用户名: 密码: 验证码:
改性竹炭基吸附剂脱汞的实验及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境是制约人类社会发展的关键问题,以煤为主的能源结构在未来几十年不会改变,煤在燃烧过程中向环境排放了大量的汞。汞由于其生物累积性和易挥发等特性对人类造成巨大的毒害,已引起世界范围内的关注。美国等发达国家已将燃煤火电厂的汞排放控制列入法规强制执行,中国已经成为世界上最大的汞排放国,加强对燃煤污染物汞的控制研究是十分必要的。
     本文总结了国内外燃煤污染物汞的排放控制方法,着重叙述了燃烧后烟气中的汞脱除方法;系统综述了竹炭的来源、制备方法、竹炭的性质以及竹炭的应用现状。活性炭除汞被证明是一种有效的汞脱除方法,但是存在材料成本高的限制,寻求新型的汞吸附剂是一个研究热点,本文提出采用生物质竹炭用于燃煤烟气中单质汞脱除的新思路。
     为了研究竹炭的物理化学特性,采用元素分析、傅里叶变换红外(FTIR)、比表面积及孔径分布分析、X-射线衍射(XRD)、扫描电镜(SEM)等测试手段对竹炭进行了表征测试。在小型燃煤烟气汞脱除实验台上和模拟烟气气氛下研究了低温下竹炭对汞吸附性能,重点考察了粒度、W/F(吸附剂用量/气体流量)、初始汞浓度、吸附温度、氧气浓度、HCl对竹炭脱汞的影响。
     为了得到廉价高效的脱汞吸附剂,采用氧化试剂和碱性试剂对竹炭进行改性,在固定床实验台架上系统地研究了气体单质汞在吸附剂表面进行的吸附及氧化行为,并重点考察吸附温度、反应时间以及烟气成分等因素对脱汞性能的影响。采用比表面积及孔径分布分析、X射线光电子能谱(XPS)等分析测试手段对吸附剂进行表征以探讨其中的机理。结果表明氧化改性提高了吸附剂的脱汞性能,而碱性改性对吸附剂的脱汞性能影响较小。高锰酸钾、硝酸、双氧水改性使竹炭表面官能化,特别是双氧水、硝酸改性使竹炭的C=O含量显著增加,高锰酸钾增加了竹炭的π电子含量,这是氧化改性竹炭具有较强化学吸附脱汞能力的原因。
     采用ZnCl2、KI制备卤素改性的吸附剂,并在小型实验台上开展气态单质汞的脱除实验,重点考察吸附剂的比表面、孔隙分布等物理特性和亲汞官能团、吸附温度等因素对吸附剂脱汞性能的影响,并探讨了烟气中SOx、NOx等酸性气体对竹炭脱汞的影响。通过元素分析、XPS分析、热重分析、比表面积及孔径分布分析等测试手段分析脱汞前后的吸附剂的组成和微观组成变化,以揭示表面官能团在改性过程中的转化规律和其在脱汞过程中的作用机理。结果表明未改性竹炭对汞的吸附主要靠物理吸附,在140℃时对Hg0的化学吸附能力极弱。而ZnCl2、KI改性的竹炭在140℃和180℃下对Hg0都具有极强的化学吸附能力。XPS测试可以确认ZnCl2和KI浸渍改性的竹炭吸汞后在其表面生成氧化态的汞。KI改性的竹炭材料具有一定的抗SO2/NO毒害的能力,当有2600ppm S02或300ppm的NO存在时,KI改性的竹炭捕获汞的量只略微降低。
     在实验基础上提出适合实际的模型,根据竹炭填充吸附床内气相以及吸附剂孔内质量平衡,利用平衡关系式建立竹炭吸附汞过程的动力学模型,并与试验结果进行对比得到吸附过程的一些参数,为进一步的预测提供参考。同时,采用脱附模型对脱附实验数据进行拟合计算得到脱附能等参数。实验发现载氯竹炭样品的化学吸附脱汞的能力要远强于活化竹炭样品,主要是由于活化过程中内酯基、羰基、氯等亲汞官能团及元素受热分解所致。动力学模型计算得发现竹炭基吸附剂对汞的非均相脱除过程是一个复杂的多步骤过程,其中多因素起到速率控制的作用。TPD实验结果和脱附模型计算推断未改性的竹炭在20℃时主要靠物理吸附脱汞,在140℃时主要靠化学吸附脱汞;氯化锌改性的竹炭在20℃和140℃时均靠化学吸附脱汞,这与前面的实验现象和实验结论一致。
Energy and environment are key issues in the process of development of human society. In China, the coal-dominated energy structure will not change in the coming decades, and the coal-burning has become the primary anthropogenic emissions of mercury to atmosphere. Gaseous elemental mercury has attracted worldwide attention because it is volatile and insoluble in water and not readily removed by existing air pollution control devices. Some mandatory implementation (administrative rules and regulations) have been taken to control the mercury emissions from coal-fired power plants in some developed countries (such as USA). However, the sifting of effective sorbents and researches for mercury control in coal-fired power plants are still weak in China. And China has become the world's largest emitter of mercury. To strengthen the control of mercury from coal-burning has become very important.
     This paper summarized the control methods for mercury emission from coal burning worldwide, focusing on the control researches in post-combustion flue gas. The source of the bamboo charcoal, preparation methods, nature of the bamboo charcoal and the application status of bamboo charcoal are systematically reviewed. The mercury removal using activated carbon has been proven to be an effective method, but with the restriction of high cost. A new idea was proposed in this paper that the bamboo charcoal was used as an alternative to activated carbon in the removal of elemental mercury.
     In order to study the physical and chemical properties of bamboo charcoal, elemental analysis, Fourier transform infrared spectroscopy (FTIR), BET surface area and pore size distribution analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) were used to characterize the bamboo charcoal. The effect of granularity, W/F, the initial mercury concentration, adsorption temperature, oxygen concentration, HCl on gas-phase Hg0adsorption by bamboo charcoal was evaluated on a fixed bed reactor using an online gas-mercury analyzer.
     To obtain cost-effective sorbents for mercury removal, some oxidizing reagents and alkaline reagent were used to modify BC. The mercury removal performance of the resultant sorbents was studied in a fixed-bed reactor. The effect of adsorption temperature, reaction time, and flue gas composition for the mercury removal was studied. BET surface area and pore size distribution analysis, X-ray photoelectron spectroscopy (XPS) were used to characterize the sorbents. The results show that the oxidative modification for BC could improve the mercury removal performance of the sorbents, while the promotion effect of alkaline modification was slight. The modification using potassium permanganate, nitric acid and hydrogen peroxide were found to functionalize the BC. Especially, the C=O content was significantly increased after modification using hydrogen peroxide and nitric acid. An increase of π-electron content was observed from the KMnO4-modified BC, this could explain the sorbent's strong chemisorption capacity.
