用户名: 密码: 验证码:
活性炭在袋式除尘器内脱除元素汞的实验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞是煤中存在的微量元素之一,在煤燃烧过程中随着烟气排放到自然环境中。汞污染物具有生理毒性,能在生物体内以及食物链中累积,所以人们对汞污染控制的关注程度越来越高。我国目前的能源结构是以煤为主,由于燃煤所引发的汞污染已成为主要的环境问题之一,政府相关部门及研究学者正在积极开展汞污染控制的研究工作。依托国家高技术研究发展计划项目(863计划)“基于干法联合脱除难捕集燃煤可吸入颗粒物及重金属关键技术研究”(编号:2008AA05Z305),利用同时脱除燃煤烟气中可吸入颗粒物及元素汞的装置,对活性炭在除尘器中吸附脱除烟气中的元素汞展开研究。
     分析了我国煤消费以及煤中汞含量的基本情况,阐述了煤在燃烧全过程中,汞形态的迁移及转化。结合活性炭喷射控制烟气汞排放技术,着重对汞在吸附反应器和袋式除尘器中去除的影响因素进行了实验研究,同时分析了除尘器中粉尘层对汞脱除的影响。结合实验研究,提出了袋式除尘器空间活性炭汞吸附模型。通过浸渍和烧结的方法制备了负载氧化锰的活性炭纤维,并利用先进的材料表征技术进行了表征,在固定床中研究了其对元素汞的吸附去除能力,初步分析了其脱除元素汞的机理。
     利用并流吸附反应器,以活性炭为吸附剂,进行了脱汞实验研究。结果表明:活性炭对元素汞的脱除效率随着吸附反应温度的升高而降低,吸附反应温度越高,元素汞的脱除效率越低。当温度为80℃、120℃和150℃时,活性炭对元素汞的脱除率的分别为46.3%、44.0%和40.0%;汞脱除率随着碳汞比的增大而增大;当碳汞比为4000、6000和8000的条件下,并流吸附反应器脱汞效率分别达到31.3%、34.7%和40.0%。
     以活性炭为吸附剂,在袋式除尘器中考察了对元素汞的吸附脱除特性。研究中把除尘器中活性炭对元素汞的脱除作用分成两部分,分别是除尘器空间和粉尘层,并着重研究分析了滤袋上粉尘层的存在对脱汞效率的影响。结果表明:随着碳汞比的增加,脱汞效率明显提高。当碳汞比为4000、6000和8000时,除尘器中汞的脱除效率分别为30.4%、34.6%和40.3%,粉尘层对汞的脱除效率分别为3.65%、3.20%、3.66%。在除尘器中元素汞的脱除,其中除尘器空间作出了主要贡献,粉尘层只起了很小一部分作用,并且碳汞比的变化对粉尘层吸附元素汞的影响很小。可以利用袋式除尘器作为活性炭的吸附反应场所,强化对元素汞的吸附去除,从而减少燃煤烟气中汞的排放。
     在并流吸附反应器和袋式除尘器中,利用活性炭吸附元素汞研究的基础上,建立了袋式除尘器空间活性炭汞吸附模型。利用所建立的模型,讨论了元素汞初始浓度、气布比、温度、碳汞比和颗粒粒径对脱汞效率的影响。模型的建立对利用活性炭喷射技术,控制烟气汞排放的实验研究和工程工艺优化提供了建议。
     利用浸渍烧结的方法,制备了负载氧化锰的活性炭纤维(activated carbon fiber, ACF),对负载后材料用TEM、XRD、XPS和FTIR进行了表征,结果表明氧化锰在ACF表面分散良好,颗粒粒径在50nm左右。ACF表面氧化锰的形式为MnO和MnO2。负载后的ACF表面C-OH、C=O、COOH的含量增加。利用负载后材料进行了吸附元素汞的实验,研究结果表明:负载后的ACF吸附汞的穿透时间大大延长。浸渍液浓度对氧化锰的负载量有明显影响,锰负载量为6.7at.%,对汞的去除效率最佳。在150℃时,负载氧化锰后的ACF对元素汞表现出良好的吸附性能。
     研究表明活性炭在袋式除尘器中对元素汞的吸附为物理吸附,所建立的吸附模型可以预测操作参数对活性炭吸附元素汞的影响。制备的负载氧化锰的活性炭纤维新型过滤材料对元素汞的吸附为化学吸附,促进了对元素汞的吸附去除。本研究对利用袋式除尘器对烟气中元素汞的去除具有工程指导意义。
Mercury is one of the trace elements in the presence of coal, and it is emitted into the environment with the flue gas in the process of coal combustion. Because of its bioaccumulation and physiological toxicity, mercury pollution control is raised more attention. Mercury pollution caused by coal combustion, has been one of the major environmental problems in China, due to the coal-dominated energy structure. The research on mercury pollution controls technology has been actively carrying out by relevant government departments and scholars. This research is focused on elemental mercury removed by activated carbon in fabric filter, with the support of the National High Technology Research and Development Program (No:2008AA05Z305).
     The situation of coal consumption and mercury content in our country was described, the migration and transformation of mercury in the whole process of coal combustion was also explained. The factors affecting on elemental mercury removal by activated carbon both in entrained-flow adsorption reactor and fabric filter were studied, the mercury removal efficiency of dust cake on filter surface was analyzed in detail. The model of mercury sorption by activated carbon in the chamber of filter was established. The load of manganese oxide on activated carbon fiber was prepared and characterized, and the removal capacity of elemental mercury was studied.
