用户名: 密码: 验证码:
轻烃催化裂解催化剂的催化机理及其动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻质烯烃,如乙烯、丙烯等,作为石化工业下游产品的重要原料,通常来自于石脑油的热裂解工艺(蒸气热裂解)。其反应温度高,消耗了炼油工业中40%的能量。而新兴的催化裂解技术不仅可以比热裂解温度降低50-200℃,而且相对于热裂解较为固定的产物组成,能对各种产物的选择性进行灵活的调整。为了缓解日益严峻的环境问题以及能源枯竭的威胁,达到节能减排的目的,以及实现对产物分布的控制,轻烃催化裂解就得到了越来越多的关注,成为了项很有前景的课题,而裂解催化剂的开发与研究则是这项课题的关键。
     本文对上海石化院提供的两代催化裂解催化剂H0108以及P57进行了全面的分析。纯分子筛型H0108催化剂活性较高,其水热稳定性是关键问题。本文通过原位漫反射红外光谱等表征手段对于正庚烷在水热处理前后的H0108催化剂上的反应机理进行了研究,分析了水热处理前后催化剂活性中心以及孔道结构的变化,并且建立了微孔与介孔内单分子以及双分子反应的机理模型。分子筛与氧化铝混合型催化剂P57的水热稳定性较高,其催化性能则成为关键问题。本文对不同反应物在P57催化剂上的活性以及产物分布进行了考察,分析了不同反应物在低酸密度P57催化剂上所遵从的反应路径,并建立了反应机理模型。此外,通过P57与H0108的活性稳定性对比,说明了催化剂结构、酸性位差异对催化裂解反应路径、催化剂活性以及催化剂水热稳定性的影响。
     除了催化反应机理以及催化剂的活性,本文还对催化剂的失活机制与再生过程进行了研究。通过对比P57与H0108催化剂失活速率与再生性能以及表征失活催化剂的结构与酸性位,发现P57主要失活方式为积炭失活,而H0108则不仅存在积炭失活,还存在分子筛骨架脱铝的结构性失活。进一步利用原位红外技术对H0108骨架脱铝失活过程进行了机理研究,并建立起骨架脱铝过程的动力学模型。最后,通过TG-DTG对两种催化剂上的积炭进行考察,分别建立起了无水蒸气存在和有水蒸气存在两种反应条件下的烧炭再生动力学模型,其中无水反应条件下失活的H0108催化剂存在两种积炭,对应两段反应动力学模型。有水反应条件下失活的H0108催化剂、有水以及无水反应条件下失活的P57催化剂都只对应一段再生动力学模型。
The petrochemical industry is the foundation of the modern society. Basic chemicals such as ethylene, propylene, and other light olefins are currently manufactured mainly by thermal cracking of naphtha, i.e., so-called steam cracking or steam pyrolysis. However, the current steam pyrolysis process, taking place at the high temperature, consumes as much as 40% of the energy needed by the entire petrochemical industry. Global increasing environmental issues and the drying fossil fuel energy have stimulated the development of processes of energy saving and emission reduction. For this purpose, the research on the catalytic cracking to replace the steam cracking of light hydrocarbons has attracted more and more scientific interests. The catalytic cracking can not only reduce the reaction temperature about 50~200℃but also control the products distribution of light olefins easily. Hence, the R&D of proper catalyst plays the key role in the catalytic cracking.
     The present work compared H0108 and P57 catalysts which represent two generations of the catalytic cracking catalysts synthesized and provided by Shanghai Research Institute of Petro-chemical Technology. The pure zeolites catalyst H0108, corresponding to the first catalyst generation, showed high catalytic activity but low hydrothermal stability in the reaction. The hydrothermal treatment can easily change the active sites and porous channel structures of H0108. The in-situ Diffuse Reflectance Infrared Fourier transform Spectroscopy (DRIFTS) was used to analyze the cracking mechanisms of fresh and the hydrothermal treated H0108. And a brief model of the catalytic cracking of n-heptane in micropores and mesopores was proposed.
     The composite catalyst P57 constitutes of the equal amount of zeolites and Al2O3, which exhitied high hydrothermal stability and mild catalytic activity. The phase pattern, activity, products distribution, acidity and stability were analyzed by various characteristic methods. Different feedstocks were employed to study the catalytic mechanisms and reaction pathways at different temperatures. Comparisons of the structures and natures between H0108 and P57 were also studied. Besides, the mechanisms of the catalytic cracking of n-heptane over H0108 and P57 were discussed.
     Besides the activity and the reaction mechanism, the deactivation and the regeneration of these two catalysts were studied. The coke was the main cause of the deactivation over P57. For H0108, its deactivation is not only due to the coke but also the framework dealumination. Moreover, in situ FTIR was employed to construct the mechanistic model and the kinetic model of the freamework dealumination of H0108. Finally, the types of coke and the kinetic models of the regeneration by the coke combustion over the deactivated H0108 and P57 were studied by TG-DTG.