     ZnCl2and KI were used to prepare the halogenated sorbents, and the removal experiments for gaseous elemental mercury were carried out in bench-scaled reactor. The effects of specific surface area, pore size distribution and other physical properties and adsorption temperature on the adsorption of mercury were studied. The impacts of SOx, NOx in the flue gas on the mercury removal by sorbents were studied.The composition and microstructure of the sorbents before and after experiments were studied using elemental analysis, XPS analysis, thermal gravimetric analysis to reveal the transformation of surface functional groups in the process of modification and mercury removal. The results show that mercury removal by modified BC depends mainly on physical adsorption, its chemical adsorption capacity is very weak at140℃. ZnCl2and KI modified BC have strong chemical adsorption capacity for Hg0at140℃and180℃. XPS test can confirm the oxidation of elemental mercury on the surface of ZnCl2and KI modified BC after adsorption of mercury. The KI modified BC has the ability of anti-SO2/NO-poison, its mercury removal efficiency decreased slightly with the presence of1000ppm SO2or10ppm NO.
     The suitable kinetic model based on experiments was proposed, according to the mass balance. Some parameters were obtained as reference for further predictions compared with the experimental results. At the same time, the calculated desorption energy of desorption experimental data were obtained through desorption model. The experiments showed that the chemical adsorption ability of BCZ sample was stronger than the BCZA. This possibly due to the decomposition of functional groups (lactone, carbonyl, chlorine, etc) during the activation process. The heterogeneous mercury removal process by sorbents is a complex multi-step process, in which multiple factors play key role as rate-control-step. The results of TPD experiment and desorption model clarified that the mercury removal by unmodified bamboo charcoal at20℃was mainly through physical adsorption of mercury, and mainly by chemisorption at140℃; the mercury removal by zinc chloride modified BC were both by chemisorption at20℃and140℃. This conclusion was consistent with previous experimental phenomena and experimental results.
引文
[1]http://www.ec.gc.ca/mercure-mercury/default.asp?lang=En&n=A177A336-1.
    [2]Chu P, P. D. B. Mercury stack emissions from u.s. electric utility power plants. Water, Air, and Soil Pollution 1995,80:135-144.
    [3]Krishnan S V, G. B. K., Jozewicz W. Mercury control in municipal waste combustors and coal-fired utilities. Environ. Prog.,1997,16:47-53.
    [4]Keating, M. H.,Mahaffey, K. R.,Schoeny, R.,Rice, G.,Bullock, O. Mercury study report to Congress. Volume 1. Executive summary; Environmental Protection Agency, Research Triangle Park, NC (United States). Office of Air Quality Planning and Standards:1997.
    [5]冯新斌,仇广乐,付学吾.环境汞污染.化学进展,2009,21(2-3):436-457.
    [6]郑楚光,张军营,赵永椿,刘晶,郭欣.煤燃烧汞的排放及控制.北京:第一版,科学出版社,2010,43-48.
    [7]Toole-O'Neil, B.,Tewalt, S.,Finkelman, R.,Akers, D. Mercury concentration in coal-unraveling the puzzle. Fuel,1999,78(1):47-54.
    [8]王起超,马如龙.煤及其灰渣中的汞.中国环境科学,1997,17(1):76-79.
    [9]郑刘根,刘桂建,齐翠翠,陈怡伟,张莹.中国煤中汞的环境地球化学研究.中国科学技术大学学报,2007,37(8):953-963.
    [10]冯新斌,洪业汤.贵州煤中汞的分布,赋存状态及对环境的影响.煤田地质与勘探,1998,26(2):12-14.
    [11]任德贻,赵峰华,代世峰,张军营,雒昆利.煤的微量元素地球化学.北京:科学出版社,2006.
    [12]王起超,沈文国.中国燃煤汞排放量估算.中国环境科学,1999,19(004):318-321.
    [13]秦攀.煤燃烧重金属生成规律的研究[博士学位论文]杭州:浙江大学,2005.
    [14]Zheng, L.,Liu, G.,Qi, C.,Zhang, Y.,Wong, M. The use of sequential extraction to determine the distribution and modes of occurrence of mercury in Permian Huaibei coal, Anhui Province, China. Int. J. Coal Geol.,2008,73(2):139-155.
    [15]刘晶,郑楚光,张军营,王满辉.煤中易挥发痕量元素赋存形态的分析方法及实验研究.燃烧科学与技术,2003,9(4):295-299.
    [16]Xia, K.,Skyllberg, U.,Bleam, W.,Bloom, P.,Nater, E.,Helmke, P. X-ray absorption spectroscopic evidence for the complexation of Hg(Ⅱ) by reduced sulfur in soil humic substances. Environmental Science & Technology,1999,33(2):257-261.
    [17]郑刘根.煤中汞的环境地球化学研究[博士学位论文].中国科学技术大学,2008.
    [18]Yao, H.,Luo, G.,Xu, M.,Kameshima, T.,Naruse, I. Mercury emissions and species during combustion of coal and waste. Energy & Fuels,2006,20(5):1946-1950.
    [19]Frandsen, F.,Dam-Johansen, K.,Rasmussen, P. Trace elements from combustion and gasification of coal--An equilibrium approach. Prog. Energy Combust. Sci.,1994, 20(2):115-138.
    [20]Kevin C G, C. J. Z. Mercury transformations in coal combustion flue gas. Fuel Processing Technology,2000,66(6):289-310.
    [21]蒋靖坤,郝吉明,吴烨,Streets, D. G.,段雷,田贺忠.中国燃煤汞排放清单的初步建立.环境科学,2005,26(2):34-39.
    [22]U.S. Environmental Protection Agency.1997. "Mercury Study Report to Congress, Volume Ⅴ:Health Effects of Mercury and Mercury Compounds." http://www.epa.gov/ttn/oarpg/t3/reports/volume5.pdf.
    [23]Counter, S.,Buchanan, L.,Laurell, G.,Ortega, F. Blood mercury and auditory neuro-sensory responses in children and adults in the Nambija gold mining area of Ecuador. Neurotoxicology,1998,19(2):185-196.
    [24]Beck, C.,Krafchik, B.,Traubici, J.,Jacobson, S. Mercury intoxication:It still exists. Pediatric dermatology,2004,21(3):254-259.
    [25]Solis, M. T.,Yuen, E.,Cortez, P. S.,Goebel, P. J. Family poisoned by mercury vapor inhalation. The American journal of emergency medicine,2000,18(5):599-602.