     The elemental mercury removal capability in the entrained-flow adsorption reactor was investigated using activated carbon as adsorbent. The results showed that:the higher the adsorption temperature, the lower the elemental mercury removal efficiency. When the temperature were at 80℃、120℃、and 150℃, the elemental mercury removal efficiency of activated carbon were reached 46.3%、44.0% and 40.0% respectively。The mercury removal efficiency increases with the C/Hg ratio (mass ratio of injected carbon to mercury) increases, the mercury removal efficiency were 31.3%,34.7%、40.0%, under the C/Hg ratio at 4000,6000 and 8000 respectively
     The elemental mercury removal capability in fabric filter was investigated using activated carbon as adsorbent. The total amount of Hg0 adsorption in the fabric filter can be divided into two parts, the amount of Hg0 adsorbed by the activated carbon collected on the filter surface, and the rest removed by the activated carbon somewhere inside the fabric filter. The elemental mercury removal efficiency of fabric filter in the presence of dust cake on the filter surface was investigated in detail. The results showed that:the elemental mercury removal efficiency was significantly improved with the C/Hg ratio increases. The mercury removal efficiency of the activated carbon inside the fabric filter was 30.4%、34.6%、40.3%, under the C/Hg ratio at 4000、6000 and 8000 respectively. But, the mercury removal efficiency of the activated carbon particles collected on the filter surface only reached 3.65%、3.20%、3.66% respectively, The chamber of filter made a major contribution to the mercury removal efficiency, and the dust cake is only a small part of the role. The change of C/Hg ratio has little effect on the elemental mercury removal of the dust cake. Fabric filter can be used as activated carbon adsorption reaction sites, for reducing mercury emissions from coal-fired flue gas.
     Based on the results of elemental mercury removal by activated carbon in the entrained-flow reactor and fabric filter, the model of mercury sorption by activated carbon in the chamber of filter was established. The factors affecting the elemental mercury adsorption on activated carbon were discussed, such as:C/Hg ratio, particle diameter, flue-gas temperature, flue-gas velocity, mercury concentration, using the present adsorption model.
     The manganese oxide was loaded on the activated carbon fiber (ACF) by impregnating and sintering. The samples of ACF were characterized before and after loading, using TEM、XPS、XRD and FTIR. The results show that manganese oxide was well dispersed on the surface of ACF. The particle diameter was about 50nm. The presence of manganese form was MnO and MnO2. The amount of C-OH、C=O、COOH was increased after loading on the surface of ACF. The adsorption ability of elemental mercury before and after modification was also studied. The breakthrough time was greatly extended after loading. The concentration of impregnating solution had a significant effect on the content of manganese on ACF. The removal efficiency of elemental mercury reached the best when the manganese content on the ACF surface was 6.7at.%. The loaded ACF showed a good adsorption property of elemental mercury at 150℃. The initial concentration of elemental mercury has an impact on the removal efficiency of elemental mercury.
     It is shown that elemental mercury adsorption removal by activated carbon in the bag filter is physical adsorption. The adsorption model can predict the impact of operating parameters on the activated carbon adsorption of elemental mercury. The adsorption of elemental mercury by the loaded ACF is chemical adsorption. It can promote the adsorption removal of elemental mercury. This study has a practical significance in the removal of elemental mercury by fabric filter.
引文
[1]M. Gochfeld, Cases of Mercury Exposure, Bioavailability, and Absorption[J], Ecotoxicology and Environmental Safety,2003,56:174~179
    [2]J.F. Risher, R. A. Nickle, S. N. Amler, Elemental Mercury Poisoning in Occupational and Residential Settings[J], Int. J. Hyg. Environ. Health,2003, 206:371~379
    [3]G. Drasch,, S.B. O'Reilly, C. Beinhoff, et al., The Mt. Diwata Study on the Philippines 1999—Assessing Mercury Intoxication of the Population by Small Scale Gold Mining[J]. Sci. Total Environ.2001,267:151~168
    [4]J. H. Pavlish, E. A. Sondreal, M. D. Mann, et al., Status Review of Mercury Control Options for Coal-fired Power Plants[J], Fuel Processing Technology, 2003,(82):89~165
    [5]GB13223-2011火电厂大气污染物排放标准[S],国家环境保护部与国家质量监督检验检疫总局联合发布,2011,7,29
    [6]H. Friedli, A. Arellano, S. Cinnirella, et al., Initial Estimates of Mercury Emissions to the Atmosphere from Global Biomass Burning[J], Environ. Sci. Technol., 2009,43,3507~3513
    [7]R.P. Mason, Mercury Emissions from Natural Processes and Their Importance in the Global Mercury Cycle, Springer, New York, USA,2009, chap.7,173~191
    [8]N. Pirrone, S. Cinnirella, X. Feng, Global Mercury Emissions to the Atmosphere from Anthropogenic and Natural Sources[J], Atmos. Chem. Phys., 2010,10:5951~5964
    [9]N. Pirrone, G.J. Keeler, J.O. Nriagu, Regional Differences in Worldwide Emissions of Mercury to the Atmosphere[J], Atmos. Environ.,1996,30:2981~2987
    [10]J.M. Pacyna, E.G. Pacyna, F. Steenhuisen, et al., Mapping 1995 Global Anthropogenic Emissions of Mercury, Dynamic Processes of Mercury and other Trace Contaminants in the Marine Boundary Layer of European Seas—ELOISE Ⅱ[J], Atmos. Environ.,2003,37:109-~117
