用户名: 密码: 验证码:
新叠氮单体的合成、聚合反应及其聚合物的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叠氮基不但是高含能基团,而且是反应性功能团,它也可以被转化为许多活性基团。因此,叠氮化学一直受到人们的广泛关注,并在有机合成反应研究中取得了卓越的成就。随着聚合物科学的发展,叠氮聚合物的合成及应用研究也引起了高分子科学家的兴趣,合成方法的研究不断推陈出新,叠氮聚合物也已被广泛地用作高能粘结剂、交联材料以及表面改性材料。最初叠氮聚合物的合成是采用含卤聚合物化学改性或环醚叠氮单体阳离子开环聚合的方法。这两种方法均存在不同程度的局限性,如高分子反应法是两相反应,卤代基团难以完全被叠氮基团取代,而阳离子开环聚合反应条件苛刻,单体纯度要求高。随着活性自由基聚合尤其是RAFT聚合的蓬勃发展及人们对叠氮基团性能的进一步了解,不同结构的叠氮聚合物通过活性自由基聚合的方法被合成出来。本实验室一直致力于新的叠氮聚合物的合成及聚合方法的研究开发,首次实现了γ-射线辐射引发叠氮单体的活性自由基聚合,合成了多种不同结构的叠氮聚合物。本论文从分子结构与化学活性的关系出发,设计、合成了多种叠氮单体,考察了各种单体的稳定性及聚合反应特性,建立了合成叠氮聚合物的新方法,并开展了叠氮聚合物在材料表面改性及功能聚合物合成方面的应用研究。主要内容分为如下六个部分:
     1.从分子结构与化学性质的关系出发,设计、合成了四类共9种叠氮单体,包括不饱和酯类、不饱和酰胺类、苯乙烯类及烯丙基类叠氮单体;并系统考察了不同种类叠氮单体的热稳定;根据叠氮单体的结构,分别研究了它们的阳离子聚合、活性自由基聚合特性。通过对实验结果的对比分析,了解了叠氮单体结构对其热稳定性和聚合反应特性的影响。
     2.设计、合成了一种新的不饱和酯类叠氮单体—甲基丙烯酸-4-叠氮苯酯,通过变温红外光谱和核磁共振氢谱研究了其热稳定性,研究结果表明该叠氮单体在室温下非常稳定。以传统的氧化还原体系(过氧化苯甲酰/N,N-二甲基苯胺)为引发剂,采用室温RAFT聚合,研究了甲基丙烯酸-4-叠氮苯酯的均聚、与丙烯酸甲酯、甲基丙烯酸甲酯、苯乙烯的RAFT共聚反应行为,动力学研究结果表明该聚合属于可控/活性自由基聚合。通过对聚合反应产物的跟踪检测,发现该单体在室温聚合条件下,没有发生叠氮基团与不饱和双键的环加成副反应。
     3.以工业级试剂为原料,与叠氮钠反应合成了一种新的烯丙基类叠氮单体—2-氯烯丙基叠氮。由于存在烯丙基结构,它不易进行自由基均聚反应,但以传统的氧化还原体系(过氧化苯甲酰/N,N-二甲基苯胺)为引发剂,成功实现了2-氯烯丙基叠氮与丙烯酸甲酯的室温RAFT共聚合。实验结果表明,聚合物的分子量可控,分子量分布较窄,且叠氮含量可调。以该叠氮聚合物为反应物,通过与丙烯酸六氟丁酯的室温RAFT嵌段共聚反应和与端炔基聚乙二醇单甲醚的点击化学反应,分别合成了含叠氮含氟两嵌段共聚物和两亲性接枝共聚物。此外,利用合成的叠氮共聚物在常温下经紫外光辐照成功实现了对玻璃片的表面改性。
     4.研究了聚(甲基丙烯酸-4-叠氮苯酯-co-丙烯酸甲酯)在有机溶剂中对于多壁碳纳米管的分散作用。结果显示,借助超声波的作用,叠氮共聚物能将多壁碳纳米管有效地分散于有机溶剂中,形成稳定的叠氮聚合物-多壁碳纳米管复合物分散液。采用透射电镜、热重分析、拉曼光谱和紫外可见光谱对复合材料进行了表征,并将复合材料分散液通过浸涂法对棉布进行了表面改性研究。经紫外光辐照后,叠氮聚合物将多壁碳纳米管以共价键的形式固定于棉纤维表面,形成了微纳结构,因此,改性棉布表面从亲水性转变为超疏水性(154°)。由于多壁碳纳米管以共价键形式连接到棉布表面,超疏水棉布显示出高稳定性及耐化学腐蚀性。
     5.采用室温RAFT聚合成功合成了含亲水性聚乙二醇链、疏水性聚丙烯酸六氟丁酯链段的两亲性三嵌段叠氮共聚物,并利用此叠氮共聚物通过浸涂法和紫外光辐照,对棉布进行了表面改性研究。由于是两亲性嵌段共聚物,聚乙二醇易于吸附到棉纤维表面,而疏水、且表面能低的含氟链段会富集于表层,因此,改性后的棉布显示出超疏水性(155°)。因为聚合物链以共价键形式接枝到了棉布表面,超疏水棉布表现出高稳定性和耐化学腐蚀性。
     6.通过RAFT聚合合成了中间段为亲水性聚乙二醇、两端为聚乙烯基苄基叠氮的ABA型三嵌段两亲性叠氮共聚物,然后经炔丙基咔唑与叠氮共聚物的点击反应,合成了具有荧光特性的两亲性三嵌段共聚物。通过GPC、核磁共振氢谱和红外光谱表征证明了所合成的共聚物具有精确的结构。由于聚合物具有两亲性,它在水与四氢呋喃的混合溶剂中组装形成新颖的杯状囊泡。同时发现,与该共聚物在有机良溶剂中的荧光强度相比,所形成的囊泡在水中的荧光强度更强,表现出典型的聚集诱导荧光增强效应。
Azide groups are high energy groups and reactive groups, which can be transformed into a variety of functional groups. So the chemistry of azides has attracted great attention of chemists, and organic azides have become very useful intermediates in synthetic chemistry. With the development of the polymer science, the synthesis and application of the azide polymers have also attracted much interest of polymer scientists, and synthesis methods were got rid of the stale and brought forth the fresh. Azide polymers are used widely as high energetic materials, cross-linking materials and the materials for surface modification. At the earlier development stage, azide polymers were commonly prepared by chemical modification of polymers or by cationic ring-opening polymerization of cyclic ether azides. However, these approaches have some disadvantages, azide content in the polymer produced by chemical modification couldn't be controlled very well, and ionic polymerization requires stringent reaction conditions such as high purity of monomers and high vacuum techniques. With the rapid development of the living radical polymerization especially RAFT polymerization and the further understanding of the azides, azide polymers with novel structure have been synthesized through the living radical polymerization. We have been trying to develop facile and effective strategies for the preparation of azide polymers, and living free radical polymerization has been first successfully used to prepare different azide polymers by y-ray initiation in our lab. In this thesis, we have designed and synthesized a series of new vinyl azide monomers based on the relationship between molecular structure and chemical property. We have explored the stability and polymerization character of the new vinyl azide monomers, and developed the new methods for the synthesis of the azide polymers. The application research of azide polymers have also been carried out as cross-linking materials and surface modification materials, and functional polymers. The main results obtained in this thesis are listed as follows:
     1. Considering the relationship between molecular structure and chemical property, we have designed and synthesized different unsaturated azide monomers, including unsaturated ester azides, unsaturated acrylamide azides, styrene azides and allylazides. The stability of the new azide monomers has been explored. According to the structure of the azide monomers, we have investigated the cationic polymerization and living free radical polymerization of the monomers. From the results of the experiments, the structure influences in the stability and polymerization character of the azide monomers have been understood.
