [158]Li L C, Deng P, Tian A M, et al. A study on the reaction mechanism and kinetic of mercury oxidation by chlorine species. Journal of Molecular Structure:Theochem, 2003,625:277-281
    [159]Wilcox J, Blowers P. Some comments on "A study on the reaction mechanism and kinetic of mercury oxidation by chlorine species". Journal of Molecular Structure: Theochem,2004,674:275-278
    [160]刘晶,郑楚光,邱建荣.燃烧烟气汞反应的量子化学计算方法研究.工程热物理学报,2007,28:519-521
    [161]Zheng C G, Liu J, Liu Z H, et al. Kinetic mechanism studies on reactions of mercury and oxidizing species in coal combustion. Fuel,2005,84:1215-1220
    [162]刘晶,郑楚光,徐明厚,等.燃烧中汞与N2O、O3的反应机理.燃烧科学与技术,2005,11:155-158
    [163]温正城,周俊虎,王智化,等.臭氧在烟气中氧化零价汞的量子化学研究.燃烧科学与技术,2008,14:417-422
    [164]Biher P, Jennifer W. Understanding mercury binding on activated carbon. Carbon, 2009,47:2855-2864
    [165]Sasmaz E, Jennifer W. Mercury species and SO2 adsorption on CaO (100). J. Phys. Chem. C,2008,112:16484-16490
    [166]Kim B G, Li X X, Blowers P. Adsorption energies of mercury-containing species on CaO and temperature effects on equilibrium constants predicted by Density Functional Theory calculations. Langmuir,2009,25:2781-2789
    [167]Guo X, Zhao P F, Zheng C G. Theoretical study of different speciation of mercury adsorption on CaO (011) surface. Proceedings of the Combustion Institute,2009,32: 2693-2699
    [168]Zaleski-Ejgierd P, Pyykko P. AunHgm Clusters:Mercury Aurides, Gold Amalgams, or van der Waals Aggregates? J. Phys. Chem. A,2009,113:12380-12385
    [169]Sasmaz E, Aboud S, Wilcox J. Hg Binding on Pd binary alloys and overlays. J. Phys. Chem. C,2009,113:7813-7820
    [170]Aboud S, Sasmaz E, Wilcox J. Mercury adsorption on PdAu, PdAg and PdCu alloys. Main Group Chemistry,2008,7:205-215
    [171]Ferreira M L, Gschaider M E. Theoretical and Experimental Study of Pb2+ and Hg2+ Adsorption on Biopolymers. Macromol. Biosci.,2001,1:233-248
    [172]Debbaudt A L, Zalba M, Ferreira M L, et al. Theoretical and experimental study of Pb2+ and Hg2+ adsorption on biopolymers,2. Macromol. Biosci.,2001,1,249-257
    [173]Debbaudt A L, Ferreira M L, Gschaider M E. Theoretical and experimental study of M2+ adsorption on biopolymers, III. comparative kinetic pattern of Pd, Hg and Cd. Carbohydrate Polymers,2004,56:321-332
    [174]Lii R Q, Cao Z G, Shen G P. Comparative study on interaction between copper(II) and chitin/chitosan by density functional calculation. Journal of Molecular Structure: Theochem,2008,860:80-85
    [175]吕仁庆.金属离子与壳聚糖配位氧原子相互作用的密度泛函理论研究.鲁东大学学报(自然科学版),2008,24:47-52
    [176]Kimble M L, Castleman A W, Mitric R, et al. Reactivity of atomic gold anions toward oxygen and the oxidation of CO:Experiment and Theory. J. Am. Chem. Soc. 2004,126:2526-2535
    [177]Sanchez A, Abbet S, Heiz U, et al. When Gold Is Not Noble:Nanoscale Gold Catalysts. J. Phys. Chem. A,1999,103:9573-9578
    [178]Wallace W T, Whetten R W. Coadsorption of CO and O2 on Selected Gold Clusters: Evidence for Efficient Room-Temperature CO2 Generation. J. Am. Chem. Soc.2002, 124:7499-7505
    [179]Stolcic D, Fischer M, Gantefor G, et al. Direct Observation of Key Reaction Intermediates on Gold Clusters. J. Am. Chem. Soc.2003,125:2848-2849
    [180]Socaciu L D, Hagen J, Bernhardt T M, et al. Catalytic CO Oxidation by Free Au2-: Experiment and Theory. J. Am. Chem. Soc.2003,125:10437
    [181]Sun S T, Xing X P, Liu H T, et al. Phenyl-coinage metal (Ag, Au) complexes:an anion photoelectron spectroscopy and density functional study. J. Phys. Chem. A, 2005,109:11742-11751
    [182]Jensen L, Zhao L L, Schatz G C. Size-dependence of the enhanced raman scattering of pyridine adsorbed on Agn (n=2-8,20) clusters. J. Phys. Chem. C,2007, 111:4756-4764