    [26]Torres, A. D.,Rai, A. N.,Hardiek, M. L. Mercury intoxication and arterial hypertension:report of two patients and review of the literature. Pediatrics,2000, 105(3):e34-e34.
    [27]S(?)rensen, N.,Murata, K.,Budtz-J(?)rgensen, E.,Weihe, P.,Grandjean, P. Prenatal methylmercury exposure as a cardiovascular risk factor at seven years of age. Epidemiology,1999:370-375.
    [28]Abbaslou, P.,Zaman, T. A child with elemental mercury poisoning and unusual brain MRI findings. Clinical Toxicology,2006,44(1):85-88.
    [29]Morgan, D.,Chanda, S.,Price, H.,Fernando, R.,Liu, J.,Brambila, E.,O'Connor, R.,Beliles, R.,Barone Jr, S. Disposition of inhaled mercury vapor in pregnant rats: maternal toxicity and effects on developmental outcome. Toxicol. Sci.,2002,66(2): 261-273.
    [30]Trasande, L.,Schechter, C.,Haynes, K. A.,Landrigan, P. J. Applying cost analyses to drive policy that protects children. Ann. N.Y. Acad. Sci.,2006,1076(1):911-923.
    [31]刘昕,蒋勇.美国燃煤火力发电厂汞控制技术的发展及现状.高科技与产业化,2009,(003):92-95.
    [32]Luttrell, G. H.,Kohmuench, J. N.,Yoon, R. H. An evaluation of coal preparation technologies for controlling trace element emissions. Fuel Process. Technol.,2000, 65:407-422.
    [33]Quick, W.,Irons, R. Trace element partitioning during the firing of washed and untreated power station coals. Fuel,2002,81(5):665-672.
    [34]Guffey, F.,Bland, A. Thermal pretreatment of low-ranked coal for control of mercury emissions. Fuel Process. Technol.,2004,85(6):521-531.
    [35]Merdes, A. C.,Keener, T. C.,Khang, S. J.,Jenkins, R. G. Investigation into the fate of mercury in bituminous coal during mild pyrolysis. Fuel,1998,77(15):1783-1792.
    [36]Iwashita, A.,Tanamachi, S.,Nakajima, T.,Takanashi, H.,Ohki, A. Removal of mercury from coal by mild pyrolysis and leaching behavior of mercury. Fuel,2004,83(6): 631-638.
    [37]Sekine, Y.,Sakajiri, K.,Kikuchi, E.,Matsukata, M. Release behavior of trace elements from coal during high-temperature processing. Powder Technol.,2008,180(1-2): 210-215.
    [38]Senior, C.,Helble, J.,Sarofim, A. In Predicting the speciation of mercury emissions from coal-fired power plants,2000; 19-21.
    [39]Cao, Y.,Wang, Q.,Chen, C.,Chen, B.,Cohron, M.,Tseng, Y.,Chiu, C.,Chu, P.,Pan, W. P. Investigation of mercury transformation by HBr addition in a slipstream facility with real flue gas atmospheres of bituminous coal and powder river basin coal. Energy & Fuels,2007,21(5):2719-2730.
    [40]Srivastava, R. K.,Hutson, N.,Martin, B.,Princiotta, F.,Staudt, J. Control of mercury emissions from coal-fired electric utility boilers. Environmental Science & Technology,2006,40(5):1385-1393.
    [41]刘建忠,范海燕,周俊虎.煤粉炉PM10/PM2.5排放规律的试验研究[J].中国电机工程学报,2003,23(1):145-149.
    [42]Manchester, S.,Wang, X.,Kulaots, I.,Gao, Y.,Hurt, R. H. High capacity mercury adsorption on freshly ozone-treated carbon surfaces. Carbon,2008,46(3):518-524.
    [43]EPRI. An Assessment of Mercury Emissions from U.S. Coal-Fired Power Plants. Technical EPRI:Palo Alto, CA,2000.
    [44]Staudt, J. E.Jozewicz, W. Performance and cost of mercury and multipollutant emission control technology applications on electric utility boilers. EPA National Risk Management Research Laboratory, report under review,2003.
    [45]Strivastava, R. Control of Mercury Emissions from Coal Fired Electric Utility Boilers: An Update; U.S. Environmental Protection Agency:Cincinnati, Ohio,2010.
    [46]Wang, S. X.,Zhang, L.,Li, G. H.,Wu, Y.,Hao, J. M.,Pirrone, N.,Sprovieri, F.,Ancora, M. P. Mercury emission and speciation of coal-fired power plants in China. Atmospheric Chemistry and Physics,2010,10(3):1183-1192.
    [47]赵毅,陈周燕,汪黎东,张受卫.湿式烟气脱硫系统同时脱汞研究.环境工程学报,2008,2(1):64-69.
    [48]Pavlish, J.,Sondreal, E.,Mann, M.,Olson, E.,Galbreath, K.,Laudal, D.,Benson, S. Status review of mercury control options for coal-fired power plants. Fuel Process. Technol.,2003,82(2-3):89-165.
    [49]Presto, A. A.,Granite, E. J. Survey of catalysts for oxidation of mercury in flue gas. Environmental Science & Technology,2006,40(18):5601-5609.
    [50]陈进生,袁东星,李权龙,郑剑铭,朱燕群,华晓宇,何胜,周劲松.燃煤烟气净化设施对汞排放特性的影响.中国电机工程学报,2008,28(2):72-76.
    [51]Eswaran, S.,Stenger, H. G. Understanding mercury conversion in selective catalytic reduction (SCR) catalysts. Energy & Fuels,2005,19(6):2328-2334.
    [52]Yang, H.,Xu, Z.,Fan, M.,Bland, A.Judkins, R. Adsorbents for capturing mercury in coal-fired boiler flue gas. J. Hazard. Mater.,2007,146(1-2):1-11.
    [53]Galvagno, S.,Casu, S.,Martino, M.,Di Palma, E.,Portofino, S. Thermal and kinetic study of tyre waste pyrolysis via TG-FTIR-MS analysis. J. Therm. Anal. Calorim., 2007,88(2):507-514.
    [54]Wang, Z. M.,Kanoh, H.,Kaneko, K.,Lu, G.,Do, D. Structural and surface property changes of macadamia nut-shell char upon activation and high temperature treatment. Carbon,2002,40(8):1231-1239.
    [55]Chang, C. F.,Chang, C. Y.,Tsai, W. T. Effects of burn-off and activation temperature on preparation of activated carbon from corn cob agrowaste by CO2 and steam. J. Colloid Interface Sci.,2000,232(1):45-49.