     2. A new vinyl aryl azide monomer,4-azidophenyl methacrylate (APM), has been synthesized. The thermal stability of APM has been investigated by temperature-dependent FT-IR spectroscopy and 1H NMR, and the monomer has been demonstrated to be quite stable at ambient temperature. Reversible addition-fragmentation chain transfer (RAFT) homopolymerization and copolymerizations of APM with methyl acrylate, methyl methacrylate, and styrene have been carried out at room temperature using a redox initiator, benzoyl peroxide (BPO)/N, N-dimethylaniline (DMA). The results show that the polymerizations bear all the characteristics of controlled/living free radical polymerizations. Moreover, the cycloaddition of azido group to carbon-carbon double bond can be avoided in the polymerization process at room temperature.
     3. A new vinyl azide monomer,2-chlorallyl azide(CAA), has been synthesized from commercially available reagent in one step. Owing to the allyl structure of CAA, the azide polymer could not be prepared via living free radical hompolymerization. However, the reversible addition fragmentation chain transfer (RAFT) copolymerization of CAA with methyl acrylate (MA) was carried out at room temperature using a redox initiator (BPO/DMA), in the presence of benzyl 1H-imidazole-1-carbodithioate (BICDT). The polymerization results showed that the process bears the characteristics of controlled/living radical polymerizations, such as the molecular weight increasing linearly with the monomer conversion, the molecular weight distribution being narrow, and a linear relationship existing between ln([M]o/[M]) and the polymerization time. Chain extension polymerization was performed successfully to prepare block copolymer. Furthermore, the azide copolymers were functionalized by Cu1-catalyzed "click" reaction with alkyne-containing poly(ethylene glycol) (PEG) to yield amphiphilic graft copolymers with hydrophilic PEG side chains. Surface modification of the glass sheet was successfully achieved via the crosslinking reaction of the azide copolymer under UV irradiation at ambient temperature.
     4. Homogeneous dispersion of pristine multi-walled carbon nanotubes (MWNTs) in various organic solvents was achieved using azide copolymer, poly(4-azidophenyl methacrylate-co-methyl acrylate)(P(APM-co-MA)), by a simple ultrasonic process. The copolymers were noncovalently attached to the surface of the MWNTs viaπ-πinteractions to form the MWNT-P(APM-co-MA) composites. The composites were characterized by transmission electron microscopy, thermogravimetric analysis, Raman spectra and UV-vis spectra. Then the dispersion solution of the MWNT-P(APM-co-MA) composites was used to fabricate superhydrophobic cotton fabric by a facile dip-coating approach. MWNTs were covalently attached on the surface of cotton fabric through the chemical reaction of the azide groups of P(APM-co-MA) with both MWNTs and cotton fibers based on nitrene chemistry under UV irradiation. Owing to introducing the nanoscale roughness of MWNTs, the surface of the cotton fabric was transformed from hydrophilicity to superhydrophobicity with an apparent water contact angle of 154°. Since MWNTs were covalently attached on the surface of the cotton fabric, the superhydrophobicity possessed high stability and chemical durability.
     5. Amphiphilic triblock azide copolymers containing poly(ethylene glycol) (PEG) and poly(2,2,3,4,4,4-hexafluorobutyl acrylate) blocks have been synthesized through room temperature RAFT polymerization using redox initiation and were successfully used to fabricate superhydrophobic cotton fabric by a facile approach. The copolymers were covalently attached to the surface of the cotton fabric by the reaction of azide groups with the cotton fibres based on nitrene chemistry via UV irradiation. Due to the amphiphilic character of the copolymer, hydrophilic PEG blocks tend to locate in the interface between the block copolymer coating and cotton fibres due to the H-bond interaction of PEG with the hydroxyl groups of the cotton fibres, and the fluorinated blocks aggregate in the outermost of the coating. And so the cotton fabric was transformed from hydrophilicity to superhydrophobicity with a water contact angle of 155°. Since the fluorinated polymer chains were covalently attached on the surface of the cotton fabric, the superhydrophobic cotton fabric possessed high stability and chemical durability.
     6. Amphiphilic triblock copolymers with the carbazole pendants have been synthesized by the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and "click" chemistry. First, the triblock copolymers of 4-vinylbenzyl azide were prepared in the presence of the macromolecular chain transfer agent. Then, novel triblock copolymers were obtained via the click reaction between azide groups in the polymers and N-propargyl-carbazole. The copolymers were characterized by GPC,1H NMR spectra and FT-IR spectra, and the results indicated that the copolymers possessed well-defined structures. Due to the unique amphiphilic structure, the copolymers were self-assembled to form cup-shaped vesicles in a mixture solution of water and tetrahydrofuran. It is interesting to find that the copolymer vesicles show the phenomenon of aggregation-induced emission enhancement (AIEE), comparing with the fluorescence emission intensity in the solution of organic solvents.
引文
[1]Griess, P. Philos. Trans. R. Soc. London 1864, 13, 377.
    [2](a) Curtius, T. Ber. Dtsch. Chem. Ges. 1890, 23, 3023-3033; (b) Curtius, T. J. Prakt. Chem. 1894,50,275.
    [3]Tiemann, F. Ber. Dtsch. Chem. Ges. 1891, 24, 4162-4167
    [4]Smith, P. A. S. Org. React. 1946, 3, 337-349.
    [5]Boyer, J. H.; Canter,. F. C. Chem. Rev. 1954, 54, 1-57.
    [6]L'Abbe, G. Chem. Rev. 1969, 69, 345-363.
    [7]Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J. M. I: Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2004, 43, 3928-3932.
    [8]Fournier, D.; Hoogenboom, R.; Schubert, U. S. Chem. Soc. Rev. 2007, 36, 1369-1380.
    [9]Binder, W. H.; Sachsenhofer, R. Macromol. Rapid Commun. 2008, 29, 952-981.
    [10]Lundberg, P.; Hawker, C. J.; Hull A.; Malkoch, M. Macromol. Rapid Commun. 2008, 29, 998-1015.
    [11]Johnson, J. A.; Finn, M. G.; Koberstein, J. T.; Turro, N. J. Macromol. Rapid Commun. 2008, 29, 1052-1072.
    [12]Iha, R. K.; Wooley, K. L.; Nystrom, A. M.; Burke, D. J.; Kade, M. J.; Hawker, C. J. Chem. Rev. 2009, 109, 5620-5686.
    [13]Wiltshire, J. T.; Qiao, G. G. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 1485-1498.
    [14]Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297 - 368.
    [15](a) Pauling, L.; Brockway, L. O. J. Am. Chem. Soc. 1937, 59, 13-20; (b) Brockway, L. O.; Pauling, L. Proc. Natl. Acad. Sci. USA 1933, 19, 860 - 867..
    [16]Parr, T.; Hanson-Parr, D. Combust. Flame 2004, 137, 38-49.
    [17]Kim, E. S.; Yang, V.; Liau, Y. C. Combust. Flame 2002, 131, 227-245.
    [18]Arisawa, H.; Brill, T. B. Combust. Flame 1998, 112, 533-544.
    [19]Ger, M. D.; Hwu, W. H.; Huang, C. C. Thermochim. Acta 1993, 224, 127-140.
    [20]Nair, J. K.; Satpute, R. S.; Polke, B. G.; Mukundan, T.; Asthana, S. N.; Singh, H. Def. Sci. J. 2002,52, 147-156.
    [21]Chang, T. C.; Wu, K. H.; Chen, H. B.; Ho, S. Y.; Chiu, Y. S. J. Polym. Sci. Part A, Polym. Chem. 1996,34,3337-3343.
    [22]Kubota, N. J. Propul. Power 1995, 11, 677-682.
    [23]张炜,朱慧,推进技术,1996,17,72-75.
    [24]李辰芳,飞航导弹,1997,1,42-46.
    [25]Ruud, C. J.; Jia, J. P.; Baker, G. L. Macromolecules 2000, 33, 8184
    [26]Varma, I. K. Macromol. Symp.2004,210,121-129.