引文
[1]Yoshimura Y, Kijima N, Hayakawa T, Murata K, Suzuki K, Mizukami F, Matano K, Konishi T, Oikawa T, Saito M, Shiojima T, Shiozawa K, Wakui K, Sawada G, Sato K, Matsuo S, Yamaoka N. Catalytic cracking of naphtha to light olefins. Catal Surv Jpn,2000,4(2): 157-167
    [2]Kolts J H. Olefin production over catalytic oxides of Mn and at least one of Nb and a lanthanide. US patent,4579997,1986
    [3]Kolts J H. Propylene and ethylene selectivity with H2S. US patent,4658081,1987
    [4]Kolts J H. Conversion of C3 and C4 hydrocarbons to less saturated hydrocarbons. US patent, 4621163,1986
    [5]Niwa M, Nishikawa S, Katada N.IRMS-TPD of ammonia for characterization of acid site in beta-zeolite. Microporous Mesoporous Mater,2005,82(1-2):105-112
    [6]Reynolds D L, Youngblood D J, Parker L C, Colvert J H. CATALYTIC CRACKING OF NAPHTHA. US patent,3761394,1973
    [7]Youngblood D J, Reynolds D L. CATALYTIC CRACKING OF NAPHTHAS. US patent, 3776838,1973
    [8]Haag W O, HuangT J. Conversion of olefinic naphtha. US patent,4097367,1978
    [9]谢朝钢,李再婷,施文元,汪燮卿.催化热裂解制取乙烯和丙烯的方法.中国专利,98120236.5.1998
    [10]侯焕娣,李锐,崔德春,张书红,王子军,李萍.一种催化裂解生产乙烯和丙烯的方法.中国专利,200810115864.2,2008
    [11]滕加伟,赵国良,金文清,谢在库.用于烯烃催化裂解生产丙烯的方法.中国专利,200310108177.5.2003
    [12]滕加伟,赵国良,宋庆英,谢在库.催化裂解生产丙烯的方法.中国专利,02137457.0,2002
    [13]金文清,滕加伟,李斌,谢在库.用于烯烃催化裂解生产丙烯、乙烯的方法.中国专利,200410024733.5,2004
    [14]程义贵,茅文星,王萍,巴海鹏.催化裂解制取低碳数烯烃的催化剂及其制备方法和应 用.中国专利,02129551.4,2002
    [15]茅文星,王萍,陈硕,王永春,李小平,郭敬杭,巴海鹏,吴庆凤.一种催化裂解制取烯烃的方法.中国专利,200510117435.5,2005
    [16]徐龙伢,朱向学,刘盛林,谢素娟,牛雄雷.C4-C6烯烃催化裂解制丙烯/乙烯的方法.中国专利,03158799.2,2003
    [17]魏迎旭,刘中民,王公慰,张新志,胡杰,杨继刚,王华,许磊,齐越.烃类催化裂解制烯烃并联产芳烃催化剂及制法和应用.中国专利,02152479.3,2002
    [18]王垚,魏飞,钱震,袁学民,周华群,刘家强.流化床催化裂解生产丙烯的方法及反应器.中国专利,200610144290.2,2006
    [19]Chen N Y, Garwood W E. Some catalytic properties of ZSM-5, a new shape selective zeolite. J Catal,1978,52(3):453-458
    [20]Buchanan J S. Reactions of model compounds over steamed ZSM-5 at simulated FCC reaction conditions. Appl Catal,1991,74(1):83-94
    [21]Bolton A P, Bujalski R L. The role of the proton in the catalytic cracking of hexane using a zeolite catalyst. J Catal,1971,23(3):331-339
    [22]Wang Q, Zhang S, Cai G, Li F, Xu L, Huang Z, Li Y. Rare earth—ZSM-5/ZSM-11 cocrystalline zeolite US patent,5869021,1999
    [23]高永灿.催化裂化过程中骨架异构化反应的研究—Ⅰ.催化裂化工艺过程中骨架异构化反应的表征及其特点.石油学报:石油加工,2004,20(5):20-26
    [24]Kotrel S, Knozinger H, Gates B C. The Haag-Dessau mechanism of protolytic cracking of alkanes. Microporous Mesoporous Mater,2000,35-6:11-20
    [25]Guisnet M, Gnep N S. Mechanism of short-chain alkane transformation over protonic zeolites. Alkylation, disproportionation and aromatization. Appl Catal A Gen,1996,146(1): 33-64
    [26]Corma A, Orchilles A V. Current views on the mechanism of catalytic cracking. Microporous Mesoporous Mater,2000,35-6:21-30
    [27]Zhao Y X, Wei F, Yu Y. Formation of coke and minor products in 2-methylpentane cracking over USHY AIChEJ,2008,54(3):750-755
    [28]Kung H H, Williams B A, Babitz S M, Miller J T, Snurr R Q. Towards understanding the enhanced cracking activity of steamed Y zeolites. Catal Today,1999,52(1):91-98
    [29]李小明,宋芙蓉.催化裂解制烯烃的技术进展.石油化工,2002,(07):569-573
    [30]程义贵,茅文星,贺英侃.烃类催化裂解制烯烃技术进展.石油化工,2001,(04):311-314
    [31]刘媛媛.轻烃裂解催化剂的反应与再生行为研究[硕士学位论文],杭州,浙江大学,2008
    [32]颜志鹏.轻烃催化裂解制乙烯丙烯催化剂的开发研究[硕士学位论文],杭州,浙江大学,2008
    [33]Gartside R, Johnson A, Ross J, Duncan D. Olefin production from heavy hydrocarbon feed. US patent,4663019,1987
    [34]Xie C G, Gao Y C. Advances in DCC Process and Catalyst for Propylene Production from Heavy Oils. China Petrol Process Petrochem Tech,2008, (4):1-5
    [35]谢朝钢.制取低碳烯烃的催化裂解催化剂及其工业应用.石油化工,1997,26(12):825-829
    [36]谢朝钢,汪燮卿,郭志雄,魏强.催化热裂解(Cpp)制取烯烃技术的开发及其工业试验.石油炼制与化工,2001,32(12):7-10
    [37]张执刚,谢朝钢,施至诚,王亚民.催化热裂解制聚乙烯和丙烯的工艺研究.石油炼制与化工,2001,32(5):21-24
    [38]沙颖逊,崔中强,王龙延,孟凡东,王国良.重油直接裂解制乙烯的HCC工艺.石油炼制制与化工,1995,(06):9-14
    [39]沙颖逊,崔中强,王明党,王龙延,王国良,张洁.重油直接裂解制乙烯的LCM-5催化剂研究.石油炼制与化工,2000,(01):29-32
    [40]沙颖逊,崔中强,王明党,王国良.重油直接裂解制乙烯技术的开发.炼油设计,2000,(01):16-18
    [41]钱伯章.增产丙烯技术及其进展.石油炼制与化工,2001,32(11):19-23
    [42]刘俊涛,谢在库,徐春明,钟思青,白尔铮.C4烯烃催化裂解增产丙烯技术进展.化工进展,2005,(12):1347-1351
    [43]戴伟,罗晴,王定博.烯烃转化生产丙烯的研究进展.石油化工,2008,37(5):425-433
    [44]侯焕娣,李锐,崔德春,张书红,王子军,李萍.催化裂解生产乙烯丙烯的方法.中国专利,200510028797.7,2005
    [45]王定博,李普阳,韦以.催化裂解制取低碳数烯烃的方法.中国专利,200410030738.9, 2004
    [46]Zheng W, Cheng D G, Zhu N, Chen F Q, Zhan X L. Studies on the structure and catalytic performance of S and P promoted Na-W-Mn-Zr/SiO2 catalyst for oxidative coupling of methane. JNatr Gas Chem,2010,19(1):15-20
    [47]Chen F Q, Zheng W, Zhu N, Cheng D G, Zhan X L. Oxidative coupling of methane over Na-W-Mn-Zr-S-P/SiO2 catalyst:Effect of S, P addition on the catalytic performance. Catal Lett,2008,125(3-4):348-351
    [48]Popova M, Minchev C, Kanazirev V. Methanol conversion to light alkenes over SAPO-34 molecular sieves synthesized using various sources of silicon and aluminium. Appl Catal A Gen,1998,169(2):227-235
