用户名: 密码: 验证码:
降低催化裂化汽油烯烃助剂的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,世界各国为了加强对环境污染的控制而不断提高对燃料油规格的要求。我国汽油新标准要求汽油中硫含量不大于800μg.g~(-1),烯烃含量不大于35v%,欧Ⅱ标准要求汽油中硫含量不大于500μg.g~(-1),烯烃含量不大于18%。我国燃料油质量方面较为突出的问题一是车用成品汽油中烯烃含量较高,而催化裂化汽油的高烯烃含量和汽油调和之组分中过高的催化裂化汽油比例是我国目前成品汽油中烯烃含量高的主要原因。在催化重整、烷基化、异构化和含氧化合物生产的装置所占比例很少,大幅度改变各汽油调和组分比例有困难的情况下,降低催化裂化汽油馏份中烯烃含量是解决我国汽油中烯烃含量较高问题的一个非常有效的方法。
     国内外对降低催化裂化汽油烯烃含量的研究,主要通过以下途径:开发催化裂化降烯烃新工艺、调整催化裂化工艺条件、开发降烯烃催化剂和助剂等。其中国内外研制开发一系列的降烯烃催化剂和助剂,如石油化工科学研究院推出了GOR系列降烯烃催化剂,Akzo Nobel公司推出了TOM COBRA降烯烃催化剂,Grace Davison公司开发了降烯烃催化剂RFG。本文在文献调研的基础上,根据汽油烯烃分子容易进行二次反应的原理,利用改性择形分子筛等复合分子筛作为主要活性组分来制备降烯烃助剂LAP,使催化裂化汽油中烯烃通过芳构化反应和氢转移反应而转化生成芳烃和烷烃等,以达到在降低汽油烯烃含量的同时提高汽油辛烷值的目的。
     本文在微反色谱装置上,以正庚烷为原料考察了金属改性对HZSM-5分子筛芳构化活性的影响。实验结果表明,Ga、Zn等金属改性能显著提高HZSM-5分子筛的芳构化活性和芳烃选择性。当改性金属含量在某一定值内,随着改性金属添加量的增加,所得到的芳烃产率有所提高,但当改性金属含量超过这一定值时,再增加其含量,所得芳烃收率也不增加。所以,在对HZSM-5分子筛进行金属改性时,应选择一个适宜的金属添加量。为了提高ZSM-5分子筛抗水热失活能力,将经过金属改性后的ZSM-5分子筛再用非金属元素P对作其进一步改性处理,结果表明,非金属元素P改性后的ZSM-5分子筛的水热稳定性大大提高,但是,ZSM-5分子筛
    