    [27]Akhrass, S. A.; Ostaci, R.; Grohens, Y.; Drockenmuller, E.; Reiter, G. Langmuir 2008,24, 1884-1890.
    [28]Harmer, M. A. Langmuir,1991,7,2010-2012.
    [29]Kuijpens, J. M. H.; Kardaun, G. A.; Blezer, R.; Pijpers, A. P.; Koole, L. H. J. Am. Chem. Soc. 1995,117,8691-8697.
    [30]Marinucci, L.; Lilli, C.; Guerra, M.; Belcastro, S.; Becchetti, E.; Stabellini, G.; Calvi, E. M.; Locci, P. J. Biomed. Mater. Res. Part A 2003,67A,504-509.
    [31]Renaudie, L.; Narvor, C. L.; Lepleux, E.; Roger, P. Biomacromolecules 2007,8,679-685.
    [32]Schuh, K.; Prucker, O.; Ruhe, J. Macromolecules 2008,41,9284-9289.
    [33]Ambade, V.; Kumar, A. J. Polym. Sci, Polym. Chem. Ed.2001,39,1295-1304.
    [34]Pan, Y.; Ford, W. T. J. Polym. Sci., Polym. Chem. Ed.2000,38,1533-1543.
    [35]Spindler, R.; Frechet, J. M. J. Macromolecules 1993,26,4809-4813.
    [36]Okaniwa, M.; Takeuchi, K.; Asai, M.; Ueda, M. Macromolecules 2002,35,6224-6231; 6232-6238.
    [37]施明达。火炸药,1994,1,9-16.
    [38]Vanderberg, E. J. USP3645917,1972.
    [39]张九轩,曹一林,孙忠祥,吴正明。固体火箭技术,1995,18(3),62-67.
    [40]冯增国,侯竹林,李再峰。北京理工大学学报,1996,16(2),138-142.
    [41]李再峰,冯增国,侯竹林。青岛化工学院学报,1997,18(2),155-163.
    [42]王平,夏中均,尹丽莎,李常青。含能材料,1998,6(3),102-106.
    [43]王平,李长春,夏中均。中国核科技报告,1999,CNIC-01325:CAEP-0013.
    [44]Earl, R. A.; Elmslie, J. S. USP4405762,1984.
    [45]Wagner, R. L.; Wilson, E. R.; Grant, L. R.; Flanagan; J. E. USP4937361,1990.
    [46]Huang, D.; Rindone, R.R. USP5597978,1997.
    [47]Gaur, B.; Lochab, B.; Choudhary, V.; Varma, I. K. J. Therm. Anal. Calorim.2003,71, 467-479.
    [48]Varma, I. K.; Choudhary, V; Gaur, B.; Lochab, B.; Oberoi, S.; Chauhan, R. J. Appl. Polym. Sci.2006,101,779-786.
    [49]Sacristan, J.; Reinecke, H.; Mijangos, C. Polymer 2000,41,5577-5582.
    [50]Martinez, G. J Polym Sci, Part A:Polym. Chem.2006,44,2476-2486.
    [51]Ruud, C. J.; Jia, J. P.; Baker, G. L. Macromolecules 2000,33,8184-8191.
    [52]Barbieri, U.; Polacco, G.; Massimi. R. Macromol. Symp.2006,234,51-58.
    [53]卢先明,甘孝贤.火炸药学报,2004,27(3),49-52.
    [54]Hsiue, C.; Liu, Y. L.; Chiu, Y. S. J. Polym. Sci, Part A:Polym. Chem.1994,32,2155-2159.
    [55]Kubota, N. J. Propulsion Power 1995,11,677-682.
    [56]屈红翔,冯增国,谭惠民,许保国,周集义.高分子学报,1997,5,615-619.
    [57]Xu, B.; Lin, Y. C.; Chien, J. C. W. J. Appl. Polym. Sci.1992,46,1603-1611.
    [58]屈红翔,冯增国,于永忠,凌剑,杨亚明.1999,4,486-489.
    [59]Liu,Y. L.; Hsiue, C.; Chiu, Y.S.J. Polym. Sci, Part A:Polym. Chem.1995,33,1607-1613.
    [60]Chang, T. C.; Wu, K. H.; Chen, H. B.; Ho, S. Y.; Chiu, Y. S. J. Polym. Sci, Part A:Polym. Chem.1996,34,3337-3343.
    [61]韩涛,甘孝贤,邢颖,李娜,卢先明,张志刚,莫洪昌.火炸药学报,2006,29(5),72-75.
    [62]Manser, G. E.; Malik, A. A.; Archibald, T. G. WO05615,1994.
    [63]Manser, G. E.; Malik, A. A.; Archibald, T. G. USP 5463019,1995.
    [64]雷向阳,冯增国,杨亚明,刘利华.高等学校化学学报,2000,21(6),965-968.
    [65]甘孝贤,邱少君,卢先明,胡中波,张志刚.火炸药学报,2003,26(3),12-15.
    [66]Malagu, K.; Guerin, P.; Guillemin, J. C. synlett 2002,2,316-318.
    [67]James, N. R.; Jayakrishnan, A. J. Appl. Polym. Sci.2003,87,1852-1857.
    [68]Otsu, T.; Yoshida, M. Makromol. Chem., Rapid Comm.1982,3,127-132.
    [69]Otsu, T.; Yoshida, M.; Tazaki, T. Makromol. Chem., Rapid Comm.1982,3,133-140.
    [70]Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Macromolecules 1993,26, 2987-2988.
    [71]Keoshkerian, B.; Georges, M. K.; Boils-Boissier, D. Macromolecules 1995,28,6381-6382.
    [72]Hawker, C. J.; Bosman, A. W; Harth, E. Chem. Rev.2001,101,3661-3688.
    [73]Wang, J. S.; Matyjaszewski, K., J. Am. Chem. Soc.1995,117,5614-5615.
    [74]Wang, J. S.; Matyjaszewski, K. Macromolecules 1995,28,7901-7910.
    [75]Percec, V; Kim, H. J.; Barboiu, B. Macromolecules 1997,30,6702-6705.
    [76]Kato, M; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995,28, 1721-1723.
    [77]Ando, T.; Kato, M; Kamigaito, M.; Sawamoto, M. Macromolecules 1996,29,1070-1072.
    [78]Sawamoto, M.; Kamigaito, M. Trends Polym. Sci.1996,4,371-372.
    [79]Pan, C. Y; Lou, X. D.; Wang, Y. L.; Wu, C. P. Acta Polymeria Sinica 1998,3,311-317.
    [80]Matyjaszewski, K.; Xia, J. Chem. Rev.2001,101,2921-2990.
    [81]Le, T. P. T.; Moad, G.; Rizzardo, E; Thang, S. H. PCT Int. Appl. WO 9801478 Al 980115 (1998). Chem. Abstr.1998,128,115390.
    [82]Chiefari, J.; Chong, Y. K:Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Wad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998,31,
    5559-5562.
    [83]Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Lee, R. Y.; Matyjaszewski, K. Macromolecules 2005,38,7540-7545.
    [84]Broeckx, W.; Overberg, N.; Samyn, C.; Smets, G.; Labbe, G. Tetrahedron 1971,27, 3527-3534.
    [85]Anderson, G. T.; Henry, J. R.; Weinreb, S. M. J. Org. Chem.1991,56,6946-6948.
    [86]Yang, C. H.; Shen, H. J.; Wang, R.H.; Wang, J.C. J. Chin. Chem. Soc.2002,49,95-102.
    [87]Jancova, K.; Kops, J.; Chen, X; Batsberg, W. Macromol. Rapid Commun.1999,20,219-223.
    [88]Chong, Y. K; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1999,32, 2071-2074.