    [49]Marchi A J, Froment G F. Catalytic Conversion of Methanol to Light Alkenes on Sapo Molecular-Sieves. Appl Catal,1991,71(1):139-152
    [50]Bogdanchikova N E, P. Petranovskii V, Machorro M R, Sugi Y, Soto G V M, Fuentes M S. Stability of silver clusters in mordenites with different SiO2/Al2O3 molar ratio. Appl Surf Sci, 1999,150(1-4):58-64
    [51]Kumar N, Byggningsbacka R, Lindfors L. Aromatization ofn-butane over Ni-ZSM-5 and Cu-ZSM-5 zeolite catalysts prepared by using Ni and Cu impregnated silica, fiber. React Kinet Catal Lett,1997,61(2):297-305
    [52]Wakui K, Satoh K, Sawada G, Shiozawa K, Matano K, Suzuki K, Hayakawa T, Yoshimura Y, Murata K, Mizukami F. Dehydrogenative Cracking of n-Butane over Modified HZSM-5 Catalysts. Catal Lett,2002,81(1):83-88
    [53]Zhao G, Teng J, Xie Z, Jin W, Yang W, Chen Q, Tang Y. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene. J Catal,2007,248(1):29-37
    [54]Pitak Y N, Proskurnya E M. On the Subsolidus Structure in the CaAl4O7-Ca7Al6ZrO18-CaAl2O4-CaZrO3-SrZrO3-SrAl2O4 Region of the CaO-SrO-Al2O3-ZrO2 System. Refract Ind Ceram,2000,41(9):360-363
    [55]Nikolov I, Nikolov V, Kovacheva D, Peshev P. Regions of phase crystallization and new double tungstates in the system K2O-Al2O3-WO3. J Alloys Compd,2003,351(1-2):289-294
    [56]Jeong S M, Chae J H, Kang J-H, Lee S H, Lee W-H. Catalytic pyrolysis of naphtha on the KVO3-based catalyst. Catal Today,2002,74(3-4):257-264
    [57]Jeong S M, Chae J H, Lee W-H. Study on the Catalytic Pyrolysis of Naphtha over a KVO3/γ-Al2O3 Catalyst for Production of Light Olefins. Ind Eng Chem Res,2001,40(26): 6081-6086
    [58]Lemonidou A A, Vasalos I A. Preparation and Evaluation of Catalysts for the Production of Ethylene Via Steam Cracking-Effect of Operating-Conditions on the Performance of 12CaO-7Al2O3 Catalyst. Appl Catal,1989,54(2):119-138
    [59]Pollesel P, Rizzo C, Perugo C, Paludetto R, Piero G D. Catalyst for steam cracking reactions and process for its preparation. European patent,1114676 (A2),2001
    [60]Gascon J, Tellez C, Herguido J, Menendez M. Propane dehydrogenation over a Cr2O3/Al2O3 catalyst:transient kinetic modeling of propene and coke formation. Appl Catal A Gen,2003,248(1-2):105-116
    [61]Roos J A, Korf S J, Veehof R H J, van Ommen J G, Ross J R H. Kinetic and mechanistic aspects of the oxidative coupling of methane over a Li/MgO catalyst. Appl Catal,1989, 52(1):131-145
    [62]Ranzi E, Dente M, Plerucci S, Biardi G. Initial Product Distributions from Pyrolysis of Normal and Branched Paraffins. Ind Eng Chem Fund,1983,22(1):132-139
    [63]Ranzi E, Faravelli T, Gaffuri P, Garavaglia E, Goldaniga A. Primary pyrolysis and oxidation reactions of linear and branched alkanes. Ind Eng Chem Res,1997,36(8):3336-3344
    [64]Kossiakoff A, Rice F O. Thermal decomposition of hydrocarbons, resonance stabilization and isomerization of free radicals. J Am Chem Soc,1943,65:590-595
    [65]Murata M, Saito S. A simulation model for high-conversion pyrolysis of normal paraffinic hydrocarbons. J Chem EngJpn,1975,8(1):39-45
    [66]Gayer F H. The catalytic polymerization of propylene. Ind Eng Chem,1933,25:1122-1127
    [67]Whitmore F C. Mechanism of the polymerization of olefins by acid catalysts. Ind Eng Chem, 1934,26:94-95
    [68]Hansford R C. A Mechanism of Catalytic Cracking. Ind Eng Chem,1947,39(7):849-852
    [69]Greensfelder B S, Voge H H, Good G M. Catalytic and Thermal Cracking of Pure Hydrocarbons-Mechanisms of Reaction. Ind Eng Chem,1949,41(11):2573-2584
    [70]Thomas C L. Chemistry of Cracking Catalysts. Ind Eng Chem,1949,41(11):2564-2573
    [71]Milliken T H, Mills G A, Oblad A G. The Chemical Characteristics and Structure of Cracking Catalysts. Discuss Faraday Soc,1950, (8):279-290
    [72]Olah G A, Schleyer P v R. Carbonium ions, edited by George A. Olah [and] Paul von R. Schleyer. New York:Interscience Publishers,1968
    [73]Haag W O, Dessau R M. Duality of mechanism for acid-catalyzed paraffin cracking, in, Proceedings,8th International Congress on Catalysis, Berlin,1984,2:305
    [74]Corma A, Planelles J, Tomas F. The Influence of Branching Isomerization on the Product Distribution Obtained during Cracking of Normal-Heptane on Acidic Zeolites. J Catal,1985, 94(2):445-454
    [75]Zhao Y X, Bamwenda G R, Wojciechowski B W. Cracking Selectivity Patterns in the Presence of Chain Mechanisms-the Cracking of 2-Methylpentane. J Catal,1993,142(2): 465-489
    [76]Wojciechowski B W. A Theoretical Treatment of Catalyst Decay. Can J Chem Eng,1968, 46(1):48-&
    [77]Ko A N, Wojciechowski B W. Catalytic Isomerization of 1-Hexene on Hy Zeolite. Int J Chem Kinet,1983,15(12):1249-1274
    [78]Mayr H, Olah G A. Ring-Closure Reactions of Allyl to Cyclopropylcarbinyl Cations. J Am Chem Soc,1977,99(2):510-513
    [79]Olah G A, Staral J S, Liang G, Paquette L A, Melega W P, Carmody M J. Novel Aromatic Systems.8. Cyclooctatetraene Dications. J Am Chem Soc,1977,99(10):3349-3355
    [80]Wojciechowski B W. The reaction mechanism of catalytic cracking:Quantifying activity, selectivity, and catalyst decay. Catal Rev-Sci Eng,1998,40(3):209-328