    [11]E.G. Pacyna, J.M. Pacyna, F. Steenhuisen, et al., Global Anthropogenic Mercury Emission Inventory for 2000[J], Atmos. Environ.,2006,40:4048~4063
    [12]E.G. Pacyna, J.M. Pacyna, K. Sundseth, et al., Global Emission of Mercury to the Atmosphere from Anthropogenic Sources in 2005 and Projections to 2020[J], Atmos. Environ.,2010,44:2487~2499
    [13]K.H. Telmer, M.M. Veiga, World Emissions of Mercury from Artisanal and Small Scale Gold Mining, Springer, New York, USA,2009,131~172
    [14]Y. Wu, S. Wang, D.G. Streets, et al., Trends in Anthropogenic Mercury Emissions in China from 1995 to 2003[J], Environ. Sci. Technol.,2006,40:5312~5318
    [15]X.B. Feng, D. Streets, J.M. Hao, Mercury Emissions from Industrial Sources in China, Springer, New York, USA,2009,67~79
    [16]王立刚,刘柏谦,燃煤汞污染及其控制[M],冶金工业出版社,2008
    [17]G.H. Luttrell, J.N. KobLmueneh, R.H. Yoon, An Evaluation of Coal Preparation Technologies for Controlling Trace Element Emissions[J], Fuel Professing Technology,2000,65-66:407~422
    [18]A.C. Merdes, T.C. Keener, S.J. Khang, et al., Investigation into the Fate of Mercury in Bituminous Coal During Mild Pyrolysis, Fuel,1998,77:1783~1792
    [19]N.W. Merriam, C.Y. Cha, T.W. Kang, et al., Development of an Advanced Continuous Mild Gasification Process for The Production of Coproducts, Topical Report for Task 4, Mild Gasification Tests-System Integration Studies, Western Research Institute, Laramie, WY,1990, WRI Report to U.S. Department of Energy, WRI-91-R023
    [20]M. Wang, K. Tim. The Effect of Coal Volatility on Mercury Removal from Bituminous Coal During Mild Paralysis[J]. Fuel Processing Technology, 2000(67):147-161
    [21]D. Guffey, A.E. Bland. Thermal Pretreatment of Low-ranked Coal for Control of Mercury Emissions[J]. Fuel Processing Technology,2004,85:521~531
    [22]V. Lissianski, P. Maly, R. Seeker, et al., Mercury Control Using Combustion Staging[J], Am. Chem. Soc., Div. Fuel Chem.,2004,49 (1):291~293
    [23]C. R. McLarnon, E. J. Granite, H. W. Pennline, The PCO Process for Photo-Chemical Removal of Mercury from Flue Gas[J]. Fuel Processing Technology, 2005,87:85~89
    [24]E.J. Granite, H.W. Pennline, Photochemical Removal of Mercury from Flue Gas, Ind. Eng. Chem. Res.2002,41 (22):5470~5476
    [25]P. S. Nolan, K. E. Redinger, G. T. Amrhein et al., Mercury Emissions Control in Wet FGD Systems[A]. Presented at the Air Quality Ⅲ Conference, Arlington, VA, 2002
    [26]P. S. Nolan, K. E. Redinger, G. T. Amrhein et al., Demonstration of Additive Use for Enhanced Mercury Emissions Control in Wet FGD Systems[J], Fuel Processing Technology,2004,85:587~600
    [27]C.L. Senior, J.J. Helble, A.F. Sarofim, Predicting the Speciation of Mercury Emissions from Coal-fired Power Plants, in:Proc of Air Quality Ⅱ:Mercury, Trace Elements, and Particulate Matter Conf, McLean, VA, September 19~21,2000
    [28]K.C. Galbreath, C.L. Zygarlicke, E.S. Oslon, et al., Evaluating Mercury Transformation Mechanisms in a Laboratory-Scale Combustion System[J] Sci. Total Environ.,2000,261 (1-3):149~155
    [29]D.L. Laudal, J.S. Thompson, J.H. Pavlish, et al., Evaluation of Mercury Speciation at Power Plants Using SCR and SCR NOx Control Technologies. Presented at 3rd International Air Quality Conference, Arlington, VA, September 9-12,2002
    [30]C.L. Senior, Oxidation of Mercury Across SCR-Catalysts in Coal-Fired Power Plants Burning Low Rank Coals[A], Presented a DOE/NETL Mercury Control Technology R&D Program Review Meeting, Pittsburgh, August,12-~13,2003
    [31]C.W. Lee, R.K. Srivastava, S.B. Ghorshi, et al., Pilot-Scale Study of the Effects of Selective Catalytic Reduction Catalyst on Mercury Speciation in Illinois and Powder River Basin Coal Combustion Flue Gas[J]. J. Air Waste Manage. Assoc. 2006,56:643~649
    [32]S.J. Lee, C.W. Lee, S.D. Serre, et al., Study of Mercury Oxidation by SCR Catalyst in an Entrained-Flow Reactor under Simulated PRB Conditions[C], In Proceedings of the V Air Quality Conference, Washington, D.C., September 18~21,2005
    [33]H.Q. Yang, Z.H. Xu, M.H. Fan, et al., Adsorbents for Capturing Mercury in Coal-fired Boiler flue Gas[J], Journal of Hazardous Materials,2007,146:1~11
    [34]Y. Cao, C.M. Cheng, C. W. Chen et al., Abatement of Mercury Emissions in the Coal Combustion Process Equipped with a Fabric Filter Baghouse[J], Fuel,2008, 87:3322~3330
    [35]T.D.Brown, D.N.Smith, W.J.O'Dowd, et al., Control of Mercury Emissions from Coal-Fired Power Plants:a Preliminary Cost Assessment and the Next Steps for Accurately Assessing Control Costs[J]. Fuel Processing Technology, 2000,(65-66)311~341
    [36]E.J. Granite, H.W. Pennline, Novel Sorbents for Mercury Removal from Flue Gas[J]. Industrial & Engineering Chemistry Research,2000,39:1020~1029
    [37]T.G. Brna, J.D. Kilgroe, The Impact of Particulate Emissions Control on the Control of Other MWC Air Emissions[J], Journal of The Air & Waste Management Association,1990,40(9):1324~1328
    [38]C.R.McLarnon, M.D.Jones, Electro-Catalytic Oxidation Process for Multi-Pollutant Control at First Energy's R.E.Burger Generating Station[A], Presented at Electric Power 2000 Cincilmati Convention Center, April,2000
    [39]C.R.McLarnon, M.L.Horvath, Electro-Catalytic Oxidation Technology Applied to Mercury and Trace Elements Removal from Flue Gas[A], Presented at Conference on Air Quality Ⅱ MeLean, VA, September 20,2000
    [40]H.K. Choi, C. Lee, H. K. Lee, et al., Gaseous Mercury Removal in a Hybrid Particulate Collector[J]. Korean Journal Chemical Engineering,2007,24(2):361-367.