    [183]Liu H T, Xing X P, Sun S T, et al. Pbm-Phenyl (m=1-5) complexes:an anion photoelectron spectroscopy and density functional study. J. Phys. Chem. A,2006, 110:8688-8694
    [184]Shukla M K, Dubey M, Zakar E, et al. DFT Investigation of the interaction of gold nanoclusters with nucleic acid base guanine and the watson-crick guanine-cytosine base pair. J. Phys. Chem. C,2009,113:3960-3966
    [185]Lv G, Wei F D, Jiang H, et al. DFT study on the intermolecular interactions between Aun (n=2-4) and thymine. Journal of Molecular Structure:Theochem,2009,915: 98-104
    [186]赖声礼,曹佐英,葛华才.微波辐射下模板交联壳聚糖的制备及其对Cu2+吸附性能的研究.离子交换与吸附,2000,28:88-92
    [187]张安超,孙路石,殷庆栋,向军,等.改性壳聚糖性能表征及脱除烟气中Hg0的实验研究.中国电机工程学报,2009,28:50-56
    [188]殷庆栋.改性壳聚糖脱除烟气中汞的实验研究.华中科技大学硕士论文.2008
    [189]Makkuni A, Bachas L G, Varma R S. Aqueous and vapor phase mercury sorption by inorganic oxide materials functionalized with thiols and poly-thiols. Clean Techn Environ Policy,2005,7:87-96
    [190]张安超,向军,孙路石,等.新型吸附剂性能表征及脱Hg0实验研究,中国工程热物理学会第十四届年会论文,2008年10月,西安
    [191]Anchao Zhang, Lushi Sun, Jun Xiang, et al. Removal of elemental mercury by novel chemically modified noncarbon sorbents.2009 International Conference on Energy and Environment Technology, Guilin, October 16-18,2009
    [192]井娟丽.化学改性壳聚糖脱除烟气中汞和砷的实验研究.华中科技大学硕士论文.2009
    [193]张安超,向军,孙路石,等.改性壳聚糖吸附剂表征及脱除Hg0的实验研究,中国工程热物理学会第十五届年会论文,2009年,合肥
    [194]袁彦超,石光,陈炳烩,等.交联壳聚糖-Co配聚物结构与性能初步研究.功能高分子学报,2004,17:148-150
    [195]Eren E, Afsin B. An investigation of Cu (II) adsorption by raw and acid-activated bentonite:A combined potentiometric, thermodynamic, XRD, IR, DTA study. Journal of Hazardous Materials,2008,151:682-691
    [196]Hutson N D. Mercury capture on fly ash and sorbents:the effects of coal properties and combustion conditions. Water Air Soil Polut:Focus,2008,8:323-331
    [197]Channasanon S, Graisuwan W, Kiatkamjornwong S. Alternating bioactivity of multilayer thin films assembled from charged derivatives of chitosan. Journal of Colloid and Interface Science,2007,316,331-343
    [198]Sankararamakrishnan N, Sanghi R. Preparation and characterization of a novel xanthated chitosan. Carbohydrate Polymers,2006,66:160-167
    [199]张安超,向军,孙路石,胡松,付鹏,程伟,邱建荣.新型改性吸附剂制备、表征及脱除单质汞的实验研究.化工学报.2009,60,1546-1553
    [200]朱再盛,袁彦超,陈炳焾.Hg2+-交联壳聚糖配合物的合成与表征.化学通报,2007,5:388-391
    [201]王声宇,张文清.壳聚糖硫酸酯的合成及其抑菌作用.功能高分子学报,2007,19-20:440-442
    [202]Huggins F E, Yapa N, Huffmana G P, et al. XAFS characterization of mercury captured from combustion gases on sorbents at low temperatures. Fuel Processing Technology,2003,82:167-196
    [203]杨莹琴,陈慧娟.壳聚糖插层膨润土的制备及其对Zn2+的吸附.信阳师范学院学报,2007,20:338-340
    [204]任建莉,周劲松,骆仲泱,等.新型吸附剂脱除烟气中气态汞的试验研究.中国电机工程学报,2007,27:48-53
    [205]Cheng D M, Zhou X D, Xia H B, et al. novel method for the preparation of polmeric hollow nanospheres containing silver cores with different sizes. Chem. Mater.,2005, 17:3578-3581
    [206]高鹏,向军,毛金波,等.高分子化合物壳聚糖脱除燃煤烟气中汞的实验研究.中国电机工程学报,2006,26:88-93
    [207]Mercury vapor monitor VM3000 operating manual. Version 1.1, Mercury Instruments Analytical Technologies
    [208]EPA U S. Standard test method for mercury from coal-fired stationary sources (Ontario Hydro Method). Washington, DC, US:Government Printing Office,1999
    [209]周劲松,王岩,胡长兴,等.N2气氛下活性炭的汞吸附性能.动力工程,2008,28:625-628
    [210]任建莉,周劲松,骆仲泱,等.钙基类吸附剂脱除烟气中气态汞的试验研究.燃料化学学报,2006,34:557-561
    [211]Zhou J S, Luo Z Y., Hu C X, et al. Factors impacting gaseous mercury speciation in postcombustion. Energy and Fuels,2007,21:491-495
    [212]高洪亮,周劲松,骆仲泱,等.NO对燃煤烟气中汞形态分布影响的实验研究.工程热物理学报,2004,25:1057-1060