    [81]Zhao Y X, Bamwenda G R, Groten W A, Wojciechowski B W. The Chain Mechanism in Catalytic Cracking-the Kinetics of 2-Methylpentane Cracking. J Catal,1993,140(1): 243-261
    [82]van Bokhoven J A, Tromp M, Koningsberger D C, Miller J T, Pieterse J A Z, Lercher J A, Williams B A, Kung H H. An explanation for the enhanced activity for light alkane conversion in mildly steam dealuminated mordenite:The dominant role of adsorption. J Catal,2001,202(1):129-140
    [83]Zhao Y X, Wojciechowski B W. The consequences of steam dilution in catalytic cracking.1. Effect of steam dilution on reaction rates and activation energy in 2-methylpentane cracking over USHY. JCatal,1996,163(2):365-373
    [84]Zhao Y X, Wojciechowski B W. The consequences of steam dilution in catalytic cracking.2. Effect of steam dilution on the selectivity and mechanism in 2-methylpentane cracking over USHY. JCatal,1996,163(2):374-391
    [85]Wang Q L, Giannetto G, Torrealba M, Perot G, Kappenstein C, Guisnet M. Dealumination of Zeolites.2. Kinetic-Study of the Dealumination by Hydrothermal Treatment of a Nh4nay Zeolite. J Catal,1991,130(2):459-470
    [86]Wang Q L, Giannetto G, Guisnet M. Dealumination of Zeolites.3. Effect of Extra-Framework Aluminum Species on the Activity, Selectivity, and Stability of Y-Zeolites in Normal-Heptane Cracking. JCatal,1991,130(2):471-482
    [87]Klinowski J, Ramdas S, Thomas J M, Fyfe C A, Hartman J S. A Reexamination of Si, Al Ordering in Zeolites Nax and Nay. JChem Soc, Faraday Trans Ⅱ,1982,78:1025-1050
    [88]Thomas J M, Fyfe C A, Ramdas S, Klinowski J, Gobbi G C. High-Resolution Si-29 Nuclear Magnetic-Resonance Spectrum of Zeolite Zk-4-Its Significance in Assessing Magic-Angle-Spinning Nuclear Magnetic-Resonance as a Structural Tool for Aluminosilicates. JPhys Chem,1982,86(16):3061-3064
    [89]Klinowski J, Thomas J M, Fyfe C A, Gobbi G C. Monitoring of Structural-Changes Accompanying Ultrastabilization of Faujasitic Zeolite Catalysts. Nature,1982,296(5857): 533-536
    [90]Lohse U, Mildebrath M. Dealuminated Molecular-Sieves of Y-Type-to the Porosity of Dealuminated Molecular-Sieves. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1981,476(5):126-135
    [91]Sun Y, Campbell S M, Lunsford J H, Lewis G E, Palke D, Tau L M. The Catalytic Conversion of Methyl Chloride to Ethylene and Propylene over Phosphorus-Modified Mg-ZSM-5 Zeolites. JCatal,1993,143(1):32-44
    [92]Rahman A, Lemay G, Adnot A, Kaliaguine S. Spectroscopic and catalytic study of P-modified ZSM-5.J Catal,1988,112(2):453-463
    [93]Cardoso M, Rosas D, Lau L. Surface P and A1 Distribution in P-modified ZSM-5 Zeolites. Adsorption,2005,11(5):577-580
    [94]Blasco T, Corma A, Martinez-Triguero J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. JCatal,2006,237(2):267-277
    [95]Zhang Y, Zhou Y, Liu H, Wang Y, Xu Y, Wu P. Effect of La addition on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation. Appl Catal A Gen, 2007,333(2):202-210
    [96]Zhang W D, Liu B S, Zhu C, Tian Y L. Preparation of La2NiO4/ZSM-5 catalyst and catalytic performance in CO2/CH4 reforming to syngas. Appl Catal A Gen,2005,292:138-143
    [97]Beeckman J W, Froment G F. Catalyst Deactivation by Site Coverage and Pore Blockage-Finite Rate of Growth of the Carbonaceous Deposit. Chem Eng Sci,1980,35(4):805-815
    [98]Wolf E E, Alfani F. Catalysts Deactivation by Coking. Catal Rev-Sci Eng,1982,24(3): 329-371
    [99]Barbier J. Deactivation of Reforming Catalysts by Coking-a Review. Appl Catal,1986, 23(2):225-243
    [100]Guisnet M, Magnoux P. Coking and Deactivation of Zeolites-Influence of the Pore Structure. Appl Catal,1989,54(1):1-27
    [101]Lopes J M, Lemos F, Ribeiro F R, Derouane E G, Magnoux P, Guisnet M. Coke Deposition of H-ZSM-20 and USHY Zeolites.Appl Catal A Gen,1994,114(1):161-172
    [102]Guisnet M, Magnoux P. Organic chemistry of coke formation. Appl Catal A Gen,2001, 212(1-2):83-96
    [103]Fouche V, Magnoux P, Guisnet M. Coking, Aging and Regeneration of Zeolites.11. Coke Formation and Deactivation of Pt-Ultra Stable Zeolite Hy and Pth-Mordenite Catalysts during Hydrogenation of Benzene. Appl Catal,1990,58(2):189-198
    [104]Rohan D, Canaff C, Fromentin E, Guisnet M. Acetylation of anisole by acetic anhydride over a HBEA zeolite-Origin of deactivation of the catalyst. J Catal,1998,177(2):296-305
    [105]Richard F, Carreyre H, Perot G. Zeolite-catalyzed acylation of heterocyclic compounds: Acylation of benzofuran and 2-methylbenzofuran in a fixed bed reactor. J Catal,1996, 159(2):427-434
    [106]Rohan D, Canaff C, Magnoux P, Guisnet M. Origin of the deactivation of HBEA zeolites during the acylation of phenol with phenylacetate. J Mol Catal A:Chem,1998,129(1): 69-78
    [107]Smith J M, Liu H Y, Resasco D E, Deactivation and shape selectivity effects in toluene nitration over zeolite catalysts. In 7th International Symposium on Catalyst Deactivation, 1997,111:199-206.