    [41]H.K. Choi, S.H. Lee, S.S. Kim.The Effect of Activated Carbon Injection Rate on the Removal of Element Mercury in A Particulate Collector with Fabric Filters[J]. Fuel Processing Technology,2009,90:107~112
    [42]S.R. Ness, G.E. Dunham, G.F. Weber, et al., SCR Catalyst-Coated Fabric Filters for Simultaneous NOx and High-Temperature Particulate Control[J]. Environmental Progress,1995,14:69~74
    [43]J.A. Hrdlicka, W.S. Seames, M.D. Mann, et al., Mercury Oxidation in Flue Gas Using Gold and Palladium Catalysts on Fabric Filters[J]. Environmental Science and Technology.2008,42:6677~6682
    [44JM.N. Cavalli, N. Lilkeb, Mechanical Milling for Catalyst Loading of Polymer Filters[J], Journal of Materials Processing Technology,2009,209:5423~5428
    [45]周劲松,王岩,胡长兴等,N2气氛下活性炭的汞吸附性能[J],动力工程,2008,28(4):625-628
    [46]周劲松,石建祥,高洪亮等,改性蛭石对气态汞的吸附效果[J],动力工程,2006,26(4):558-562
    [47]高洪亮,周劲松,骆仲涣等,改性活性炭对模拟燃煤烟气中汞吸附的实验研究[J],中国电机工程学报,2007,27(8):26-30[45]高洪亮,模拟燃煤烟气中汞形态转化及脱除技术的实验及机理研究[D],浙江大学,2004
    [48]杨宏旻,张斌,侯文慧等,负载CuO/Cl活性炭的气态汞脱除特性[J],南京航空航天大学学报,2009,41(06):814-818
    [49]张斌,范朋慧,周雷宇等,HNO3及NaOH改性活性焦吸附模拟烟气中SO2和Hg的实验[J],煤炭学报,2011,S1:163-166
    [50]任建莉,周劲松,骆仲泱等,新型吸附剂脱除烟气中气态汞的实验研究[J],中国电机工程学报,2007,27(2):48-53
    [51]赵毅,刘松涛,马宵颖等,改性钙基吸附剂的汞吸附特性实验研究[J],中国电机工程学报,2009,29(8):50-54
    [52]张亮,禚玉群,杜雯等,铜基改性非碳基吸附剂汞脱除性能研究[J],环境科学学报,2010,30(10):1926-1933
    [53]任建莉,陈俊杰,罗誉娅等,活性炭纤维脱除烟气中气态汞的试验研究[J],中国电机工程学报,2010,30(5):28-33
    [54]曾汉才,王欣,李松柳等,活性炭纤维脱除燃煤烟气中汞的试验研究[J],华中科技大学学报(自然科学版),2006,34(7):1-4
    [55]许绿丝,钟毅,金峰等,催化活性炭纤维脱硫除汞性能试验研究[J],安全与环境学报,2004,4(2):10-12
    [56]王运军,段钰锋,杨立国等,燃煤电站布袋除尘器和静电除尘器脱汞性能比较 [J],燃料化学学报,2008,36(1):23-29
    [57]黄治军,段钰锋,王运军等,电厂飞灰对烟气中汞吸附性能的试验研究[J],锅炉技术,2008,39(6):70-74
    [58]杨祥花,段钰锋,江贻满等,燃煤锅炉烟气和飞灰中汞形态分布研究[J],煤炭科学技术,2007,35(12):55-58
    [59]江贻满,段钰峰,王运军等,220MW燃煤机组飞灰对汞的吸附特性研究[J],热能动力工程,2008,23(1):55-59
    [60]江贻满,段钰峰,杨祥花等,ESP飞灰对燃煤锅炉烟气汞的吸附特性[J],东南大学学报,2007,37(3):436-440
    [61]孟素丽,段钰锋,黄治军等,燃煤飞灰的物化性质及其吸附汞影响因素的试验研究[J],热力发电,2009,38(8):46-51
    [62]孟素丽,段钰锋,黄治军等,燃煤飞灰吸附气态汞影响因素的试验研究[J].动力工程,2009,29(5):487-491
    [63]孟素丽,段钰锋,黄治军等,烟气成分对燃煤飞灰汞吸附的影响[J],中国电机工程学报,2009,29(20):66-73
    [64]J.R.Flora, R.D.Vidic, W.Liu, Modeling Powdered Activated Carbon Injection for the Uptake Elemental Mercury Vapors[J], Air & Waste Management Association, 1998(48):1051~1059
    [65]T.C.Ho, N.kobayashi, Y.K.Lee, et.al., Modeling of Mercury Sorption by Activated Carbon in a Confined, a Semi-Fluidized, and a Fluidized Bed[J], Waste Management,2002(22):391~398
    [66]F.B. Meserole, R. Chang, T.R. carey, et.al., Modeling Mercury Removal by Sorbent Injection[J], Air & Waste Management Association,1999(49):694~704
    [67]T.R. Carey, J. Hargrove, C.F. Richardson, et.al., Factors Affecting Mercury Control in Utility Flue Gas Using Activated Carbon[J], Air & Waste Management Association,1998(48):1166~1174.