    [89]Rizzardo, E.; Chiefari, J.; Mayadunne, R. T. A.; Moad, G; Thang, S. H. ACS Sym. Ser.2000, 768,278-296.
    [90]Bai, R.K.; You, Y. Z.; Pan, C. Y. Macromol. Rapid Commun.2001,22,315-319.
    [91]Hong, C. Y.; You, Y Z; Bai, R. K; Pan, C. Y; Borjihan, G. J. Polym. Sci. Part A Polym. Chem. 2001,39,3934-3939.
    [92]Bai, R. K.; You, Y. Z.; Zhong, P.; Pan, C. Y. Macromol. Chem. Phys.2001,202,1970-1973.
    [93]You, Y. Z.; Bai, R. K.; Pan, C. Y. Macromol. Chem. Phys.2001,202,1980-1985.
    [94]Hua, D. B.; Xiao, J. P.; Bai, R. K.; Lu, W. Q.; Pan, C. Y. Macromol. Chem. Phys.2004,205, 1793-1799.
    [95]Hua, D. B.; Cheng, K.; Bai, R. K.; Lu, W. Q.; Pan, C. Y. Polym. Int.2004,53,821-823.
    [96]Hua, D. B.; Zhang, J. X.; Bai, R. K.; Lu, W. Q.; Pan, C. Y. Macromol. Chem. Phys.2004,205, 1125-1130.
    [97]Hua, D. B.; Bai, R. K.; Lu, W. Q.; Pan, C. Y. Group.J. Polym. Sci. PartA, Polym. Chem.2004, 42,5670-5677.
    [98]Hua, D. B.; Ge, X. P.; Bai, R. K.; Lu, W. Q.; Pan, C. Y. Polymer 2005,46,12696-12702.
    [99]He, T.; Zheng, G. H.; Pan, C. Y. Macromolecules 2003,36,5960-5966.
    [100]Hua, D. B.; Bai, W.; Xiao, J. P.; Bai, R. K. Chem. Mater.2005,17,4574-4576.
    [101]Li, Y.; Yang,J. W.; Benicewicz, B. C. J. Polym. Sci. Part A:Polym. Chem.2007,45, 4300-4308.
    [102]Riva, R.; Schmeits, S.; Stoffelbach, F.; Jerome, C; Jerome, R.; Lecomte, P. Chem. Commun. 2005,5334-5336
    [103]Nishi, N.; Tsunemi, M.; Nakamura, K.; Tokura, S. Makromol. Chem.1991,192,1811-1820.
    [104]Nishi, N.; Tsunemi, M.; Hayasaka, H.; Nakamura, K.; Tokura, S. Makromol. Chem.1991,
    192, 1789-1798.
    [105]Nishi, N.; Naruse, T.; Hajiwara, K.; Nakajima, B.; Tokura, S. Makromol. Chem. 1991, 192, 1799-1809.
    [106]Singh, R. P.; Patwa, A. N.; Desai, S. M.; Pandey, J. K.; Solanky, S. S.; Vishwa Prasad, A. J. Appl. Polym. Sci. 2003, 90, 1126-1138.
    [107]Hua, D. B.; Cheng, K.; Bai, W.; Bai, R. K. Macromolecules 2005, 38, 3051-3053.
    [108]Zheng, H.T.; Hua, D. B.; Bai, R. K.; Hu, K. L.; An, L. J.; Pan, C. Y. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2609-2616.
    [109]罗运军,刘晶如.含能材料,2007,15,407-410.
    [110]王静刚,刘丹,曹光宇,李俊贤.化学推进剂与高分子材料,2007,5,16-23.
    [111]葛震,罗运军,郭凯,吕勇,酒永斌.含能材料,2009,17,745-750.
    [112]党永战,赵凤起,王国强.飞航导弹,2005,8,48-53.
    [113]陈支厦,郑邯勇,王树峰,王永昌.舰船防化,2007,2,1-5.
    [114]徐武,王煊军,刘祥萱,李正莉.2007,33,44-47.
    [115]庞维强,樊学忠,张龙彬.2008,30,46-49.
    [116]吴艳光,吴晓青,张蕾陈,洪伟.胶体与聚合物,2008,26,31-32.
    [117]Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes, M.; Hirsch, A. J. Am. Chem. Soc. 2003, 125, 8566-8580.
    [118]Qin, S.; Qin, D.; Ford, W. T.; Resasco, D. E.; Herrera, J. E. Macromolecules 2004, 37, 752-757.
    [119]Gao, C.; He, H.; Zhou, L.; Zheng, X.; Zhang, Y. Chem. Mater. 2009, 21, 360-370.
    [120]Moghaddam, M. J.; Taylor, S.; Gao, M.; Huang, S.; Dai, L.; McCall, M. J. Nano Lett. 2004, 4, 89-93.
    [121]Lee, K. M.; Li, L.; Dai, L. J. Am. Chem. Soc. 2005, 127, 4122-4123.
    [122]Pastine, S. J.; Okawa, D.; Kessler, B.; Rolandi, M.; Llorente, M.; Zettl, A.; Frechet, J. M. J. J. Am. Chem. Soc. 2008, 130, 4238-4239.
    [123]Morita, H.; Mori, S.; Uchino, N.; Yokoyama, S. Z. Phys. Chem., Int. J. Res. Phys. Chem. Chem. Phys. 1993, 182, 209-216.
    [124]Murray, K. A.; Holmes, A. B.; Moratti, S. C.; Friend, R. H. Synth. Met. 1996, 76, 161-163.
    [125]Gonzalez, L.; Rodriguez, A.; deBenito, J. L.; MarcosFernandez, A. J. Appl. Polym. Sci. 1997,63, 1353-1359.
    [126]Yan, M. D.; Cai, S. X.; Wyboume, M. N.; Keana, J. F. W. J. Mater. Chem. 1996, 6, 1249-1252.
    [127]Naito, I.; Morihara, H. J. Imaging Sci. Technol. 1996, 40, 50-55.
    [128]Yamamoto, J.; Uchino, S.; Hattori, T.; Yoshimura, T.; Murai, F. Jpn. J. Appl. Phys., Part 1: Regul. Pap. Short Notes Rev. Pap. 1996, 35, 6511-6516.
    [129]Jia, J. P.; Baker, G. L. J. Polym. Sci, Part B: Polym. Phys. 1998, 36, 959-968.
    [130]Kelman, S. D.; Matteucci, S.; Bielawski, C. W.; Freeman, B: D. Polymer 2007, 48, 6881-6892.
    [131]J(?)rgensen, J. K.; Ommundsen, E.; Stori, A.; Redford, K. Polymer 2005, 46, 12073-12080.
    [1]Parr, T.; Hanson-Parr, D. Combust. Flame 2004,137,38-49.
    [2]Kim, E. S.; Yang, V.; Liau, Y. C. Combust. Flame 2002,131,227-245.
    [3]Arisawa, H.; Brill, T. B. Combust. Flame 1998,112,533-544.
    [4]Ger, M. D.; Hwu, W. H.; Huang, C. C. Thermochim. Acta 1993,224,127-140.
    [5]Nair, J. K.; Satpute, R. S.; Polke, B. G.; Mukundan, T.; Asthana, S. N.; Singh, H. Def. Sci. J. 2002,52,147-156.
    [6]Chang, T. C.; Wu, K. H.; Chen, H. B.; Ho, S. Y.; Chiu, Y. S. J. Polym.Sci. Part A, Polym. Chem.1996,34,3337-3343.
    [7]Kubota, N. J. Propul. Power 1995,11,677-682.
    [8]Ruud, C. J.; Jia, J. P.; Baker, G. L. Macromolecules 2000,33,8184-8191.
    [9]Varma, I. K, Macromol. Symp.2004,210,121-129.
    [10]Kuijpens, J. M. H.; Kardaun, G. A.; Blezer, R.; Pijpers, A. P.; Koole, L. H. J. Am. Chem. Soc. 1995,117,8691-8697.