    [108]Bezouhanova C P, Kalvachev Y A, Lechert H. Ir Characteristics of Alcohol Reactivity on Hzsm-5 Zeolites. J Mol Struct,1992,271(1-2):37-44
    [109]Schulz H, Wei M. Deactivation and thermal regeneration of zeolite HZSM-5 for methanol conversion at low temperature (260-290 degrees C). Microporous Mesoporous Mater,1999, 29(1-2):205-218
    [110]Xu T, Munson E J, Haw J F. Toward a Systematic Chemistry of Organic-Reactions in Zeolites-in-Situ Nmr-Studies of Ketones. J Am Chem Soc,1994,116(5):1962-1972
    [111]Marczewski M, Perot G, Guisnet M. Alkylation of aromatics kinetics of phenol alkylation with methanol. React Kinet Catal Lett,1996,57(1):21-27
    [112]Haldeman R G, Botty M C. On the Nature of the Carbon Deposit of Cracking Catalysts. J Phys Chem,1959,63(4):489-496
    [113]Eberly P E, Kimberli.Cn, Miller W H, Drushel H V. Coke Formation on Silica-Alumina Cracking Catalysts. Industrial & Engineering Chemistry Process Design and Development, 1966,5(2):193-&
    [114]Appleby W G, Good G M, Gibson J W. Coke Formation in Catalytic Cracking. Industrial & Engineering Chemistry Process Design and Development,1962,1(2):102-&
    [115]Weisz P B, Goodwin R B. Combustion of Carbonaceous Deposits within Porous Catalyst Particles.2. Intrinsic Burning Rate. J Catal,1966,6(2):227-&
    [116]Weisz P B. Combustion of Carbonaceous Deposits within Porous Catalyst Particles.3. Co2/Co Product Ratio. J Catal,1966,6(3):425-&
    [117]Weisz P B, Goodwin R D. Combustion of Carbonaceous Deposits within Porous Catalyst Particles.1. Diffusion-Controlled Kinetics. J Catal,1963,2(5):397-404
    [118]Eischens R P, Francis S A, Pliskin W A. The Effect of Surface Coverage on the Spectra of Chemisorbed Co. JPhys Chem,1956,60(2):194-201
    [119]Wang Y, Zheng W, Chen F, Zhan X. Mechanistic study of propylene oxidation over a Bi-molybdate catalyst by in situ DRIFTS and probe molecules. Applied Catalysis A: General,2008,351(1):75-81
    [120]Meunier F C, Zuzaniuk V, Breen J P, Olsson M, Ross J R H. Mechanistic differences in the selective reduction of NO by propene over cobalt- and silver-promoted alumina catalysts: kinetic and in situ DRIFTS study. Catal Today,2000,59(3-4):287-304
    [121]Kotrel S, Rosynek M P, Lunsford J H. Origin of First-Order Kinetics during the Bimolecular Cracking of n-Hexane over H-ZSM-5 and H-[beta] Zeolites. J Catal,2000,191(1):55-61
    [122]Odier E, Schuurman Y, Mirodatos C. Non-stationary catalytic cracking of methane over ceria-based catalysts:Mechanistic approach and catalyst optimization. Catal Today,2007, 127(1-4):230-237
    [123]Vimont A, Thibault-Starzyk F, Lavalley J C. Infrared Spectroscopic Study of the Acidobasic Properties of Beta Zeolite. JPhys Chem B,1999,104(2):286-291
    [124]Mouli K C, Sundaramurthy V, Dalai A K, Ring Z. Selective ring opening of decalin with Pt-Ir on Zr modified MCM-41. Appl Catal A Gen,2007,321(1):17-26
    [125]Li B, Gonzalez R D. An in situ DRIFTS study of the deactivation and regeneration of sulfated zirconia. Catal Today,1998,46(1):55-67
    [126]Gregg S J, Sing K S W. The Effect of Heat Treatment on the Surface Properties of Gibbsite.1. Adsorption Isotherms of Nitrogen and of Oxygen at-182.7-Degrees-C. J Phys Coll Chem,1951,55(4):592-597
    [127]Gregg S J, Sing K S W. The Effect of Heat Treatment of the Surface Properties of Gibbsite.2. Isotherms of Carbon Tetrachloride Vapor at 25-Degrees-C. J Phys Coll Chem, 1951,55(4):597-604
    [128]Rouquerol J, Avnir D, Everett D H, Fairbridge C, Haynes M, Pernicone N, Ramsay J D F, Sing K S W, Unger K K. Guidelines for the Characterization of Porous Solids. Characterization of Porous Solids Iii,1994,87:1-9
    [129]Rouquerol J, Avnir D, Fairbridge C W, Everett D H, Haynes J H, Pernicone N, Ramsay J D F, Sing K S W, Unger K K. Recommendations for the Characterization of Porous Solids. Pure Appl Chem,1994,66(8):1739-1758
    [130]Shields J E, Lowell S. Submicropore Analysis. Powder Technol,1985,41(3):269-271
    [131]Ravikovitch P I, Vishnyakov A, Russo R, Neimark A V. Unified approach to pore size characterization of microporous carbonaceous materials from N-2, Ar, and CO2 adsorption isotherms. Langmuir,2000,16(5):2311-2320
    [132]Thommes M, Kohn R, Froba M. Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures above and below the bulk triple point. Appl SurfSci,2002,196(1-4):239-249
    [133]Cazorla-Amoros D, Alcaniz-Monge J, de la Casa-Lillo M A, Linares-Solano A. CO2 as an adsorptive to characterize carbon molecular sieves and activated carbons. Langmuir,1998, 14(16):4589-4596
    [134]Barrett E P, Joyner L G, Halenda P P. The Determination of Pore Volume and Area Distributions in Porous Substances.1. Computations from Nitrogen Isotherms. J Am Chem Soc,1951,73(1):373-380
    [135]Horvath G, Kawazoe K. Method for the Calculation of Effective Pore-Size Distribution in Molecular-Sieve Carbon. J Chem EngJpn,1983,16(6):470-475
    [136]Saito A, Foley H C. High-Resolution Nitrogen and Argon Adsorption on Zsm-5 Zeolites-Effects of Cation-Exchange and Si/Al Ratio. Microporous Materials,1995,3(4-5):543-556
    [137]Saito A, Foley H C. Curvature and Parametric Sensitivity in Models for Adsorption in Micropores. AIChE J,1991,37(3):429-436