    [68]Tai-Gyu Lee, Study of Mercury Kinetics and Control Methodogies in Simulates Combustion Flue Gases[D], University of Cincinnati,1999
    [69]F. Scala, Simulation of Mercury Capture by Activated Carboinjection in Incinerator Flue Gas 2:Fabric Filter Removal[J], Environmental Science & Technology,2001,35:4373~4378
    [70]F. Scala, Simulation of Mercury Capture by Activated Carbon Injection in Incinerator Flue Gas.1. in Duct Removal[J], Environ. Sci. Technol.,2001,35(21): 4367~4372
    [71]F. Scala, Modeling Mercury Capture in Coal-Fired Power Plant Flue Gas[J], Ind.Eng.Chem. Res.,2004,43(10):2575~2589
    [72]高洪亮,模拟燃煤烟气中汞形态转化及脱除技术的实验及机理研究[D],浙江大学,2004
    [73]高洪亮,周劲松,骆仲泱,模拟燃煤烟气中汞在活性炭上吸附的动力学研究[J],中原工学院学报,2005,16(6):1-5
    [74]任建莉,燃煤过程汞析出及模拟烟气中汞吸附脱除试验和机理研究[D],浙江大学,2003
    [75]任建莉,周劲松,骆仲泱等,汞吸附过程的试验研究和数学模型[J],中国电机工程学报,2006,26(11):1-6
    [76]沈猛,Bench-Scale低成本高效联合脱除可吸入颗粒物及Hg0装置总体设计与试验研究[D],东华大学,2009
    [77]胡长兴,燃煤电站汞排放及活性炭稳定吸附机理研究[D],浙江大学,2007
    [78]Wang Ligang, Chen Changhe, K. H. Kolker, Modeling Mercury Adsorption on Carbon Particles in Simulated Flue Gas[J], Journal of Southeast University (English Edition),2006,22(2):256~259
    [79]王欣,活性炭纤维低温吸附脱除汞的试验研究[D],华中科技大学,2006
    [80]中国煤炭网,聚焦“十一五”电源、电网、新能源、节能减排成就http://www.coal-china.com/article.asp?id=11142
    [81]龙智慧,我国百万千瓦火电机组世界第一,中国能源报,2010,3,22
    [82]全国电力供需与经济运行形势分析预测报告(2010~2011年度),http://energy.people.com.cn/GB/14252844.html
    [83]E. Raask, The Mode of Occurrence and Concentration of Trace Elements in Coal[J], Fuel,1985,11:97~118
    [84]R. Meij, The Fate of Mereury in Coal-Fired Power Plants and the Influence of Wet Flue-Gas Desulphurization[J], Water,Air,and Soil Pollution,1991,56:21~33.
    [85]P. Chu, D.B. Porcella, Mereury Stack Emission from U.S. Electric Utility Power Plants[J], Water,Air and Soil Pollution,1995,80:135~144
    [86]K.S. Park, Y.C. Seo, S.J. Lee, Emission and Speciation of Mercury from Various Combustion Sources[J], Powder Technology,2008,180:151~156
    [87]王起超,马如龙,煤及其灰渣中的汞[J],中国环境科学,1997,17(1):76-79
    [88]王起超,沈文国,麻壮伟,中国燃煤汞排放量估算[J],中国环境科学,1999,19(4):318-321
    [89]张军营,煤中潜在毒害微量元素富集规律及其污染性抑制研究[D],中国矿业大学,1999
    [90]唐修义,黄文辉,中国煤中微量元素[M],商务印书馆,2004
    [91]白向飞,中国煤中微量元素分布赋存特征及其迁移规律试验研究[D],煤炭科学研究总院,2003
    [92]任德贻,赵峰华,代世峰等,煤的微量元素地球化学[M],科学出版社,2006
    [93]郑刘根,煤中汞的环境地球化学研究[D],中国科学技术大学,2008
    [94]R.B. Finkelman, Modes of Occurrence of Potentially Hazardous Elements in Coal:Levels of Confidence[J]. Fuel Processing Technology,1994,39:21~34
    [95]R.B. Finkelman, C.A. Palmer, M.R. Krasnow, et al., Combustion and Leaching Behaviour of Elements in The Argonne Premium Coal Samples[J], Energy and Fuel, 1990,4(6):755~768
    [96]R.A. Cahill, R.H. Shiley, Forms of Trace Elements in Coal[C]. Proc. Int. Conf. Coal Sci., Essen, Germany,1981
    [97]D.J.Swaine, Trace Elements During the Mining and Beneficiation of Coal[J], Coal Preparation,1998,19:177~193
    [98]A.G. Dvomikov, Forms of Mercury in Donets Basin Coals[J], Geol.Zh, 1981,41:96~104
    [99]郭欣,郑楚光,刘迎晖等,煤中汞,砷,硒赋仔形态的研究[J],工程热物理学报,2001,22(6):763-766
    [100]冯新斌,洪业汤,洪冰等,煤中汞的赋存状态研究[J],矿物岩石地球化学通报,2001,20(2):71-78
    [101]张军营,任德贻,王运泉等,煤中有机态微量元素含量与煤级关系[J],煤田地质与勘探,2000,28(6):11-12
    [102]赵峰华,任德贻,煤中As赋存状态的逐级化学提取研究[J],环境科学,1999,20:79-81
    [103]苏立,李玉林,路迈西等,原煤中汞分布赋存规律的测定与分析[J],煤炭科学技术,2009,37(2):121-123
    [104]张成,陈刚,晁岳建,曹娜,贵州省六枝、遵义矿区煤中汞和硫的赋存相关特性研究[J],燃料化学学报,2009,37(1):1-5