    河南大学硕士学位论文
    的芳构化活性也受到一定负面影响。
     本文在固定床微反装置上,以灌i破酗原料考察了以复合分子筛作为主莎
    性组分的助型丝峰烯烃性能。结果表明,复合分子筛助剂比单一分子筛助剂具有
    尹尸一~一一一一一一
    更好的降烯烃能力,而酸性表征结果显示,复合分子筛助剂比单一分子筛助剂具
    有更多的酸性中心,酸强度也有所增加,而B酸增加使氢转移反应增加。因此复合
    分子筛助剂比单一分子筛助剂具有更强的氢转移能力和降烯烃能力。
     以上述同样的方法对助剂载体的降烯烃能力进行了评价。实验结果表明,通
    过对载体进行改性并且用改性后的载体与第二载体形成复合载体,能够提高载体
    的微反活性,增加助剂的降烯烃能力。
     依据上述研究结果制备了降低催化裂化汽油烯烃助剂LAP,在中型提升管装置
    上对LAP助剂性能进行评价。实验结果表明,使用该助剂(LAP)能够有效降低催
    化裂化汽油烯烃含量,该助剂对不同类型的原料油具有良好的适应性,一般可使
    催化裂化汽油烯烃含量降低8个体积百分点以上,而且该助剂具有良好的抗水热
    失活性能。
     LAP助剂的工业应用试验结果验证了实验室的研究结果。LAP助剂能够有效降
    低催化裂化汽油烯烃含量,提高汽油的辛烷值,同时可以增产丙烯,为解决我国
    催化裂化汽油烯烃含量过高的难题提供了有效途径,取得了良好的经济效益和社
    会效益。
Vehiche fuel quality standards become more and more stringent worldwidely for enviroment protection. One of the most obvious problems of fuel quality is from redundant olefin fraction of gasoline in China, which is attributed to the high proportion of FCC gasoline with ample olefin in gasoline pool.At the present time, it is difficult to largely change the gasoline pool compsition, because of the lack of the units for catalytic reforming, alkylation, isomerization and production of oxygenous compounds. Therefore, it is an important method to decrease the olefin content of FCC gasoline to solve the problem of high olefin content in commercial gasoline in China.
    To reduce the olefin content of FCC gasoline, new process and many catalysts for gasoline olefin reduction have been researched and applied all over the world.Such as GOR of RIPP, RFG of Grace Davison company, TOM COBRA of Akzo Nobel company.Based on the investigation of literatures, according to the principle that gasoline olefin easily take place secondary reaction, additives(LAP)are developed.The modified shape-selective zeolite, are primary active component in the additives. Gasoline olefin are changed into aromatic hydrocarbon and alkane by aromatization reaction and hydrogen transfer reaction, at the same time, the gasoline octane number has been enhanced.
    In this paper, aromatization activity of metal modified HZSM-5 zeolite have been studied in catalytic cracking of n-heptane. The experiments are carried out in a micro reactor chromatogram system. The results show that gallium and znic etc metal modifiers can evidently improve the aromatization activity and aromatic hydrocarbon selectivity of ZSM-5
    
    
    
    zeolite. In the certain range of the metal content, increase of metal content leads to the increase of aromatic hydrocarbon content. Aromatic hydrocarbon content hardly increase when the metal content exceed this range.So,a proper metal content is selected when HZSM-5 zeolite are modified by metal. ZnZSM-5 zeolite modified by non-metal phosper may enhance their hydrothermal stability. The results show that hydrothermal treatment can reduce the number of strong Bronsted acid sites , the stability of ZSM-5 zeolite is improved with the aromatization activity lowered slightly.
    In this paper, experiments, to evaluate the difference between complex zeolites and single ZSM-5 zeolite, are carried out in a micro fixed bed reactor with FCC gasoline. The results show that the former has better ability for FCC gasoline olefin reduction than the latter. At the same time, the acidity characterization show that the former has more acid sites and stronger acid strength than the latter. The increase of Bronsted acid enhances hydrogen transfer reaction.
    Carriers' ability for gasoline olefin reduction has been studied in the same way. The experiments show that carriers' micro activity and ability for gasoline olefin reduction increase after modification .The results are the same while using complex carriers.
    Based on the research, the additives for gasoline olefin reduction are prepared. Evaluations have been done in the pilot-plant units with heavy oil feedstoks.The results show that the olefin content obviously decrease over this additives.At the same time, the additives perform nicer adjustability to different feedstocks and nicer hydrothermal stability.
    The results of industrial application of LAP confirm the research in the lab. The olefin content decearses effectively while the octane number
    
    
    increases, at the same time, propylene in the liquid petroleum gas
    increase. Refineries will benefit by using the additives.
引文
1
    