    [213]Kellie S, Cao Y, Duan Y F, et al. Factors affecting mercury speciation in a 100-MW coal-fired boiler with low-NOx burners. Energy and Fuels,2005,19:800-806
    [214]Serre S D, Silcox G D. Adsorption of elemental mercury on the residual carbon in coal fly ash. Ind. Eng. Chem. Res.,2000,39:1723-1730
    [215]Lee S H, Rhim Y J, Cho S P. Carbon-based novel sorbent for removing gas-phase mercury. Fuel,2006,85:219-226
    [216]马勇,王恩德,邵红.膨润土负载壳聚糖对Cu2+的吸附作用.安全与环境学报,2005.5:41-43
    [217]Lee J Y, Ju Y H, Keener T C. et al. Development of cost-effective noncarbon sorbents for Hg0 removal from coal-fired power plants. Environ. Sci. Technol.,2006,40: 2714-2720
    [218]Zhao Y X, Mann M, Olson E S, et al. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions. J. Air and Waste Manage. Assoc.,2006,56,628-635
    [219]Uddin M A, Yamada T, Ochiai, et al. Role of SO2 for elemental mercury removal from coal combustion flue gas by activated carbon. Energy and Fuels,2008,22: 2284-2289
    [220]Morimoto T, Wu S, Uddin M Z. et al. Characteristics of the mercury vapor removal from coal combustion flue gas by activated carbon using H2S. Fuel,2005,84: 1968-1974
    [221]T.R. Carey, C.W. Hargrove, C.F. Richardson, R. Chang, Factors affecting mercury control in utility flue gas using activated carbon, J. Air Waste Manage. Assoc.,1998, 48:1166-1174
    [222]Eswaran S, Stenger H G. Understanding mercury conversion in selective catalytic reduction (SCR) catalysts, Energy and Fuels,2005,19:2328-2334
    [223]Delly B. J. Chem. Phys.,1990,92:508
    [224]Delly B. J. Chem. Phys.,2000,113:7756
    [225]Elanany M, Koyama M, Kubo M, et al. Periodic density functional investigation of Br(?)nsted acidity in isomorphously substituted chabazite and AlPO-34 molecular sieves. Microporous and Mesoporous Materials,2004,71:51-56
    [226]赵文杰,杨致,闫玉丽,等.密度泛函理论研究GenFe(n=1-8)团簇的基态结构及磁性.物理学报.2007,56:2597-2602
    [227]Kang G J, Chen Z X, Li Z, et al. A theoretical study of the effects of the charge state and size of gold clusters on the adsorption and dissociation of H2. J. Chem. Phys. 2009,130:034701
    [228]Sung C Y, Broadbelt L J, Snurr R Q. QM/MM study of the effect of local environment on dissociative adsorption in BaY Zeolites. J. Phys. Chem. C,2009,113: 15643-15651
    [229]http://en.wikipedia.org/wiki/Frontier_Molecular_Orbital_Theory
    [230]李奇,黄元河,陈光巨主编.结构化学.北京:北京师范大学出版社,2008
    [231]Treesukol P, Limtrakil J, Truong T N. Adsorption of nitrogen monoxide and carbon monoxide on copper-exchanged ZSM-5:a cluster and embedded cluster study. J. Phys. Chem. B,2001,105:2421-2428
    [232]Sierraalta A, Bermudez A, Rosa-Bressin M. Density functional study of the interaction of Cu+ ion-exchanged zeolites with H2O and SO2 molecules. J. of Molecular Catalysis A:Chemical,2005,228:203-210
    [233]Nachtigall P, Nachtigallova D, Sauer J. Coordination change of Cu+ Sites in ZSM-5 on excitation in the Triplet State:understanding of the photoluminescence spectra. J. Phys. Chem. B,2000,104:1738-1745
    [234]Yajima K, Ueda Y, Tsuruya H, et al. Combinatorial computational chemistry approach to the design of deNOX catalysts. Applied Catalysis A:General,2000, 194-195:183-191
    [235]Joshi A M, Tucker M H, Delgass W N, et al. CO adsorption on pure and binary-alloy gold clusters:A quantum chemical study. Chem. Phys.2006,125:194707
    [236]Joshi A M, Delgass W N, Thomson K T. Adsorption of small Aun (n=1-5) and Au-Pd clusters inside the TS-1 and S-1 pores. J. Phys. Chem. B,2006,110:16439-16451
    [237]Helden P V, Steen E V. Coadsorption of CO and H on Fe (100). J. Phys. Chem. C, 2008,112:16505-16513

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700