    [105]郭少青,杨建丽,刘振宇,晋城煤中汞的热稳定性与赋存形态的研究[J],燃料化学学报,2009,37(2):115-118
    [106]郑刘根,刘桂建,齐翠翠等,淮北煤田煤中汞的赋存状态[J],地球科学—中国地质大学学报,2007,32(2):279-284
    [107]冯立品,煤中汞的赋存状态和选煤过程中的迁移规律研究[D],中国矿业大学(北京),2009,
    [108]王起超,麻壮伟,沈文国等,煤炭及其灰渣中的有机汞[J],中国环境科学,2001,21(1):54-57
    [109]W.P. Linak, J.O.L. Wendt, Trace Metal Transformation Mechanisms During Coal Combustion[J], Fuel Processing Technology,1994,39(2):173~198
    [110]F. Frandsen, K.D. Johansen, P. Rasmussen, Trace Elements from Combustion and Gasification of Coal-an Equilibrium Approach[J], Progress in Energy and Combustion Science,1994,20(2):115~138
    [111]王泉海,煤燃烧过程中汞排放及其控制的实验及机理研究[D],华中科技大学,2006
    [112]J.J. Helble, W. Mojtahedi, J. Lyyranen, et al., Trace Element Partitioning During Coal Gasification[J], Fuel,1996,75:931~939
    [113]S. K. Durlak, P. Biswas, J.C. Shi, Equilibrium Analysis of The Affect of Temperature, Moisture and Sodium Content on Heavy Metal Emissions From Municipal Solid Waste Incinerators[J], Journal of Hazardous Materials,1997,9(56):1~20
    [114]B. Hall, O. Lindqvist, E. Ljungstroem, Mercury Chemistry in Simulated Flue Gases Related to Waste Incineration Conditions[J], Environmental Science and Technology,1990,24 (1):108~111
    [115]B. Hall, P. Schager, O. Lindqvist, Chemical Reactions of Mercury in Combustion Flue Gases[J], Water Air and Soil Pollution,1991(4),56:3~14
    [116]S.B. Ghorishi, Fundamentals of Mercury Speciation and Control in Coal-Fired Boilers[R], Report EPA-600/R-98-014, U.S. February 1998
    [117]J.D. Kilgroe, C.B. Sedman, R.K. Srivastava, et al., Control of Mercury Emissions from Coal-Fired Electric Utility Boilers: Interim Report, No. EPA-600/R-01-109, U.S., December 2001
    [118]D.L. Laudal, T.D. Brown, B.R. Nott, Effects of Flue Gas Constituents on Mercury Speciation[J], Fuel Process. Technol.2000,65~66:157~165
    [119]T. R. Carey, R.C. Skarupa, O.W. Hargrove, Enhanced Control of Mercury and other HAPs by Innovative Modifications to Wet FGD Processes, Contract DE-AC22-95PC95260,USA:the U.S.Department of Energy,1998
    [120]P. Schager, The Behaviour of Mercury in Flue Gases[R], National Energy Administration, Sweden, Report,1990
    [121]S. Niksa, J.J. Helble, N. Fujiwara, Kinetic Modeling of Homogeneous Mercury Oxidation:the Importance of NO and H2O in Predicting Oxidation in Coal-Derived Systems[J]. Environ. Sci. Technol.2001,35 (18):3701~3706
    [122]S. Niksa, J. J. Helble, N. Fujiwara, Interpreting Laboratory Test Data on Homogeneous Mercury Oxidation in Coal-Derived Exhausts[C]. In Proceedings Air & Waste Management Association Annual Conference, Orlando, June 2001
    [123]J.F. Roesler, R.A. Yetter, F.L. Dryer, Detailed Kinetic Modeling of Moist CO Oxidation Inhibited by Trace Quantities of HC1[J], Combust. Sci. and Tech.,1992, 85:1~22
    [124]J.F. Roesler, R.A. Yetter, F.L. Dryer, Kinetic Interactions of CO, NOx, and HCl Emissions in Post Combustion Gases[J]. Combustion and Flame 1995,100:495~504.
    [125]N.G. Widmer, J. West, J.A. Cole, Thermochemical Study of Mercury Oxidation in Utility Boiler Flue Gases[C], In Proceedings Air & Waste Management Association Annual Conference, Salt Lake City, UT, June,2000.
    [126]J. Qiu, R.O. Sterling, J.J. Helble, Development of an Improved Model for Determining the Effects of SO2 on Homogeneous Mercury Oxidation[C], In Proceedings of the 28th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, FL, March,2003.