    [II]Marinucci, L.; Lilli, C.; Guerra, M.; Belcastro, S.; Becchetti, E.; Stabellini, G.; Calvi, E. M.; Locci, P. J. Biomed. Mater. Res. Part A 2003,67A,504-509.
    [12]Van der Heiden, A. P.; Willems, G. M.; Lindhout, T.; Pijpers, A. P.; Koole, L. H. J. Biomed. Mater. Res.1998,40,195-203.
    [13]Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C.J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed.2004,43,3928-3932.
    [14]Fournier, D.; Hoogenboom, R.; Schubert, U. S. Chem. Soc. Rev.2007,36,1369-1380.
    [15]Binder, W. H.; Sachsenhofer, R. Macromol. Rapid Commun.2008,29,952-981.
    [16]Lundberg, P.; Hawker, C. J.; Hult, A.; Malkoch, M. Macromol.Rapid Commun.2008,29, 998-1015.
    [17]Johnson, J. A.; Finn, M. G.; Koberstein, J. T.; Turro, N. J. Macromol. Rapid Commun.2008, 29,1052-1072.
    [18]Brochu, S.; Ampleman, G. Macromolecules 1996,29,5539-5545.
    [19]Sacristan, J.; Reinecke, H.; Mijangos, C. Polymer 2000,41,5577-5582.
    [20]Gaur, B.; Lochab, B.; Choudhary, V.; Varma, I. K. J. Therm. Anal.Calorim.2003,71, 467-479.
    [21]Malagu, K.; Guerin, P.; Guillemin, J. C. synlett 2002,2,316-318.
    [22]James, N. R.; Jayakrishnan, A. J. Appl. Polym. Sci.2003,87,1852-1857.
    [23]Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Lee, R. Y.; Matyjaszewski, K. Macromolecules 2005,38,7540-7545.
    [24]Li, Y.; Yang,J. W.; Benicewicz, B. C. J. Polym. Sci. Part A:Polym. Chem.2007,45, 4300-4308.
    [25]Hua, D. B.; Bai, W.; Xiao, J. P.; Bai, R. K. Chem. Mater.2005,17,4574-4576.
    [26]Hua, D. B.; Cheng, K.; Bai, W.; Bai, R. K. Macromolecules 2005,38,3051-3053.
    [27]Zheng, H.T.; Hua, D. B.; Bai, R. K.; Hu, K. L.; An. L,J.; Pan, C. Y. J. Polym. Sci. Part A: Polym. Chem.2007,45,2609-2616.
    [28]Hua, D. B.; Bai, R. K.; Lu, W. Q.; Pan, C. Y. J. Polym. Sci. Part A:Polym. Chem.2004,42, 5670-5677.
    [29]Stempel, Jr. G. H.; Cross, R. P.; Mariella, R. P. J Am. Chem. Soc.1950,72,2299-2300.
    [30]Dunkin, I. R.; El Ayeb, A. A.; Gallivan, S. L.; Lynch, M. A. J. Chem. Soc., Perkin Trans.2. 1997,8,1419-1427.
    [31]Overman, L. E.; Taylor, G. F.; Petty, C. B.; Jessup, P. J. J. Org. Chem.1978,43,2164-2167.
    [32]Cheng, H.; Cao, X.; Xian, M.; Fang, L.; Cai, T. B.; Ji, J. J.; Tunac, J. B.; Sun, D.; Wang, P. G. J. Med. Chem.2005,48,645-652.
    [33]Chartres, J. D.; Groth, A. M.; Lindoy, L. F.; Lowe, M. P.; Meehan, G. V. J. Chem. Soc., Perkin Trans.1,2000,3444-3450..
    [34]Krasia, T. C.; Steinke, J. H. G. Chem. Commun.2002,22-23.
    [35]Zheng, H. T.; Bai, W.; Hu, K. L.; Bai, R. K.; Pan, C. Y. J. Polym. Sci. Part A:Polym, Chem. 2008,46,2575-2580.
    [1]Ruud, C. J.; Jia, J. P.; Baker, G. L. Macromolecules 2000,33,8184-8191.
    [2]Nair, J. K.; Satpute, R. S.; Polke, B. G.; Mukundan, T.; Asthana, S. N.; Singh, H. Def. Sci. J. 2002,52,147-156.
    [3]Brochu, S.; Ampleman, G. Macromolecules 1996,29,5539-5545.
    [4]Sacristan, J.; Reinecke, H.; Mijangos, C. Polymer 2000,41,5577-5582.
    [5]Gaur, B.; Lochab, B.; Choudhary, V.; Varma, I. K. J. Therm. Anal.Calorim.2003,71, 467-479.
    [6]Parr, T.; Hanson-Parr, D. Combust. Flame 2004,137,38-49.
    [7]Kim, E. S.; Yang, V.; Liau, Y. C. Combust. Flame 2002,131,227-245.
    [8]Arisawa, H.; Brill, T. B. Combust. Flame 1998,112,533-544.
    [9]Ger, M. D.; Hwu, W. H.; Huang, C. C. Thermochim. Acta 1993,224,127-140.
    [10]Chang, T. C.; Wu, K. H.; Chen, H. B.; Ho, S. Y.; Chiu, Y. S. J. Polym.Sci. Part A, Polym. Chem.1996,34,3337-3343.
    [11]Kubota, N. J. Propul. Power 1995,11,677-682.
    [12]Malagu, K.; Guerin, P.; Guillemin, J. C. synlett 2002,2,316-318.
    [13]James, N. R.; Jayakrishnan, A. J. Appl. Polym. Sci.2003,87,1852-1857.
    [14]Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Lee, R. Y; Matyjaszewski, K. Macromolecules 2005,38,7540-7545.
    [15]Li Y.; Yang, J. W.; Benicewicz, B. C. J. Polym. Sci. Part A:Polym. Chem.2007,45, 4300-4308.
    [16]Hua, D. B.; Bai, W.; Xiao, J. P.; Bai, R. K. Chem. Mater.2005,17,4574-4576.
    [17]Hua, D. B.; Cheng, K.; Bai, W.; Bai, R. K. Macromolecules 2005,38,3051-3053.
    [18]Zheng, H.T.; Hua, D. B.; Bai, R. K.; Hu, K. L.; An, L. J.; Pan, C. Y. J. Polym. Sci. Part A:Polym. Chem.2007,45,2609-2616.
    [19]Zheng, H. T.; Bai, W.; Hu, K. L,; Bai, R. K.; Pan, C. Y. J. Polym. Sci.Part A:Polym. Chem. 2008,46,2575-2580.
    [20]Hua, D. B.; Bai, R. K.; Lu, W. Q.; Pan, C. Y. J. Polym. Sci. Part A:Polym. Chem.2004,42, 5670-5677.
    [21]Thang, S. H.; Chong, Y. K.; Mayadunne, R. T. A.; Moad, G.; Rizzardo, E. Tetrahedron Lett. 1999,40,2435-2438.
    [22]Stempel, Jr. G. H.; Cross, R. P.; Mariella, R. P. J Am. Chem. Soc.1950,72,2299-2300.
    [23]Yang, C. H.; Shen, H. J. Tetrahedron Lett.1993,34,4051-4054.
    [24]Broeckx, W.; Overberg, N.; Samyn, C.; Smets, G.; Labbe, G. Tetrahedron 1971,27, 3527-3534.
    [25]Anderson, G. T.; Henry, J. R.; Weinreb, S. M. J. Org. Chem.1991,56,6946-6948.
    [26]Yang, C. H.; Shen, H. J.; Wang, R.H.; Wang, J.C. J. Chin. Chem. Soc.2002,49,95-102.
    [1]Ruud, C. J.; Jia, J. P.; Baker, G. L. Macromolecules 2000,33,8184-8191.
    [2]Varma, I. K. Macromol. Symp.2004,210,121-129.