    [56]Granite, E. J.,Freeman, M. C.,Hargis, R. A.,O'Dowd, W. J.,Pennline, H. W. The thief process for mercury removal from flue gas. J. Environ. Manage.,2007,84(4): 628-634.
    [57]Skodras, G.,Diamantopouiou, I.,Zabaniotou, A.,Stavropoulos, G.,Sakellaropoulos, G. P. Enhanced mercury adsorption in activated carbons from biomass materials and waste tires. Fuel Process. Technol.,2007,88(8):749-758.
    [58]Romero, C. E.,Li, Y.,Bilirgen, H.,Sarunac, N.,Levy, E. K. Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers. Fuel,2006,85(2):204-212.
    [59]Presto, A. A.,Granite, E. J.,Karash, A.,Hargis, R. A.,O'Dowd, W. J.,Pennline, H. W. A kinetic approach to the catalytic oxidation of mercury in flue gas. Energy & Fuels, 2006,20(5):1941-1945.
    [60]Norton, G. A.,Yang, H.,Brown, R. C.,Laudal, D. L.,Dunham, G. E.,Erjavec, J. Heterogeneous oxidation of mercury in simulated post combustion conditions. Fuel, 2003,82(2):107-116.
    [61]Liu, S. H.,Yan, N. Q.,Liu, Z. R.,Qu, Z.,Wang, H. P.,Chang, S. G.,Miller, C. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants. Environmental Science & Technology,2007,41(4):1405-1412.
    [62]Cao, Y.,Gao, Z.,Zhu, J.,Wang, Q.,Huang, Y.,Chiu, C.,Parker, B.,Chu, P.,Pan, W. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal. Environmental Science & Technology,2007,42(1):256-261.
    [63]Senior, C.,Fry, A.,Cauch, B. In Modeling Mercury Behavior in Coal-Fired Boilers with Halogen Addition, The Mega Symposium, Salt Lake City, Salt Lake City,2008.
    [64]Vidic, R. D.,Siler, D. P. Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents. Carbon,2001,39(1):3-14.
    [65]Ghorishi, S. B.,Keeney, R. M.,Serre, S. D.,Gullett, B. K.,Jozewicz, W. S. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury. Environmental Science & Technology,2002,36(20):4454-4459.
    [66]Lee, S. F.,Seo, Y. C.Jurng, J.,Lee, T. G. Removal of gas-phase elemental mercury by iodine-and chlorine-impregnated activated carbons. Atmos. Environ.,2004,38(29): 4887-4893.
    [67]Evan, J.,Pennline, H. W.,Hargis, R. A. Novel sorbents for mercury removal from flue gas. Industrial & Engineering Chemistry Research,2000,39(4):1020-1029.
    [68]Jones, A. P.,Hoffmann, J. W.,Smith, D. N.,Feeley III, T. J.,Murphy, J. T. DOE/NETL's phase Ⅱ mercury control technology field testing program:preliminary economic analysis of activated carbon injection. Environmental Science & Technology,2007, 41(4):1365-1371.
    [69]K, S. R.,L, W. P. Removal of mercury by sulfurized carbons. Carbon Balance Manage.,1972,10:754-756.
    [70]高洪亮,周劲松,骆仲泱,岑可法.改性活性炭对模拟燃煤烟气中汞吸附的实验研究.中国电机工程学报,2007,27(8):26-30.
    [71]Lee, S.,Park, Y. Gas-phase mercury removal by carbon-based sorbents. Fuel Process. Technol.,2003,84(1-3):197-206.
    [72]Liu, W.,Vidic, R. D.,Brown, T. D. Impact of flue gas conditions on mercury uptake by sulfur-impregnated activated carbon. Environmental Science & Technology,2000, 34(1):154-159.
    [73]Rong Yan, Y. L. N., David Tee Liang, Chun Siong Lim, Joo Hwa Tay. Bench-scale experimental study on the effect of flue gas composition on mercury removal by activated carbon adsorption. Energy & Fuels,2003,17(6):1528-1535.
    [74]Olson ES, M. S., Sharma RK,Dunham GE,Benson SA. Catalytic effects of carbon sorbents for mercury capture. J. Hazard. Mater.,2000,74(1-2):61-79.
    [75]Mei, Z.,Shen, Z.,Yuan, T.,Wang, W.,Han, H. Removal of vapor-phase elemental mercury by N-doped CuCoO4 loaded on activated carbon. Fuel Process. Technol., 2007,88(6):623-629.
    [76]Tian, L. H.,Li, C. T.,Li, Q.,Zeng, G. M.,Gao, Z.,Li, S. H.,Fan, X. P. Removal of elemental mercury by activated carbon impregnated with CeO2. Fuel,2009,88(9): 1687-1691.
    [77]王立刚,陈昌和.飞灰残炭分形特征对汞吸附反应的影响.环境化学,2005,24(001):59-62.
    [78]Carey, T. R.,Richardson, C. F.,Chang, R.,Meserole, F. B.,Rostam-Abadi, M.,Chen, S. Assessing sorbent injection mercury control effectiveness in flue gas streams. Environ. Prog.,2000,19(3):167-174.
    [79]Serre, S. D.,Silcox, G. D. Adsorption of elemental mercury on the residual carbon in coal fly ash. Industrial & Engineering Chemistry Research,2000,39(6):1723-1730.
    [80]Dunham, G. E.,DeWall, R. A.,Senior, C. L. Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Process. Technol.,2003,82(2): 197-213.
    [81]郑全梅,骆骏,罗光前,马晶晶,徐明厚,姚洪.液溴改性非碳基吸附剂对单质汞吸附的实验研究.工程热物理学报,2010,(012):2137-2140.
    [82]张亮,禚玉群,杜雯,陶叶,陈昌和,徐旭常.非碳基改性吸附剂汞脱除性能实验研究.中国电机工程学报,2010,30(17):27-34.
    [83]Lee, J. Y.,Ju, Y.,Keener, T. C.,Varma, R. S. Development of Cost-Effective Noncarbon Sorbents for Hg0 Removal from Coal-Fired Power Plants. Environmental Science & Technology,2006,40(8):2714-2720.
    [84]Morency, J. Zeolite sorbent that effectively removes mercury from flue gases. Filtration & Separation,2002,39(7):24-26.
    [85]Kwon, S.,Vidic, R. D. Evaluation of two sulfur impregnation methods on activated carbon and bentonite for the production of elemental mercury sorbents. Environ. Eng. Sci.,2000,17(6):303-313.
    [86]Jurng, J.,Lee, T. G.,Lee, G. W.,Lee, S.-J.,Kim, B. H.,Seier, J. Mercury removal from incineration flue gas by organic and inorganic adsorbents. Chemosphere,2002,47(9): 907-913.