    [127]M.H. Xu, Y. Qiao, J. Liu, et al., Kinetic Calculation and Modeling of Trace Element Reactions During Combustion[J], Powder Technology,2008,180:157~163
    [128]M.T.Allen,R.A.Yetter,F.L.Dryer, High Pressure Studies of Moist Carbon Monoxide/Nitrous Oxide Kinetics[J],Combust.Flame,1997,109(3):449~470
    [129]M.A. Mueller, R.A. Yetter, F.L. Dryer, Flow Reactor Studies and Kinetic Modeling of The H2/O2/NOx and CO/H2O/O2/NOx Reactions[J], Int. J. Chem. Kinet. 1999,31 (10):705~724
    [130]M.A. Mueller, R.A. Yetter, F.L. Dryer, Flow Reactor Studies and Kinetic Modeling of the H2/O2 Reaction[J], Int. J. Chem. Kinet.1999,31 (2):113~125
    [131]M.A. Mueller, R.A. Yetter, F.L. Dryer, Kinetic Modeling of The CO/H2O/02/N0/SO2 System:Implications for High-Pressure Fall-Off in The SO2+ O(+M)=SO3(+M) Reaction[J], Int. J. Chem. Kinet.2000,32 (6):317~339
    [132]A. Kolker, C. L. Senior, J. C. Quick, Mercury in Coal And The Impact of Coal Quality on Mercury Emission From Combustion Systems[J], Applied Geochemistry, 2006.21(11):1821~1836
    [133]高洪亮,王向宇,周劲松等,静电除尘器对燃煤电站汞排放的影响[J],锅炉技术,2007,38(5):63-57
    [134]B. K. Gullett, S. B. Ghorishi, W. Jozewiez, The Advantage of Illinois Coal for FGD Removal of Mercury[R], Final Technical Report, October,2001
    [135]M.H. Mendelsohn, J.B.L. Harkness, Enhanced Flue-Gas Denitrification Using Ferrous-EDTA and a Polyphenolic Compound in an Aqueous Scrubber System[J], Energy& Fuels,1991,5(2):244~248
    [136]杨宏旻,L.K. Lei, C. Yan等,电站烟气脱硫装置的脱汞特性试验[J],动力工程,2006,26(4):554-558
    [137]L. V. Heebink, D. J. Hassett, Mercury Release from FGD[J], Fuel, 2005,84:1372~1377
    [138]L. Zhang, Y.Q. Zhuo, L. Chen, et al., Mercury Emissions from Six Coal-Fired Power Plants in China[J], Fuel Processing Technology,2008,89:1033~1040
    [139]R. Meij, H. Winkel, Mercury Emissions from Coal-fired Power Stations:the Current State of the Art in the Netherlands[J], Science of the Total Environment,2006, 368:393~396
    [140]Power Plant Evaluation of the Effect of Selective Catalytic Reduction in Mercury[R], EPRI Technical Report No.1005400,2002
    [141]Impacts of NOx Controls on Mercury Controllability[R], EPRI Technical Report No.1004000,2002
    [142]H.M. Yang, W.P. Pan, Transfor Mation of Mercury Speciation Through the SCR System in Power Plants[J], Journal of Emironmental Sciences,2007,19:181~184
    [143]陈进生,袁东星,李权龙等,燃煤烟气净化设施对汞排放特性的影响[J],中国电机工程学报,2008,28(2):72-76
    [144]C.L. Wu, Y. Cao, Z.B. Dong, et al., Evaluation of Mercury Speciation and Removal Through Air Pollution Control Devices of a 190MW Boiler[J], Journal of Environmental Sciences,2010,22(2):277~282
    [145]F. Scala, R. Chirone, A. Lancia, Elemental Mercury Vapor Capture by Powdered Activated Carbon in a Fluidized Bed Reactor[J], Fuel,2011,90:2077~2082
    [146]J. Bustard, M. Durham, T. Starns, et al., Full-scale Evaluation of Sorbent Injection for Mercury Control on Coal-Fired Power Plants[J], Fuel Processing Technology,2004.85:549~562
    [147]J. Wu, Y. Cao, W.G. Pan, et al., Evaluation of Mercury Sorbents in a Lab-Scale Multiphase Flow Reactor, a Pilot-Scale Slipstream Reactor and Full-Scale Power Plant[J], Chemical Engineering Science,2008,63:782~790
    [148]R. Yan, D.T. Liang, L. Tsen, etal., Bench-Scale Experimental Evaluation of Carbon Performance on Mercury Vapor Adsorption[J], Fuel,2004,83:2401~2409
    [149]王军辉,活性炭吸附脱除燃煤烟气中汞的研究[D],2006年,浙江大学
    [150]北川浩,铃木谦一郎,吸附的基础与设计,北京:化学工业出版社,1983
    [151]王军辉,史惠祥,汪大翠,固定床活性炭吸附元素态汞的试验研究[J],浙江大 学学报(理学版),2008,35(1):69-72.