    [3]Akhrass, S. A.; Ostaci, R.; Grohens, Y.; Drockenmuller, E.; Reiter, G. Langmuir 2008,24, 1884-1890.
    [4]Parr, T.; Hanson-Parr, D. Combust. Flame 2004,137,38-49.
    [5]Kim, E. S.; Yang, V.; Liau, Y. C. Combust. Flame 2002,131,227-245.
    [6]Arisawa, H.; Brill, T. B. Combust. Flame 1998,112,533-544.
    [7]Ger, M. D.; Hwu, W. H.; Huang, C. C. Thermochim. A cta 1993,224,127-140.
    [8]Nair, J. K.; Satpute, R. S.; Polke, B. G.; Mukundan, T.; Asthana, S.N.; Singh, H. Def. Sci. J. 2002,52,147-156.
    [9]Chang, T. C.; Wu, K. H.; Chen, H. B.; Ho, S. Y.; Chiu, Y. S. J. Polym. Sci. Part A, Polym. Chem.1996,34,3337-3343.
    [10]Kubota, N. J. Propul. Power 1995,11,677-682.
    [11]Harmer, M. A. Langmuir,1991,7,2010-2012.
    [12]Kuijpens, J. M. H.; Kardaun, G. A.; Blezer, R.; Pijpers, A. P.; Koole, L. H. J. Am. Chem. Soc. 1995,117,8691-8697.
    [13]Marinucci, L.; Lilli, C.; Guerra, M.; Belcastro, S.; Becchetti, E.; Stabellini, G.; Calvi, E. M.; Locci, P. J. Biomed. Mater. Res. Part A 2003,67A,504-509.
    [14]Renaudie, L.; Narvor, C. L.; Lepleux, E.; Roger, P. Biomacromolecules 2007,8,679-685.
    [15]Schuh, K.; Prucker, O.; Ruhe, J. Macromolecules 2008,41,9284-9289.
    [16]Liu, S. S.; Elyashiv, S.; Sen, A. J. Am. Chem. Soc.2001,123,12738-12739.
    [17]Liu, S. S.; Sen, A. J. Polym. Sci. Part A, Polym. Chem.2004,42,6175-6192.
    [18]Venkatesh, R.; Staal, B. B. P.; Klumperman, B. Chem. Commun.2004,1554-1555.
    [19]Venkatesh, R.; Vergouwen, F.; Klumperman, B. J. Polym. Sci. Part A, Polym. Chem.2004, 42,3271-3284.
    [20]Hua, D. B.; Bai, W.; Xiao, J. P.; Bai, R. K. Chem. Mater.2005,17,4574-4576.
    [21]Li, G.; Zheng, H. T.; Bai, R. K. Macromol. Rapid Commun.2009,30,442-447.
    [22]Zheng, H. T.; Bai, W.; Hu, K. L.; Bai, R. K.; Pan, C. Y. J. Polym. Sci. Part A:Polym. Chem. 2008,46,2575-2580.
    [23]Tasdelen, M. A.; Durmaz, Y. Y.; Karagoz, B.; Bicak, N.; Yagci, Y. J. Polym. Sci. Part A: Polym. Chem.2008,46,3387-3395.
    [24]Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed.2004,43,3928-3932.
    [25]Liu, Q.; Chen, Y. J. Polym. Sci., Part A:Polym. Chem.2006,44,6103-6113.
    [26]Fournier, D.; Hoogenboom, R.; Schubert, U. S. Chem. Soc. Rev.2007,36,1369-1380.
    [27]Lutz, J. F. Angew. Chem., Int. Ed.2007,46,1018-1025.
    [28]Binder, W. H.; Sachsenhofer, R. Macromol. Rapid Commun.2008,29,952-981.
    [29]Lundberg, P.; Hawker, C. J.; Hult, A.; Malkoch, M. Macromol. Rapid Commun.2008,29, 998-1015.
    [30]Johnson, J. A.; Finn, M. G.; Koberstein, J. T.; Turro, N. J. Macromol. Rapid Commun.2008, 29,1052-1072.
    [31]Jiang, X.; Zhang, J.; Zhou, Y.; Xu, J.; Liu, S. J. Polym. Sci., Part A:Polym. Chem.2008,46, 860-871.
    [32]Wiltshire, J. T.; Qiao, G. G. J. Polym. Sci., Part A:Polym. Chem.2009,47,1485-1498.
    [33]Iha, R. K.; Wooley, K. L.; Nystrom, A. M.; Burke, D. J.; Kade, M. J.; Hawker, C. J. Chem. Rev.2009,109,5620-5686.
    [34]Damiron, D.; Desorme, M.; Ostaci, R.; Akhrass, S. A.; Hamaide, T.; Drockenmuller, E. J. Polym. Sci., Part A:Polym. Chem.2009,47,3803-3813.
    [35]Zhang, M.; Mueller, A. H. E. J. Polym. Sci., Part A:Polym. Chem.2005,43,3461-3481.
    [36]Gao, H.; Matyjaszewski, K. J. Am. Chem. Soc.2007,129,6633-6639.
    [37]Tsarevsky, N. V.; Bencherif, S. A.; Matyjaszewski, K. Macromolecules 2007,40,4439-4445.
    [38]Billiet, L.; Fournier, D.; Prez, F. D. J. Polym. Sci. Part A:Polym. Chem.2008,46, 6552-6564.
    [39]Ostaci, R. V.; Damiron, D.; Capponi, S.; Vignaud, G.; Leger, L.; Grohens, Y.; Drockenmuller, E. Langmuir 2008,24,2732-2739.
    [40]Yin, J.; Ge, Z.; Liu, H.; Liu, S. J. Polym. Sci. Part A:Polym. Chem.2009,47,2608-2619.
    [41]Engler, A. C.; Lee, H.; Hammond P. T. Angew. Chem. Int. Ed.2009,48,9334-9338.
    [42]Scriven, E. F. V.; Turnbull, K. Chem. Rev.1988,88,297-368.
    [43]Hua, D. B.; Bai, R. K.; Lu, W. Q.; Pan, C. Y. J. Polym. Sci. Part A:Polym. Chem.2004,42, 5670-5677.
    [44]Parrish, B.; Emrick, T. Macromolecules 2004,37,5863-5865.
    [45]Broeckx, W.; Overberg, N.; Samyn, C.; Smets, G.; Labbe, G. Tetrahedron 1971,27, 3527-3534.
    [46]Anderson, G. T.; Henry, J. R.; Weinreb, S. M. J. Org. Chem.1991,56,6946-6948.
    [47]Yang, C. H.; Shen, H. J.; Wang, R. H.; Wang, J. C. J. Chin. Chem. Soc.2002,49,95-102.
    [48]Li, Y.; Yang, J. W.; Benicewicz, B. C. J. Polym. Sci. Part A:Polym. Chem.2007,45, 4300-4308.
    [1]Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. In Carbon Nanotubes in Topics in Applied Physics; Springer:Berlin,2001.
    [2]Rao, C. N. R.; Govindaraj, A. In Nanotubes and Nanowires; RSC Publishing:Cambridge, U.K.,2005.
    [3]Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002,297,787-792.
    [4]Iijima, S. Nature 1991,354,56-58.
    [5]Bahr, J. L.; Tour, J. M. Chem. Mater.2001,13,3823-3824.
    [6]Yao, Z.; Braidy, N.; Botton, G. A.; Adronov, A. J. Am. Chem. Soc.2003,125, 16015-16024.
    [7]Liang, F.; Sadana, A. K.; Peera, A.; Chattopadhyay, J.; Z. Gu, R. H. Hauge, W. E. Billups, Nano Lett.2004,4,1257-1260.
    [8]Lou, X.; Detrembleur, C.; Pagnoulle, C.; Jerome. R.; V.; Bocharova, Kirity, A.; Stamm, M. Adv. Mater.2004,16,2123-2127.