    [87]Eswaran, S.,Stenger, H. G.,Fan, Z. Gas-Phase Mercury Adsorption Rate Studies. Energy Fuels,2007,21(2):852-857.
    [88]任建莉,周劲松,骆仲泱,胡长兴,钟英杰.新型吸附剂脱除烟气中气态汞的试验研究.中国电机工程学报,2007,27(2):48-83.
    [89]丁峰,张军营,赵永椿,郑楚光.天然矿物材料吸附剂脱除烟气中单质汞的研究.中国电机工程学报,2009,29(35):65-70.
    [90]Zhao, Y.,Mann, M. D.,Pavlish, J. H.,Mibeck, B. A. F.,Dunham, G. E.,Olson, E. S. Application of Gold Catalyst for Mercury Oxidation by Chlorine. Environmental Science & Technology,2006,40(5):1603-1608.
    [91]Granite, E. J.,Pennline, H. W.,Hargis, R. A. Novel sorbents for mercury removal from flue gas. Industrial & Engineering Chemistry Research,2000,39(4):1020-1029.
    [92]Portzer, J. W.,Albritton, J. R.,Allen, C. C.,Gupta, R. P. Development of novel sorbents for mercury control at elevated temperatures in coal-derived syngas:results of initial screening of candidate materials. Fuel Process. Technol.,2004,85(6): 621-630.
    [93]Poulston, S.,Granite, E. J.,Pennline, H. W.,Myers, C. R.,Stanko, D. P.,Hamilton, H.,Rowsell, L.,Smith, A. W. J.,Ilkenhans, T.,Chu, W. Metal sorbents for high temperature mercury capture from fuel gas. Fuel,2007,86(14):2201-2203.
    [94]Yan, T. Y. A novel process for Hg removal from gases. Industrial & Engineering Chemistry Research,1994,33(12):3010-3014.
    [95]Levlin, M.,Ikavalko, E.,Laitinen, T. Adsorption of mercury on gold and silver surfaces. Fresenius' journal of analytical chemistry,1999,365(7):577-586.
    [96]Li, J.,Yan, N.,Qu, Z.,Qiao, S.,Yang, S.,Guo, Y.,Liu, P.Jia, J. Catalytic oxidation of elemental mercury over the modified catalyst Mn/a-Al2O3 at lower temperatures. Environmental science & technology,2009,44(1):426-431.
    [97]Qiao, S.,Chen, J.,Li, J.,Qu, Z.,Liu, P.,Yan, N.Jia, J. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/alumina. Industrial & Engineering Chemistry Research,2009,48(7):3317-3322.
    [98]Iyer, R.,Scott, J. Power station fly ash-a review of value-added utilization outside of the construction industry. Resour. Conserv. Recycl.,2001,31(3):217-228.
    [99]Leroy, C.,Ferro, M.,Monteiro, R.,Fernandes, M. Production of glass-ceramics from coal ashes. J. Eur. Ceram. Soc.,2001,21(2):195-202.
    [100]Dong, J.,Xu, Z.,Kuznicki, S. M. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents. Environmental Science & Technology, 2009,43(9):3266-3271.
    [101]Xu, Z.,Dong, J. Synthesis, characterization, and application of magnetic nanocomposites for the removal of heavy metals from industrial effluents. Emerging Environmental Technologies,2008:105-148.
    [102]翟华嶂,李建保.纳米材料和纳米科技的进步,应用及产业化现状.材料工程,2001,(11):43-48.
    [103]Lee, T. G.,Biswas, P.,Hedrick, E. Comparison of Hg0 capture efficiencies of three in situ generated sorbents. AlChE J.,2001,47(4):954-961.
    [104]Granite, E. J.,Pennline, H. W. Photochemical Removal of Mercury from Flue Gas. Industrial & Engineering Chemistry Research,2002,41(22):5470-5476.
    [105]McLarnon, C. R.,Granite, E. J.,Pennline, H. W. The PCO process for photochemical removal of mercury from flue gas. Fuel Process. Technol.,2005,87(1):85-89.
    [106]Pitoniak, E.,Wu, C. Y.,Mazyck, D. W.,Powers, K. W.,Sigmund, W. Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal. Environmental Science & Technology,2005,39(5):1269-1274.
    [107]Li, Y.,Wu, C. Y. Role of Moisture in Adsorption, Photocatalytic Oxidation, and Reemission of Elemental Mercury on a SiO2-TiO2 Nanocomposite. Environmental Science & Technology,2006,40(20):6444-6448.
    [108]Lee, T. G.,Biswas, P.,Hedrick, E. Overall kinetics of heterogeneous elemental mercury reactions on TiO2 sorbent particles with UV irradiation. Industrial & engineering chemistry research,2004,43(6):1411-1417.
    [109]Jeon, S. H.,Eom, Y.,Lee, T. G. Photocatalytic oxidation of gas-phase elemental mercury by nanotitanosilicate fibers. Chemosphere,2008,71(5):969-974.
    [110]Lee, W.,Bae, G. N. Removal of Elemental Mercury by Nanosized V2O5/TiO2 Catalysts. Environmental Science & Technology,2009,43(5):1522-1527.
    [111]杨珊,张军营,赵永椿,余琛,张凯.纳米TiO2-活性炭的制备及光催化脱汞初探.工程热物理学报,2010,(002):339-342.
    [112]Jadhav, R. A.,Howard, M.,Winecki, S. In Evaluation of nanocrystalline sorbents for mercury removal from coal gasifier fuel gas,2005; pp 5526-5531.
    [113]Abu-Daabes, M. A.,Pinto, N. G. Synthesis and characterization of a nano-structured sorbent for the direct removal of mercury vapor from flue gases by chelation. Chem. Eng. Sci.,2005,60(7):1901-1910.
    [114]李艳玲,李先国,冯丽娟,刘爱岑.纳米氧化铁的研究进展.化学研究与应用,2004,16(006):741-744.
    [115]Kong, F.,Qiu, J.,Liu, H.,Zhao, R.,Ai, Z. Catalytic oxidation of gas-phase elemental mercury by nano-Fe2O3. Journal of Environmental Sciences,2011,23(4):699-704.
    [116]Borderieux, S.,Wu, C. Y.,Bonzongo, J. C.,Powers, K. Control of elemental mercury vapor in combustion systems using Fe2O3 nanoparticles. Aerosol and Air Quality Research,2004,4(1):74-90.
    [117]张加延,何跃,李清泽,杜维春,盛隆厚,张铁英,代洪娟.我国杏壳活性炭的产销现状与应用前景.辽宁农业科学,2005,(005):23-25.