    [138]Tao Y, Kanoh H, Kaneko K. ZSM-5 Monolith of Uniform Mesoporous Channels. J Am Chem Soc,2003,125(20):6044-6045
    [139]Zhao L, Shen B, Gao J, Xu C. Investigation on the mechanism of diffusion in mesopore structured ZSM-5 and improved heavy oil conversion. J Catal,2008,258(1):228-234
    [140]Serrano D P, Aguado J, Rodr f guez J M, Peral A. Catalytic cracking of polyethylene over nanocrystalline HZSM-5:Catalyst deactivation and regeneration study. J Anal Appl Pyrolysis,2007,79(1-2):456-464
    [141]Coats A W, Redfern J P. Kinetic Parameters from Thermogravimetric Data. Nature,1964, 201(4914):68-69
    [142]Freeman E S, Carroll B. The Application of Thermoanalytical Techniques to Reaction Kinetics:The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate. J Phys Chem,1958,62(4):394-397
    [143]Walsh D E, Green G J. A laboratory study of petroleum coke combustion-kinetics and catalytic effects. Ind Eng Chem Res,1988,27(7):1115-1120
    [144]Heynderickx G J, Schools E M, Marin G B. Coke combustion and gasification kinetics in ethane steam crackers. AIChE J,2005,51(5):1415-1428
    [145]Bar-ziv E, Jones D B, Spjut R E, Dudek D R, Sarofim A F, Longwell J P. Measurement of combustion kinetics of a single char particle in an electrodynamic thermogravimetric analyzer. Combust Flame,1989,75(1):81-106
    [146]Parente A, Galletti C, Tognotti L. Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels. Int J Hydrogen Energy,2008,33(24):7553-7564
    [147]张向京,王燕,杨立斌,辛峰.环已酮氨肟化反应中失活TS-1催化剂上沉积物的物化表征.燃料化学学报,2006,(02):234-239
    [148]Matsushita K, Hauser A, Marafi A, Koide R, Stanislaus A. Initial coke deposition on hydrotreating catalysts. Part 1. Changes in coke properties as a function of time on stream. Fuel,2004,83(7-8):1031-1038
    [149]Karge H G, Dondur V. Investigation of the distribution of acidity in zeolites by temperature-programmed desorption of probe molecules. I. Dealuminated mordenites. J Phys Chem,1990,94(2):765-772
    [150]Woolery G L, Kuehl G H, Timken H C, Chester A W, Vartuli J C. On the nature of framework Bronsted and Lewis acid sites in ZSM-5. Zeolites,1997,19(4):288-296
    [151]Katada N, Igi H, Kim J-H. Determination of the Acidic Properties of Zeolite by Theoretical Analysis of Temperature-Programmed Desorption of Ammonia Based on Adsorption Equilibrium. J Phys Chem B,1997,101(31):5969-5977
    [152]Sato H. Acidity Control and Catalysis of Pentasil Zeolites. Catal Rev:Sci Eng,1997,39(4): 395-424
    [153]Kubelka P, Munk F. Reflection characteristics of paints. Z. Tech. Phys.K,1931,12:593-601
    [154]Garcia H, Roth H D. Generation and reactions of organic radical cations in zeolites. Chemical Reviews,2002,102(11):3947-4007
    [155]Corma A, Diaz-Cabanas M, Martinez-Triguero J, Rey F, Rius J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature,2002,418(6897): 514-517
    [156]Corma A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews,1995,95(3):559-614
    [157]Corma A, Rey F, Rius J, Sabater M J, Valencia S. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature,2004,431(7006):287-290
    [158]Campbell S M, Bibby D M, Coddington J M, Howe R F, Meinhold R H. Dealumination of HZSM-5 zeolites.1. Calcination and hydrothermal treatment. J Catal,1996,161(1): 338-349
    [159]deLucas A, Canizares P, Duran A, Carrero A. Dealumination of HZSM-5 zeolites:Effect of steaming on acidity and aromatization activity. Appl Catal A Gen,1997,154(1-2):221-240
    [160]Lopez-Fonseca R, de Rivas B, Gutierrez-Ortiz J I, Aranzabal A, Gonzalez-Velasco J R. Enhanced activity of zeolites by chemical dealumination for chlorinated VOC abatement. Appl Catal B Environ,2003,41(1-2):31-42
    [161]Groen J C, Peffer L A A, Moulijn J A, Perez-Ramirez J. Mechanism of hierarchical porosity development in MFI zeolites by desilication:The role of aluminium as a pore-directing agent. Chem-Eur J,2005,11(17):4983-4994
    [162]Sasaki Y, Suzuki T, Takamura Y, Saji A, Saka H. Structure analysis of the mesopore in dealuminated zeolite Y by high resolution TEM observation with slow scan CCD camera. J Catal,1998,178(1):94-100
    [163]Chou Y H, Cundy C S, Garforth A A, Zholobenko V L. Mesoporous ZSM-5 catalysts: Preparation, characterisation and catalytic properties. Part I:Comparison of different synthesis routes. Microporous Mesoporous Mater,2006,89(1-3):78-87
    [164]Long J F, Wang X X, Ding Z X, Xie L L, Zhang Z Z, Dong J G, Lin H X, Fu X Z. Cyclopentadiene transformation over H-form zeolites:TPD and IR studies of the formation of a monomeric cyclopentenyl carbenium ion intermediate and its role in acid-catalyzed conversions. J Catal,2008,255(1):48-58
    [165]Karge H G, H. van Bekkum E M F P A J, Jansen J C. Chapter 16 Coke formation on zeolites. In Stud Surf Sci Catal, Elsevier,2001,137:707-746
    [166]Ermini V, Finocchio E, Sechi S, Busca G, Rossini S. Propane oxydehydrogenation over alumina-supported vanadia doped with manganese and potassium. Appl Catal A Gen,2000, 198(1-2):67-79
    [167]Huang W, Xie K C, Wang J P, Gao Z H, Yin L H, Zhu Q M. Possibility of direct conversion of CH4 and CO2 to high-value products. J Catal,2001,201(1):100-104