    [9]Liu, Y.; Adronov, A. Macromolecules 2004,37,4755-4760.
    [10]Li, H.; Cheng, F.; Duft, A. M.; Adronov, A. J. Am. Chem. Soc.2005,127,14518-14524.
    [11]Xu, H. X.; Wang, X. B.; Zhang, Y. F.; Liu, S. Y. Chem. Mater.2006,18,2929-2934.
    [12]Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev.2006,106,1105-1136.
    [13]Homenick, C. M.; Lawson, G.; Adronov, A. Polym. Rev.2007.47,265-290.
    [14]Georgakilas, V.; Bourlinos, A. B.; Zboril, R.; Trapalis, C. Chem. Mater.2008,20, 2884-2886.
    [15]Georgakilas, V.; Bourlinos, A.; Gournis, D.; Tsoufis, T.; Trapalis, C.; Mateo-Alonso, A.; Prato, M. J. Am. Chem. Soc.2008,130,8733-8740.
    [16]Goh, R. G. S.; Motta, N.; Bell, J. M.; Waclawik, E. R. Appl. Phys. Lett.2006,88, 053101-053103.
    [17]Zou, J. H.; Khondaker, S. I.; Huo, Q.; Zhai, L. Adv. Funct. Mater.2009,19,479-483.
    [18]Zou, J. H.; Liu, L. W.; Chen, H.; Khondaker, S. I.; McCullough, R. D.; Huo, Q.; Zhai, L. Adv. Mater.2008,20,2055-2060.
    [19]Curran, S. A.; Ajayan, P. M.; Blau, W. J.; Carroll, D. L.; Coleman, J. N.; Dalton, A. B.; Davey, A. P.; Drury, A.; McCarthy, B.; Maier, S.; Strevens, A. Adv. Mater.1998,10, 1091-1093.
    [20]Dalton, A. B.; Stephan, C.; Coleman, J. N.; McCarthy, B.; Ajayan, P. M.; Lefrant, S.; Bernier, P.; Blau, W. J.; Byrne, H. J. J. Phys. Chem. B 2000,104,10012-10016.
    [21]Star, A.; Stoddart, J. F.; Steuerman, D.; Diehl, M.; Boukai, A.; Wong, E. W.; Yang, X.; Chung, S. W.; Choi, H.; Heath, J. R. Angew. Chem. Int. Ed.2001,40,1721-1725.
    [22]Chen. J.; Liu, H.; Weimer, W. A.; Halls, M. D.; Waldeck, D. H.; Walker, G. C. J. Am. Chem. Soc.2002,124,9034-9035.
    [23]Rice, N. A.; Soper. K.; Zhou, N.; Merschrod, E.; Zhao. Y. Chem. Commun.2006, 4937-4939.
    [24]Cheng, F.; Imin, P.; Maunders, C.; Botton, G.; Adronov, A. Macromolecules 2008,41, 2304-2308.
    [25]Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem. Soc.2001,123,3838-3839.
    [26]Nakashima, N.; Tomonari, Y.; Murakami, H. Chem. Lett.2002,638-639.
    [27]Petrov, P.; Stassin, F.; Pagnoulle, C.; Jerome, R. Chem. Commun.2003,2904-2905.
    [28]Liu, L.; Wang, T. X.; Li, J. X.; Guo, Z. X.; Dai, L. M.; Zhang, D. Q.; Zhu, D. B. Chem. Phys. Lett.2003,367,747-752.
    [29]Lou, X.; Daussin, R.; Cuenot, S.; Duwez, A.; Pagnoulle, C.; Detrembleur, C.; Bailly, C.; Jerome.R. Chem. Mater.2004,16,4005-4011.
    [30]Georgakilas, V.; Tzitzios, V.; Gournis, D.; Petridis, D. Chem. Mater.2005,17,1613-1617.
    [31]Ou, Y. Y.; Huang, M. H. J. Phys. Chem. B 2006,110,2031-2036.
    [32]Liu, Y.; Yu, Z. L.; Zhang, Y. M.; Guo, D. S.; Liu. Y. P. J. Am. Chem. Soc.2008,130, 10431-10439.
    [33]Yang, Q.; Shuai, L.; Pan, X. J. Biomacromolecules 2008,9,3422-3426.
    [34]Li, H. P.; Zhou, B.; Lin, Y.; Gu, L. R.; Wang, W.; Fernando, K. A. S.; Kumar, S.; Allard, L. F.; Sun, Y. P. J. Am. Chem. Soc.2004,126,1014-1015.
    [35]Chen, J. Y.; Collier, C. P. J. Phys. Chem. B 2005,109,7605-7609.
    [36]Hasobe, T.; Fukuzumi, S.; Kamat, P. V. J. Am. Chem. Soc.2005,127,11884-11885.
    [37]Satake, A.; Miyajima, Y.; Kobuke, Y. Chem. Mater.2005,17,716-724.
    [38]Guldi, D. M.; Taieb, H.; Rahman, G. M. A.; Tagmatarchis, N.; Prato, M. Adv. Mater.2005, 17,871-875.
    [39]Cheng, F.; Adronov, A. Chem. Eur. J.2006,12,5053-5059.
    [40]Cheng, F.; Zhang, S.; Adronov, A. Chem. Eur. J.2006,12,6062-6070.
    [41]Yang. L. P.; Pan. C. Y. Macromol. Chem. Phys.2008.209,783-793.
    [42]Zhang, X.; Shi, F.; Niu, J.; Jiang, Y.; Wang, Z. J. Mater. Chem.2008,18,621-633.
    [43]Roach, P.; Shirtcliffe, N. J.; Newton, M. I. Soft Matter 2008,4,224-240.
    [44]Feng, L.; Li, S.; Li, H.; Zhai, J.; Song, Y.; Jiang, L.; Zhu. D. Angew. Chem., Int. Ed.2002, 41,1221-1223.
    [45]Shibuichi, S.; Onda, T.; Satoh, N.;Tsujii, K.J. Phys. Chem.1996,100,19512-19517.
    [46]Patankar, N. A. Langmuir 2004,20,7097-7102.
    [47]Bormashenko, E.:Stein, T.; Whyman, G.; Bormashenko, Y.; Pogreb. R. Langmuir 2006,22, 9982-9985.
    [48]Liu, Y.; Wang, R.; Lu, H.; Li, L.; Kong, Y.; Qi, K.; Xin, J. H. J. Mater. Chem.2007,17, 1071-1078.
    [49]Liu, Y.; Wang, X.; Qi, K.; Xin, J. H. J. Mater. Chem.2008,18,3454-3460.
    [50]Wang, T.; Hu, X.; Dong, S. Chem. Commun.2007,1849-1851.
    [51]Hoefnagels, H. F.; Wu, D.; de With, G.; Ming, W. Langmuir 2007,23,13158-13163.
    [52]Leng, B.; Shao, Z.; de With, G.; Ming, W. Langmuir 2009,25,2456-2460.
    [53]Gao, Q.; Zhu, Q.; Guo, Y.; Yang, C. Q. Ind. Eng. Chem. Res.2009,48,9797-9803.
    [54]Ruud, C. J.; Jia, J. P.; Baker, G. L. Macromolecules 2000,33,8184-8191.
    [55]Varma, I. K. Macromol. Symp.2004,210,121-129.
    [56]Akhrass, S. A.; Ostaci, R.V.; Grohens, Y.; Drockenmuller, E.; Reiter, G. Langmuir 2008,24, 1884-1890.
    [57]Holzinger, M.; Vostrowsky, O.; Hirsch, A.; Hennrich, F.; Kappes, M.; Weiss, R.; Jellen, F. Angew. Chem., Int. Ed.2001,40,4002-4005.
    [58]Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes, M.; Hirsch, A. J. Am. Chem. Soc.2003,125,8566-8580.