    
    1. Auto/oil Air Quality Improvoment Research Progam, SAESP-920,1992
    2. Booth MM, Arragher JS, etal The influence of motor vehicle emission control legislation on future fuel quality, paper CEC/1993/EF05
    3.仇延生.汽油的烯烃对发动机排放的影响,石油炼制与化工,2000,31(4):40-45
    4.魏述俊.新配方汽油对我国炼油工业的影响及对策,石油炼制与化工,1994,25(7):37-40
    5.车用无铅汽油国家标准,GB17930-1999
    6. Brouwer D M, in:Chemistry and Chemical Engineering of Catalytic Processes, NATO ASI Ser. E, No. 39, eds. Prins R, Schuit G C A. Sijthoff and Noordhoff, 1980:137
    7. 01ah G A. Angew Chem Int Ed Engl, 1973,12:173
    8. Nicholas J B, Xu T, Barich D H, et al. J Am Chem Soc, 1996,118:4202
    9. Moss G P, Smith P A S, Tavemier D. Pure Appl Chem, 1995,67:1307
    10. Kebarle P, Yamdagni R, Hiraoka K. et al. Int J Mass Spectrom Ion Phys, 1976,19:71
    11. Greensfelder B S, Voge H H, Good G M. Ind Eng Chem, 1949, (41):2573
    12. Thomas C L. Ind Eng Chem, 1949, (41):2564
    13. Haag W O, Dessau R M. Proceedings of the 8th International Congress on Catalysis, Dachema, Frankfurr-am-Main, 1984, Vol. 2:305
    14. Corma A, Planelles J,Sanchez J. et al.J Catal, 1985,93:30
    15. Olah G A, Schlosberg R H. J Am Chem Soc, 1968,90:2726
    16. Bandiera J, BenTaarit Y. Appl Catal ,1990,62:309
    17. Kwak B S, Sachtler W M H. J Catal, 1994,149:456
    18. Cheung T K, Lange F C, Gates B C. J Catal, 1996,159:99
    
    
    19. Kwak B S,Sachtler W M H. J Catal, 1994,149: 465
    20. Krannila H, Haag W O, Gates B C. J Catal, 1992,135:115
    21. Narbeshuber I F, Vinek H, Lercher J A. J Catal, 1995,157:388
    22. Lercher J A, VanSanten R A, Vinek H. Catal Lett, 1994,27:91
    23. Lombardo E A, Hall W K. J Catal, 1988,112:565
    24. Abbot J, Wojciechowski B W. J Catal, 1989,115:1
    25. Wielers A F H, Vaarkamp M, Post M F M. J Catal, 1991,127:51
    26. Lukyanov D B, Shtral V I, Khadzhiev S N. J Catal, 1994,146:87
    27. Corma A,Miguel P J, Orchilles A V. J Catal, 1994,145:171
    28. Zhao Y X, Bamwenda G R, Wojciechowski B W. J Catal, 1993,142:465
    29. Shertukde P V, Marcelin G,Sill G A. et al. J Catal, 1993,136:446
    30.阎立军,傅军,何鸣元.正己烷在分子筛上的裂化反应机理研究Ⅰ.正己烷的裂化反应链长,石油学报,2000,16(3):15-26
    31.阎立军,傅军,何鸣元.正己烷在分子筛上的裂化反应机理研究Ⅱ.双分子氢转移反应遵循Rideal机理,石油学报,2000,16(4):6-11
    32.朱豫飞,王国良.我国汽柴油产品质量升级状况分析,石油炼制技术大会论文集,2001,466-467
    33.由洛阳石化工程研究院分析室提供,2002
    34. Ritter R E, Crelghton J E, Roberie T G, etal Catalytic octane from the FCC, Proceding, NPRA Meeting, Los Angeles, March 23-25,1986
    35.张剑秋.石油化工科学研究院博士学位论文,2001
    36.朱华元.石油化工科学研究院博士学位论文,2001
    37.程俊武,曹汉昌主编.催化裂化工艺与工程,中国石化出版社,第一版:119
    38. Bruce C G, Jamws R K, Schuit G C A. Chemistry of Catalytic Process. McGraw-Hill, 1979
    39. Mott R W, Roberie T, and Zhao X-J, Paper AM-98-11, NPRA Annual Meeting, 1998
    
    
    40.洪定一.精心构筑清洁燃料生产技术平台 确保低成本实现汽柴油质量升级,中国石油化工集团公司科学技术委员会论文选,2004,279-280
    41.汤海涛,王龙延,王国良.灵活多效催化裂化工艺技术的开发应用,催化裂化协作组第九届年会论文集,2002,44-47
    42.NPRA AM-95-35
    43.NPRA AM-98-11
    44.ACS PREPRINTS,1999,43(3):515
    45.许明德等.降低催化裂化汽油烯烃含量催化剂的研究开发,石油炼制技术大会论文集,2001,292-297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700