    [168]Kazansky V B, Subbotina I R, Jentoft F. Intensities of combination IR bands as an indication of the concerted mechanism of proton transfer from acidic hydroxyl groups in zeolites to the ethylene hydrogen-bonded by protons. J Catal,2006,240(1):66-72
    [169]Yang C, Xu Q H. States of aluminum in zeolite beta and influence of acidic or basic medium. Zeolites,1997,19(5-6):404-410
    [170]Jacobs P A, Vonballmoos R. Framework Hydroxyl-Groups of H-ZSM-5 Zeolites. J Phys Chem,1982,86(15):3050-3052
    [171]Oumi Y, Mizuno R, Azuma K, Nawata S, Fukushima T, Uozumi T, Sano T. Reversibility of dealumination-realumination process of BEA zeolite. Microporous Mesoporous Mater,2001, 49(1-3):103-109
    [172]Corma A, Corell C, Fornes V, Kolodziejski W, Perezpariente J. Infrared-Spectroscopy, Thermoprogrammed Desorption, and Nuclear-Magnetic-Resonance Study of the Acidity, Structure, and Stability of Zeolite Mcm-22. Zeolites,1995,15(7):576-582
    [173]Jacobs P A, Uytterho.Jb. Assignment of Hydroxyl Bands in Infrared-Spectra of Zeolites X and Y.1. Na-H Zeolites. J Chem Soc, Faraday Trans I,1973,69(2):359-372
    [174]Moreau F, Ayrault P, Gnep "N S, Lacombe S, Merlen E, Guisnet M. Influence of Na exchange on the acidic and catalytic properties of an HMOR zeolite. Microporous Mesoporous Mater,2002,51(3):211-221
    [175]Beyer H K, Kiss A, Mihalyfi J, Jacobs P A. Thermochemistry of Hydroxylammonium and Hydrazonium Zeolites. J Chem Soc, Faraday Trans I,1980,76:332-344
    [176]Datka J, Gil B, Kubacka A. Heterogeneity of OH groups in H-mordenites:Effect of dehydroxylation. Zeolites,1996,17(5-6):428-433
    [177]Lunsford J H. Origin of Strong Acidity in Dealuminated Zeolite-Y. ACS Symp Ser,1991, 452:1-11
    [178]Kung H H, Williams B A, Babitz S M, Miller J T, Haag W O, Snurr R Q. Enhanced hydrocarbon cracking activity of Y zeolites. Top Catal,2000,10(1-2):59-64
    [179]Williams B A, Babitz S M, Miller J T, Snurr R Q, Kung H H. The roles of acid strength and pore diffusion in the enhanced cracking activity of steamed Y zeolites. Appl Catal A Gen, 1999,177(2):161-175
    [180]Corma A, Planelles J, Sanchezmarin J, Tomas F. The Role of Different Types of Acid Site in the Cracking of Alkanes on Zeolite Catalysts. J Catal,1985,93(1):30-37
    [181]Hernandez-Beltran F, Moreno-Mayorga J C, Guzman-Castillo M D, Navarrete-Bolanos J, Gonzalez-Gonzalez M, Handy B E. Dealumination-aging pattern of REUSY zeolites contained in fluid cracking catalysts. Appl Catal A Gen,2003,240(1-2):41-51
    [182]Groen J C, Peffer L A A, Perez-Ramirez J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporons Mesoporous Mater,2003,60(1-3):1-17
    [183]Karge H G, Geidel E. Vibrational Spectroscopy. In 2004,2733-2733
    [184]Wojciechowski B W. Using Kinetics to Study Intermediates in Acid-Catalyzed Reactions on Solids. Rev Chem Interm,1987,8(1):21-51
    [185]Bibby D M, Howe R F, McLellan G D. Coke formation in high-silica zeolites. Appl CatalA Gen,1992,93(1):1-34
    [186]Ghosh A K, Kydd R A. A Fourier-transform infrared spectral study of propene reactions on acidic zeolites. JCatal,1986,100(1):185-195
    [187]Wojciechowski B W. Dichotomies in catalytic cracking. Ind Eng Chem Res,1997,36(8): 3323-3335
    [188]Wojciechowski B W, Rice N M. Catalyst decay as a side reaction of the chain processes of catalytic cracking. In Deactivation and Testing of Hydrocarbon-Processing Catalysts,1996, 634:134-146
    [189]Pelmenschikov A G, Vanwolput J H M C, Janchen J, Vansanten R A. (a,B,C) Triplet of Infrared Oh Bands of Zeolitic H-Complexes. J Phys Chem,1995,99(11):3612-3617
    [190]Krossner M, Sauer J. Interaction of water with Bronsted acidic sites of zeolite catalysts. Ab initio study of 1:1 and 2:1 surface complexes. J Phys Chem,1996,100(15):6199-6211
    [191]Fujino T, Kashitani M, Kondo J N, Domen K, Hirose C, Ishida M, Goto F, Wakabayashi F. FT-IR and quantum chemical studies of the interaction between dimethyl ether and HZSM-5 zeolite. J Phys Chem,1996,100(28):11649-11653
    [192]Wakabayashi F, Kondo J N, Domen K, Hirose C. FT-IR studies of the interaction between zeolitic hydroxyl groups and small molecules.3. Adsorption of oxygen, argon, nitrogen, and xenon on H-ZSM-5 at low temperatures'. J Phys Chem,1996,100(10):4154-4159
    [193]Wakabayashi F, Kondo J N, Domen K, Hirose C. FT-IR study of (H2O)-O-18 adsorption on H-ZSM-5:Direct evidence for the hydrogen-bonded adsorption of water. J Phys Chem, 1996,100(5):1442-1444
    [194]Krossner M, Sauer J. Interaction of Water with Bronsted Acidic Sites of Zeolite Catalysts. Ab Initio Study of 1:1 and 2:1 Surface Complexes. J. Phys. Chem,1996,100(15): 6199-6211
    [195]Corma A, Marie O, Ortega F J. Interaction of water with the surface of a zeolite catalyst during catalytic cracking:a spectroscopy and kinetic study. JCatal,2004,222(2):338-347
    [196]Wojciechowski B W. Chain mechanisms in catalytic cracking. Arab. J. Sci. Eng.,1996, 21(2):165-179
    [197]Narbeshuber T F, Vinek H, Lercher J A. Monomolecular conversion of light alkanes over H-ZSM-5. J Catal,1995,157(2):388-395
    [198]Blaszkowski S R, Nascimento M A C, vanSanten R A. Activation of C-H and C-C bonds by an acidic zeolite:A density functional study. J Phys Chem,1996,100(9):3463-3472