    [152]S.V. Krishnan, B.K. Gullett, W. Jozewci, Sorption of Elemental Mercury by Activated Carbons[J], Envir. Sci. Technol.,1994,28(8):1506~1512
    [153]H.K. Choi, S.H. Lee, S.S. Kim, The Effect of Activated Carbon Injection Rate on the Removal of Elemental Mercury in A Particulate Collector with Fabric Filters[J], Fuel Processing Technology,2009,90:107~112
    [154]F. Scala, R. Chirone, A. Lancia, Elemental Mercury Vapor Captrure by Powdered Activated Carbon in a Fluidized Bed Rector[C],29th meeting on combustion, Pisa,2006
    [155]F. Scala, R. Chirone, A. Lancia, In-duct Removal of Mercury from Coal-Fired Power Plant Flue Gas by Activated Carbon: Assessment of Entrained Flow Versus Wall Surface Contributions[J], Environmental Engineering Science, 2008,25(10):1423~1428
    [156]J.R.V. Flora, R.A. Hargis, W.J. O'Dowd, et al., Modeling Sorbent Injection for Mercury Control in Baghouse Filters:Ⅰ — Model Development and Sensitivity Analysis[J], Air & Waste Management Association,2003,53:478~488
    [157]J.R.V. Flora, R.A. Hargis, W.J. O'Dowd, et al., Modeling Sorbent Injection for Mercury Control in Baghouse Filters:Ⅱ—Pilot-Scale Studies and Model Evaluation[J], Air & Waste Management Association,2003,53:489~496
    [158]J.R.V. Flora, R.A. Hargis, W.J. O'Dowd, et al., The Role of Pressure Drop and Flow Redistribution on Modeling Mercury Control Using Sorbent Injection in Baghouse Filters[J], Air & Waste Management Association,2003,56:343~349
    [159]郝吉明,马广大,大气污染控制工程[M],北京:高等教育出版社,2003
    [160]午旭杰,以半干法为基础的新型燃煤汞排放控制机理及试验研究[D],浙江大学,2004
    [161]顾惕人,朱埗瑶,李外郎等,表面化学[M],北京:科学出版社,2001
    [162]刘海蛟,MCFB烟气净化系统的多种污染物协同脱除研究[D],浙江大学,2009
    [163]E.L.Cussler, Diffusion:Mass Transfer in Fluid Systems[M], Cambridge University Press, New York,1984
    [164]Flora, J.R.V., Hargis, R.A., O'Dowd, W.J., et al., Modeling Sorbent Injection for Mercury Control in Baghouses:Ⅰ-Model Development and Sensitivity Analysis[J]. Journal of the Air & Waste Management Association,2003,53,478~488
    [165]Flora, J.R.V., Hargis, R.A., O'Dowd, W.J., et al., Modeling Sorbent Injection for Mercury Control in Baghouses:Ⅱ Pilot-Scale Studies and Model Evaluation[J]. Journal of the Air & Waste Management Association,2003,53:489~496
    [166]Rong Yan, David Tee Liang, Leslie Tsen, et al., Bench-scale Experimental Evaluation of Carbon Performance on Mercury Vapour Adsorption[J], Fuel, 2004,83:2401~2409
    [167]王军辉,活性炭吸附脱除燃煤烟气中汞的研究[D],浙江大学,2006
    [168]许绿丝,改性处理活性炭纤维吸附氧化脱除SO2/NOx/Hg的研究[D],华中科技大学,2007
    [169]Y.H. Li, C.W. Lee, B.K. Gullett, The Effect of Activated Carbon Surface Moisture on Low Temperature Mercury Adsorption[J], Carbon,2002,40:65~72
    [170]E. Granite, H. Pennline, R. Hargis, Novel Sorbents for Mercury Removal from Flue Gas[J], Ind. Eng. Chem. Res.,2000,39:1020~1029
    [171]S. Cavallaro, N. Bertuccio, P. Antonucci, et al., Mercury Removal From Waste Gases by Manganese Oxide Acceptors[J], Journal of Catalysis,1982,73:337~348
    [172]S.H. Qiao, J. Chen, J.F. Li, et al., Adsorption and Catalytic Oxidation of Gaseous Elemental Mercury in Flue Gas over MnOx/Alumina[J], Ind. Eng. Chem. Res.,2009,48:3317~3322
    [173]P. Kowalczyk, V.M. Gun'ko, A.P. Terzyk, et al., The Comparative Characterization of Structural Heterogeneity of Mesoporous Activated Carbon Fibers (ACFs)[J], Applied Surface Science,2003,206(1-4):67~77
    [174]任建莉,罗誉娅,陈俊杰等,汞吸附过程中载银活性炭纤维的表而特征[J],中国电机工程学报,2008,29(35):71-76
    [175]张晶,吴艳波,吕成飞等,载Mn活性炭纤维的制备及性能研究[J],化工新型材料,2009,37(7):80-83
    [176]程抗,王祖武,左蓉等,等离子体改性对活性炭纤维表面化学结构的影响[J], 环境工程,2009,27(2):100-103
    [177]Y.H. Li, C.W. Lee, B.K. Cullett, Importance of Activated Carbon'S Oxygen Surface Functional Groups on Elemental Mercury Adsorption[J], Fuel, 2003,82:451~457
    [178]J. Takenami, Md. A. Uddin, E. Sasaoka, et.al., Removal of Elemental Mercury from Dry Methane Gas with Manganese Oxides[J], World Academy of Science, Engineering and Technology,2009,56:26~30
    [179]W. Jozewicz, K. Gulletb, Sorption of Elemental Mercury by Activated Carbons[J]. Environmental Science Technology,1994,28(3):1506~1512
    [180]黄华存,叶代启,黄碧纯,ACF表面改性及其脱除氮氧化物的研究进展[J],合成纤维工业,2006,29(6):40-44
    [181]陈俊杰,任建莉,钟英杰等,活性炭纤维吸附汞的量子化学研究[J],动力工程学报,2010,30(12):960-965
    [182]G.I. Golodets, Heterogeneous Catalytic Reactions Involving Molecular Oxygen[M], Elsevier: New York,1983
    [183]J.W. Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry[M], Longmans Green and Co.:New York,1952
    [184]A. A. Presto, E.J. Granite, Survey of Catalysts for Oxidation of Mercury in Flue Gas[J], Environ. Sci. Technol.,2006,40(18):5601~5609

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700