    [118]张会平,叶李艺,杨立春.物理活化法制备椰壳活性炭研究.厦门大学学报:自然科学版,2005,43(6):833-835.
    [119]李艳芳.活性焦烟气联合脱硫脱硝技术.煤质技术,2009,(001):36-39.
    [120]汪奎宏,高小辉.竹类资源利用现状及深度开发.竹子研究汇刊,2000,19(4):72-75.
    [121]张齐生.重视竹材化学利用,开发竹炭应用技术.竹子研究汇刊,2001,20(003):34-35.
    [122]Tan, Z.,Xiang, J.,Su, S.,Zeng, H.,Zhou, C.,Sun, L.,Hu, S.,Qiu, J. Enhanced capture of elemental mercury by bamboo-based sorbents. J. Hazard. Mater.,2012,239-240: 160-166.
    [123]胡福昌,陈顺伟.日本竹材热解研究的现状.林业科技开发,2001,15(3):8-11.
    [124]张文标,陈文照.竹炭生产和应用.竹子研究汇刊,2001,20(002):49-54.
    [125]邵千钧,徐群芳,范志伟,张文标.竹炭导电率及高导电率竹炭制备工艺研究.林产化学与工业,2002,22(2):54-56.
    [126]Song-lin, Z.,Shang-yu, G.,Xi-gen, Y.,Bo-sen, X. Carbonization mechanism of bamboo (phyllostachys) by means of Fourier Transform Infrared and elemental analysis. Journal of Forestry Research,2003,14(1):75-79.
    [127]胡永煌.竹炭,竹醋液生产技术及应用开发研究进展.林产化学与工业,2002,22(3):79-83.
    [128]黄彪,高尚愚.竹炭,竹醋液生产技术与应用研究综述.福建林学院学报,2003,23(1):93-96.
    [129]Mizuta, K.,Matsumoto, T.,Hatate, Y.,Nishihara, K.,Nakanishi, T. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour. Technol.,2004,95(3):255-257.
    [130]王桂仙,张启伟.竹炭对水体中重金属离子的吸附规律研究.化学与生物工程,2008,25(3):66-68.
    [131]张启伟,王桂仙.竹炭对水相中镉(Ⅱ)的吸附行为及机理.沈阳化工学院学报,2009,23(001):4-8.
    [132]王桂仙,张启伟.竹炭对溶液中Zn2+的吸附行为研究.生物质化学工程,2006,(03):17-20.
    [133]张启伟,王桂仙.竹炭对饮用水中氟离子的吸附条件研究.广东微量元素科学,2005,12(003):63-66.
    [134]郑楚光,张军营,赵永椿,刘晶,郭欣.煤燃烧汞的排放及控制.北京:第一版,科学出版社,2010,200-300.
    [135]郭奕玲,沈慧君.物理学史.北京:清华大学出版社,1993:306-323.
    [136]赵艳玲.共轭碳材料与锂的相互作用及氢吸附的从头算研究:东北师范大学,2005.
    [137]董秀丽.蛋白质与羟基磷灰石表面的相互作用机理研究[博士学位论文].浙江:浙江大学,2008.
    [138]Xu, M.,Qiao, Y.,Zheng, C.,Li, L.,Liu, J. Modeling of homogeneous mercury speciation using detailed chemical kinetics. Combust. Flame,2003,132(1-2): 208-218.
    [139]Padak, B.,Wilcox, J. Understanding mercury binding on activated carbon. Carbon, 2009,47(12):2855-2864.
    [140]Peterson, K. A.,Puzzarini, C. Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theoretical Chemistry Accounts:Theory, Computation, and Modeling (Theoretica Chimica Acta),2005,114(4):283-296.
    [141]Braier, N.,Jishi, R. Density functional studies of Cu2+ and Ni2+ binding to chitosan. Journal of Molecular Structure:THEOCHEM,2000,499(1):51-55.
    [142]Yang, F. H.,Yang, R. T. Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite:Insight into hydrogen storage in carbon nanotubes. Carbon, 2002,40(3):437-444.
    [143]Yang, F. H.,Yang, R. T. Ab initio molecular orbital study of the mechanism of SO2 oxidation catalyzed by carbon. Carbon,2003,41(11):2149-2158.
    [144]Kadossov, E.,Burghaus, U. Adsorption Kinetics and Dynamics of CO, NO, and CO2 on Reduced CaO(100). J. Phys. Chem. C,2008,112(19):7390-7400.
    [145]Allouche, A. Comparative ab Initio Study of the Chemical Reactivity of Nitromethane Adsorbed on Basic Oxides:MgO and CaO(100). The Journal of Physical Chemistry,1996,100(5):1820-1826.
    [146]Pacchioni, G.,Ricart, J. M.,Illas, F. Ab Initio Cluster Model Calculations on the Chemisorption of CO2 and SO2 Probe Molecules on MgO and CaO (100) Surfaces. A Theoretical Measure of Oxide Basicity. J. Am. Chem. Soc.,1994,116(22): 10152-10158.
    [147]Sasmaz, E.,Wilcox, J. Mercury Species and SO2 Adsorption on CaO (100). The Journal of Physical Chemistry C,2008,112(42):16484-16490.
    [148]Goswami, S.,Ghosh, U. C. Studies on adsorption behaviour of Cr (VI) onto synthetic hydrous stannic oxide. Water SA,2006,31(4):597-602.
    [149]Reid, C.,Thomas, K. Adsorption of gases on a carbon molecular sieve used for air separation:Linear adsorptives as probes for kinetic selectivity. Langmuir,1999,15(9): 3206-3218.
    [150]高洪亮,周劲松,骆仲泱.模拟燃煤烟气中汞在活性炭上吸附的动力学研究.中原工学院学报,2006,16(6):1-5.
    [151]Reddad, Z.,Gerente, C.,Andres, Y.,Le Cloirec, P. Adsorption of several metal ions onto a low-cost biosorbent:kinetic and equilibrium studies. Environmental Science & Technology,2002,36(9):2067-2073.
    [152]任建莉,周劲松,骆仲泱,钟英杰,岑可法.模拟烟气中汞吸附系统的数学模型.浙江大学学报:工学版,2006,40(010):1827-1832.
    [153]左铁镛,翁端.国外环境材料的研究进展及发展动向.材料导报,1997,11(005):1-4.
    [154]周建斌.竹炭环境效应及作用机理的研究[博士学位论文].南京:南京林业大学,2005.
    [155]刘焕荣,江泽慧,任海青,刘君良.竹炭吸附性能及其利用研究进展.竹子研究汇刊,2009,(02):1-5.
    [156]白翔.竹基活性炭的制备及其电化学性能的研究:[硕士学位论文].北京化工大学,2008.