    [199]Olah G A, Lukas J. Stable Carbonium Ions.47. Alkylcarbonium Ion Formation from Alkanes Via Hydride (Alkide) Ion Abstraction in Fluorosulfonic Acid-Antimony Pentafluoride-Sulfuryl Chlorofluoride Solution. J Am Chem Soc,1967,89(18):4739-&
    [200]Olah G A, Bollinge.Jm, Cupas C A, Lukas J. Stable Carbonium Ions.34. 1-Methylcyclopentyl Cation. J Am Chem Soc,1967,89(11):2692-&
    [201]Olah G A, Lukas J. Stable Carbonium Ions.39. Formation of Alkylcarbonium Ions Via Hydride Ion Abstraction from Alkanes in Fluorosulfonic Acid-Antimony Pentafluoride Solution. Isolation of Some Crystalline Alkylcarbonium Ion Salts. J Am Chem Soc,1967, 89(9):2227-&
    [202]Lossing F P, Semeluk G P. Free Radicals by Mass Spectrometry.42. Ionization Potentials and Ionic Heats of Formation for C1-C4 Alkyl Radicals. Can J Chem,1970,48(6):955-&
    [203]Wojciechowski B W, Zhao Y X. The Reactions of Hexyl Ions on Ushy. J Catal,1995, 153(2):239-253
    [204]Kissin Y V. Chemical mechanism of hydrocarbon cracking over solid acidic catalysts. J Catal,1996,163(1):50-62
    [205]Kissin Y V. Chemical mechanisms of catalytic cracking over solid acidic catalysts:Alkanes and alkenes. Catal Rev-Sci Eng,2001,43(1-2):85-146
    [206]Slagtern A, Dahl I M, Jens K J, Myrstad T. Cracking of cyclohexane by high Si HZSM-5. Appl Catal A Gen,2010,375(2):213-221
    [207]Lopez G, Perot G, Gueguen C, Guisnet M. Isomerization and Cracking of Saturated-Hydrocarbons on Hydrogen-Mordenite and Platinum-Hydrogen-Mordenite Catalysts. Acta Phys Chem,1977,24(1-2):207-213
    [208]Newman M S, Zwan M C V. Steric and Polar Effects in Decarboxylation of Mercuric Salts of Unsymmetrical Aromatic 1,2-Dicarboxylic Acids (Pesci Reaction)-Improved Procedure. J Org Chem,1973,38(2):319-321
    [209]Newman M S, Gupte S S, Sankarra.Sk. Steric Effects in Intramolecular Rearrangements Involving a 3.2.1!-Bicyclic Mechanism. J Org Chem,1970,35(8):2757-&
    [210]Loening K L, Garrett A B, Newman M S. Steric Effects.2. Acid-Catalyzed Esterification. J Am Chem Soc,1952,74(15):3929-3931
    [211]Smith M, Smith M, March J. March's advanced organic chemistry:reactions, mechanisms, and structure. Wiley,2007
    [212]Uytterho.Jb, Christne.Lg, Hall W K. Studies of Hydrogen Held by Solids.8. Decationated Zeolites. J Phys Chem,1965,69(6):2117-&
    [213]Bhan A, Delgass W N. Propane Aromatization over HZSM-5 and Ga/HZSM-5 Catalysts. Catal Rev:Sci Eng,2008,50(1):19-151
    [214]Pelmenschikov A G, Paukshtis E A, Edisherashvili M O, Zhidomirov G M. On the Loewenstein rule and mechanism of zeolite dealumination. J Phys Chem,1992,96(17): 7051-7055
    [215]Engelhardt G, Lohse U, Patzelova V, Magi M, Lippmaa E. High-Resolution Si-29 Nmr of Dealuminated Y-Zeolites.1. The Dependence of the Extent of Dealumination on the Degree of Ammonium Exchange and the Temperature and Water-Vapor Pressure of the Thermochemical Treatment. Zeolites,1983,3(3):233-238
    [216]Engelhardt G, Lohse U, Patzelova V, Magi M, Lippmaa E. High-Resolution Si-29 Nmr of Dealuminated Y-Zeolites.2. Silicon, Aluminum Ordering in the Tetrahedral Zeolite Lattice. Zeolites,1983,3(3):239-243
    [217]Marcilla A, Gomez-Siurana A, Valdes F J. Evolution of the deactivation mode and nature of coke of HZSM-5 and USY zeolites in the catalytic cracking of low-density polyethylene during successive cracking runs. Appl CatalA Gen,2009,352(1-2):152-158
    [218]Wei Y, Liu Z, Wang G, Qi Y, Xu L, Xie P, He Y, Cejka J, Zilkov N, Nachtigall P. Production of light olefins and aromatic hydrocarbons through catalytic cracking of naphtha at lowered temperature. In Stud Surf Sci Catal, Elsevier,2005, Volume 158, Part 2:1223-1230
    [219]Wang B, Manos G. A novel thermogravimetric method for coke precursor characterisation. J Catal,2007,250(1):121-127
    [220]Fernandes V J, Araujo A S. Kinetic-Study of H-Y Zeolite Regeneration by Thermogravimetry. Thermochim Acta,1995,255:273-280
    [221]Kok M V, Acar C. Kinetics of crude oil combustion. J Therm Anal Calorim,2006,83(2): 445-449
    [222]Lin L C, Deo M D, Hanson F V, Oblad A G. Nonisothermal Analysis of the Kinetics of the Combustion of Coked Sand. Ind Eng Chem Res,1991,30(8):1795-1801
    [223]Ren Y, Mahinpey N, Freitag N. Kinetic Model for the Combustion of Coke Derived at Different Coking Temperatures. Energy Fuels,2007,21(1):82-87
    [224]Kern C, Jess A. Carbonisation and coke combustion in heterogenic catalysts. Chem Ing Tech, 2006,78(8):1033-1048
    [225]Tang D H, Kern C, Jess A. Influence of chemical reaction rate, diffusion and pore structure on the regeneration of a coked Al2O3-catalyst. Appl Catal A Gen,2004,272(1-2):187-199
    [226]Keskitalo T J, Lipiainen K J T, Krause A O I. Modelling of carbon and hydrogen oxidation kinetics of a coked ferrierite catalyst. Chemical Engineering Journal,2006,120(1-2):63-71
    [227]Massoth F E. Oxidation of Coked Silica-Alumina Catalyst. Ind Eng Chem Fund Proc Des, 1967,6(2):200-&
    [228]李经球.长链烷烃脱氢催化剂的再生研究[硕士学位论文],大连,中国科学院研究生院(大连化学物理研究所),2006.
    [229]Dimitriadis V D, Lappas A A, Vasalos I A. Kinetics of combustion of carbon in carbonaceous deposits on zeolite catalysts for fluid catalytic cracking units (FCCU). Comparison between Pt and non Pt-containing catalysts. Fuel,1998,77(12):1377-1383

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700