    [157]吴昊,邱建荣,王泉海,刘豪.煤中汞在燃煤电站中的形态转化.电力环境保护,2003,19(1):29-31.
    [158]任建莉,周劲松,骆仲泱,岑可法.活性碳吸附烟气中气态汞的试验研究.中国电机工程学报,2004,24(2):171-175.
    [159]王欣,曾汉才,许绿丝,岑泽文.活性炭吸附剂控制Hg排放的研究进展.热力发电,2006,1:52-53.
    [160]江泽慧,张东升,费本华,岳永德,陈晓红.炭化温度对竹炭微观结构及电性能的影响.新型炭材料,2004,19(4):249-253.
    [161]张鹏宇,曾汉才,张柳.活化处理的活性炭吸附汞的试验研究.电力科学与工程,2004,(2):1-3.
    [162]何余生,李忠,奚红霞,郭建光.气固吸附等温线的研究进展.离子交换与吸附,2004,4:376-380.
    [163]Rodriguez-Reinoso, F.,Martin-Martinez, J. M.,Prado-Burguete,C.,McEnaney, B. A standard adsorption isotherm for the characterization of activated carbons. J. Phys. Chem.,1987,91(3):515-516.
    [164]Maroto-Valer, M. M.,Zhang, Y. Z.,Granite, E. J.,Tang, Z.,Pennline, H. W. Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample. Fuel,2005,84(1):105-108.
    [165]高鹏,向军,毛金波,刘雪锋,王欣,陈伟,赵清森,徐朝芬.高分子化合物壳聚糖脱除燃煤烟气中汞的实验研究.中国电机工程学报,2006,26(24):88-93.
    [166]Liu, Y. S. Comment on "Impact of Sulfur Oxides on Mercury Capture by Activated Carbon". Environmental Science & Technology,2008,42(3):970-971.
    [167]Li YH, L. C., Gullett BK. The effect of activated carbon surface moisture on low temperature mercury adsorption. Carbon,2002,40(1):65-72.
    [168]Wang, Y.,Duan, Y.,Yang, L.,Zhao, C.,Shen, X.,Zhang, M.,Zhuo, Y.,Chen, C. Experimental study on mercury transformation and removal in coal-fired boiler flue gases. Fuel Process. Technol.,2009,90(5):643-651.
    [169]高洪亮,周劲松,骆仲泱,午旭杰,胡长兴,倪明江,岑可法.S02对模拟燃煤烟气中汞形态分布影响的实验研究.环境科学学报,2004,(02):204-209.
    [170]Miller, S. J.,Dunham, G. E.,Olson, E. S.,Brown, T. D. Flue gas effects on a carbon-based mercury sorbent. Fuel Process. Technol.,2000,65-66:343-363.
    [171]Zhou, J.,Luo, Z.,Hu, C.,Cen, K. Factors impacting gaseous mercury speciation in postcombustion. Energy & Fuels,2007,21(2):491-495.
    [172]许绿丝.改性处理活性炭纤维吸附氧化脱除SO2/NOx/Hg的研究[博士学位论文].中国武汉:华中科技大学,2007.
    [173]范艳青,冯晓锐,陈雯,顾云峰.活性炭制备技术及发展.昆明理工大学学报,2002,27(5):17-20.
    [174]Chen, X.,Farber, M.,Gao, Y.,Kulaots, I.,Suuberg, E. M.,Hurt, R. H. Mechanisms of surfactant adsorption on non-polar, air-oxidized and ozone-treated carbon surfaces. Carbon,2003,41(8):1489-1500.
    [175]Li, Y.,Lee, C.,Gullett, B. Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption. Fuel,2003,82(4):451-457.
    [176]高德霖,孙小玉.活性炭纤维和微孔吸附的容积充填理论.精细化工原料及中间体,2003,10:2-6.
    [177]周珊,陈斌,王佳莹,喻景权.改性竹炭对氨氮的吸附性能研究.浙江大学学报:农业与生命科学版,2007,33(5):584-590.
    [178]Hutson, N. D.,Attwood, B. C.,Scheckel, K. G. XAS and XPS Characterization of Mercury Binding on Brominated Activated Carbon. Environmental Science & Technology,2007,41(5):1747-1752.
    [179]A.M. Puziya, O. I. P., R.P. Sochab, J. Gurgulb, M. Wisniewskic. XPS and NMR studies of phosphoric acid activated carbons. Carbon,2008,46:2113-2123.
    [180]Oku, M. X-ray photoelectron spectra of KMnO4 and K2MnO4 fractured in situ. Journal of electron spectroscopy and related phenomena,1995,74(2):135-148.
    [181]Foord, J.,Jackman, R.,Allen, G. An X-ray photoelectron spectroscopic investigation of the oxidation of manganese. Philos. Mag. A,1984,49(5):657-663.
    [182]许绿丝,钟毅,金峰,曾汉才.催化活性炭纤维脱硫除汞性能试验研究[J].安全与环境学报,2004,4(2):10-12.
    [183]Perez-Cadenas, A. F.,Maldonado-Hodar, F. J.,Moreno-Castilla, C. On the nature of surface acid sites of chlorinated activated carbons. Carbon,2003,41(3):473-478.
    [184]Montes-Moran, M. A.,Menendez, J. A.,Fuente, E.,Suarez, D. Contribution of the basal planes to carbon basicity:An ab initio study of the H3O+-π interaction in cluster models. The Journal of Physical Chemistry B,1998,102(29):5595-5601.
    [185]Boehm, H. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon,1994,32(5):759-769.
    [186]Radovic, L. R.,Moreno-Castilla, C.,Rivera-Utrilla, J. Carbon materials as adsorbents in aqueous solutions. Chem. Phys. Carbon,2000,27:227-227.
    [187]Butz, J. R.,Turchi, C.,Broderick, T. E.,Albiston, J. In Options for mercury removal from coal-fired flue gas streams:Pilot-scale research on activated carbon, alternative and regenerable sorbents,2000; pp 11-14.
    [188]Dunham, G.,Olson, E.,Miller, S. In Impact of flue gas constituents on carbon sorbents, 2000; pp 19-21.
    [189]Carey, T. R.,Hargrove Jr, O. W.,Richardson, C. F.,Chang, R.,Meserole, F. B. Factors affecting mercury control in utility flue gas using activated carbon. Journal of the air & waste management association,1998,48(12):1166-1174.
    [190]Albert, A.,Evan, J. Impact of sulfur oxides on mercury capture by activated carbon. Environmental science & technology,2007,41(18):6579-6584.
    [191]Albert, A.,Evan, J.,Karash, A. Further investigation of the impact of sulfur oxides on mercury capture by activated carbon. Industrial & Engineering Chemistry Research, 2007,46(24):8273-8276.
    [192]Hall, B.,Schager, P.,Lindqvist, O. Chemical reactions of mercury in combustion flue gases. Water Air Soil Pollut.,1991,56(1):3-14.
    [193]El-Sayed, Y.,Bandosz, T. J. Acetaldehyde adsorption on nitrogen-containing activated carbons. Langmuir,2002,18(8):3213-3218.
    [194]Jia, Y.,Xiao, B.,Thomas, K. Adsorption of metal ions on nitrogen surface functional groups in activated carbons. Langmuir,2002,18(2):470-478.
    [195]Menendez, J. A.,Phillips, J.,Xia, B.,Radovic, L. R. On the modification and characterization of chemical surface properties of activated carbon:in the search of carbons with stable basic properties. Langmuir,1996,12(18):4404-4410.
    [196]Mangun, C. L.,Benak, K. R.,Economy, J.,Foster, K. L. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia. Carbon,2001,39(12):1809-1820.
    [197]Kang, G. J.,Chen, Z. X.,Li, Z.,He, X. A theoretical study of the effects of the charge state and size of gold clusters on the adsorption and dissociation of H2. The Journal of chemical physics,2009,130(3):034701.
    [198]赵鹏飞,郭欣,郑楚光.活性炭及氯改性活性炭吸附单质汞的机制研究.中国电机工程学报,2010,30(23):40-44.
    [199]Lee, S. H.,Park, Y. O. Gas-phase mercury removal by carbon-based sorbents. Fuel Process. Technol.,2003,84(1):197-206.
    [200]Padak, B.,Brunetti, M.,Lewis, A.,Wilcox, J. Mercury binding on activated carbon. Environ. Prog.,2006,25(4):319-326.
    [201]任建莉,周劲松,骆仲泱,岑可法.活性炭吸附烟气中气态汞的试验研究.中国电机工程学报,2004,24(2):171-175.
    [202]Qu, Z.,Yan, N.,Liu, P.,Jia, J.,Yang, S. The role of iodine monochloride for the oxidation of elemental mercury. J. Hazard. Mater.,2010,183(1-3):132-137.
    [203]Qu, Z.,Chang, J. J.,Hsiung, T. L.,Yan, N.,Wang, H. P.,Dod, R.,Chang, S. G.,Miller, C. Halides on Carbonaceous Materials for Enhanced Capture of Hg0:Mechanistic Study. Energy Fuels,2010,24(6):3534-3539.
    [204]孙巍,晏乃强,贾金平.载溴活性炭去除烟气中的单质汞.中国环境科学,2006,226(3):257-261.
    [205]陆安慧,李文翠,郑经堂.分子筛型PAN-ACF制备及表面结构的XPS研究.物理化学学报,2001,17(3):216-221.
    [206]Laumb, J. D.,Benson, S. A.,Olson, E. A. X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry. Fuel Process. Technol.,2004,85(6):577-585.
    [207]Huggins, F. E.,Huffman, G. P.,Dunham, G. E.,Senior, C. L. XAFS examination of mercury sorption on three activated carbons. Energy Fuels,1998,13(1):114-121.
    [208]Laumb, J. D.,Benson, S. A.,Olson, E. A. X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry. Fuel Process. Technol.,2004,85(6-7): 577-585.
    [209]陈洁鹤,颜云芸,何平,吴江,潘卫国,任建兴,赵晓军.改性碳基吸附剂对烟气汞吸附特性的实验研究.中国工程热物理学会燃烧学学术会议论文,2011,编号114246.
    [210]Huggins, F. E.,Yap, N.,Huffman, G. P.,Senior, C. L. XAFS characterization of mercury captured from combustion gases on sorbents at low temperatures. Fuel Process. Technol.,2003,82(2):167-196.
    [211]梅志坚.控制烟气汞排放的钴锰系列吸附剂研究[博士学位论文].上海:上海交通大学,2008.
    [212]Li, Y.,Daukoru, M.,Suriyawong, A.,Biswas, P. Mercury Emissions Control in Coal Combustion Systems Using Potassium Iodide:Bench-Scale and Pilot-Scale Studies. Energy & Fuels,2009,23(1):236-243.
    [213]Barpanda, P.,Fanchini, G.,Amatucci, G. G. Structure, surface morphology and electrochemical properties of brominated activated carbons. Carbon,2011,49(7): 2538-2548.
    [214]Ponpon, J.,Sieskind, M.,Amann, M.,Bentz, A.,Corbu, C. Characterization of the HgI2 surface layer after KI etching. Nucl. Instrum. Methods Phys. Res., Sect. A,1996, 380(1):112-116.
    [215]Gregg, S.,Sing, K. Adsorption, surface and porosity. Academic Press, London,1982: 262.
    [216]CALY, L.,Radovic, L. Interfacial chemistry and electrochemistry of carbon surfaces. Chem. Phys. Carbon,1994,24:213-310.
    [217]Dandekar, A.,Baker, R.,Vannice, M. Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS. Carbon,1998, 36(12):1821-1831.
    [218]Lua, A. C.,Guo, J. Activated carbon prepared from oil palm stone by one-step CO2 activation for gaseous pollutant removal. Carbon,2000,38(7):1089-1097.
    [219]Park, S. J.,Jung, W. Y. Effect of KOH activation on the formation of oxygen structure in activated carbons synthesized from polymeric precursor. J. Colloid Interface Sci., 2002,250(1):93-98.
    [220]罗锦英,罗津晶.改性活性炭的制备及其对气态汞的吸附研究.炭素技术,2009,28(005):1-6.
    [221]Hu, C. X.,Zhou, J. S.,He, S.,Luo, Z. Y.,Cen, K. F. Effect of chemical activation of an activated carbon using zinc chloride on elemental mercury adsorption. Fuel Process. Technol,2009,90(6):812-817.
    [222]修国华,若尾法昭.间歇吸附器内活性炭吸附水中微量三氯甲烷:孔扩散模型和表面扩散模型.化工学报,1994,45(004):499-504.
    [223]Tan, Z.,Sun, L.,Xiang, J.,Zeng, H.,Liu, Z.,Hu, S.,Qiu, J. Gas-phase elemental mercury removal by novel carbon-based sorbents. Carbon,2011,50(2):362-371.
    [224]任杰,王胜利,陆文娟.固体酸催化剂程序升温脱附动力学模拟.高校化学工程学报,2004,18(006):713-718.
    [225]Weast, R. C.,Astle, M. J.,Beyer, W. H. CRC handbook of chemistry and physics. CRC press Boca Raton, FL,1988, Vol.69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700