    [59]Moghaddam, M. J.; Taylor, S.; Gao, M.; Huang, S.; Dai, L.; McCall, M. J. Nano Lett.2004, 4,89-93.
    [60]Qin, S.; Qin, D.; Ford, W. T.; Resasco, D. E.; Herrera, J. E. Macromolecules 2004,37, 752-757.
    [61]Holzinger, M.; Steinmetz, J.; Samaille, D.; Glerup, M.; Paillet, M.; Bernier, P.; Ley, L.; Graupner, R. Carbon 2004,42,941-947.
    [62]Lee, K. M.; Li, L.; Dai, L. J. Am. Chem. Soc.2005,127,4122-4123.
    [63]Pastine, S. J.; Okawa, D.; Kessler, B; Rolandi, M.; Llorente, M.; Zettl, A.; Frechet, J. M. J. J. Am. Chem. Soc.2008,130,4238-4239.
    [64]Gao, C.; He, H.; Zhou, L.; Zheng, X.; Zhang, Y. Chem. Mater.2009,21,360-370.
    [65]Li, G.; Zheng, H. T., Bai, R. K. Macromol. Rapid. Commun.2009,30,442-447.
    [66]Jorio, A.; M. Pimenta, A.; Souza Filho. A. G.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. New J. Phys.2003,5,139.1-139.17.
    [67]Sinani, V. A.; Gheith, M. K.; Yaroslavov, A. A.; Rakhnyanskaya, A. A.; Sun, K.; Mamedov, A. A.; Wicksted, J. P.; Kotov, N. A. J. Am. Chem. Soc.2005,127,3463-3472.
    [68]Li,S.H.;Xie,H.B.;Zhang,S.B.;Wang,X.H.Chem.Commun.2007,4857-4859.
    [69]Li,S.H.;Zhang,S.B.;Wang,X.H.Langmuir 2008,24,5585-5590.
    [1]洪春雁,潘才元.化学通报2004,4,246-256.
    [2]Gao, L.; McCarthy, T. J. Langmuir 2006,22,5998-6000.
    [3]Michielsen, S.; Lee, H. J. Langmuir 2007,23,6004-6010.
    [4]Zhang, X.; Shi, F.; Niu, J.; Jiang, Y.; Wang, Z. J Mater Chem 2008,18,621-633.
    [5]Roach, P.; Shirtcliffe, N. J.; Newton, M. I. Soft Matter 2008,4,224-240.
    [6]Gao, Q.; Zhu, Q.; Guo, Y.; Yang, C. Q. Ind. Eng. Chem. Res.2009,48,9797-9803.
    [7]Li, H.; Wang, X.; Song, Y.; Liu, Y.; Li, Q.; Jiang, L.; Zhu, D. Angew Chem Int Ed 2001,40, 1743-1746.
    [8]Jiang, L.; Zhao, Y.; Zhai, J. Angew Chem Int Ed 2004,43,4338-4341.
    [9]Hosono, E.; Fujihara, S.; Honma, I.; Zhou, H. J Am Chem Soc 2005,127,13458-13459.
    [10]Yamanaka, M.; Sada, K.; Miyata, M.; Hanabusa, K.; Nakano, K. Chem Commun 2006, 2248-2250.
    [11]Nystrom, D.; Lindqvist, J.; Ostmark, E.; Hult, A.; Malmstrom, E. Chem Commun 2006, 3594-3596.
    [12]Roig, A.; Molins, E.; Rodriguez, E.; Martinez, S.; Moreno-Manas, M.; Vallribera, A. Chem Commun 2004,2316-2317.
    [13]Artus, G. R. J.; Jung, S.; Zimmermann, J.; Gautschi, H. P.; Marquardt, K.; Seeger, S. Adv Mater 2006,18,2758-2762.
    [14]Kim, M.; Kim, K.; Lee, N. Y.; Shin, K.; Kim, Y. S. Chem Commun 2007,2237-2239.
    [15]Zimmermann, J.; Rabe, M.; Artus, G. R. J.; Seeger, S. Soft Matter 2008,4,450-452.
    [16]Wang, T.; Hu, X. G.; Dong, S. J. Chem Commun 2007,1849-1851.
    [17]Liu, Y.; Tang, J.; Wang, R.; Lu, H.; Li, L.; Kong, Y.; Qi, K.; Xin, J. H. J Mater Chem 2007,17, 1071-1078.
    [18]Li, S. H.; Xie, H. B.; Zhang, S. B.; Wang, X. H. Chem Commun 2007,4857-4859.
    [19]Li, S. H.; Zhang, S. B.; Wang, X. H. Langmuir 2008,24,5585-5590.
    [20]Zimmermann, J.; Reifler, F. A.; Fortunato, G.; Gerhardt, L. C.; Seeger, S. Adv Funct Mater 2008,18,3662-3669.
    [21]Ruud, C. J.; Jia, J. P.; Baker, G. L. Macromolecules 2000,33,8184-8191.
    [22]Varma, I. K. Macromol. Symp.2004,210,121-129.
    [23]Akhrass, S. A.; Ostaci, R.; Grohens, Y.; Drockenmuller, E.; Reiter, G. Langmuir 2008,24, 1884-1890
    [24]Harmer, M. A. Langmuir,1991,7,2010-2012.
    [25]Kuijpens, J. M. H.; Kardaun, G. A.; Blezer, R.; Pijpers, A. P.; Koole, L. H. J. Am. Chem. Soc.
    1995,117,8691-8697.
    [26]Marinucci, L.; Lilli, C.; Guerra, M.; Belcastro, S.; Becchetti, E.; Stabellini, G.; Calvi, E. M.; Locci, P. J. Biomed. Mater. Res. Part A 2003,67A,504-509.
    [27]Renaudie, L.; Narvor, C. L.; Lepleux, E.; Roger, P. Biomacromolecules 2007,8,679-685.
    [28]Schuh, K.; Prucker, O.; Ruhe, J. Macromolecules 2008,41,9284-9289.
    [29]Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes, M.; Hirsch, A. J Am Chem Soc 2003,125,8566-8580.
    [30]Qin, S.; Qin, D.; Ford, W. T.; Resasco, D. E.; Herrera, J. E. Macromolecules 2004,37, 752-757.
    [31]Gao, C.; He, H.; Zhou, L.; Zheng, X.; Zhang, Y. Chem Mater 2009,21,360-370.
    [32]Renaudie, L.; Narvor, C. L.; Lepleux, E.; Roger, P. Biomacromolecules 2007,8,679-685.
    [33]Moghaddam, M. J.; Taylor, S.; Gao, M.; Huang, S.; Dai, L.; McCall, M. J. Nano Lett 2004,4, 89-93.
    [34]Lee, K. M.; Li, L.; Dai, L. J Am Chem Soc 2005,127,4122-4123.
    [35]Pastine, S. J.; Okawa, D.; Kessler, B.; Rolandi, M.; Llorente, M.; Zettl, A.; Frechet, J. M. J. J Am Chem Soc 2008,130,4238-4239.
    [36]Lai, J. T.; Filla, D.; Shea, R. Macromolecules 2002,35,6754-6756.
    [37]Hua, D. B.; Bai, R. K.; Lu, W. Q.; Pan, C. Y. J Polym Sci Part A Polym Chem 2004,42, 5670-5677.
    [38]Malagu, K.; Guerin, P.; Guillemin, J. C. Synlett 2002,2,316-318.
    [39]James, N. R.; Jayakrishnan, A. J. Appl Polym Sci 2003,87,1852-1857.
    [40]Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Lee, R. Y.; Matyjaszewski, K. Macromolecules 2005,38,7540-7545.
    [41]Li, Y.; Yang, J. W.; Benicewicz, B. C. J Polym Sci Part A Polym Chem 2007,45,4300-4308.
    [42]Hua, D. B.; Bai, W.; Xiao, J. P.; Bai, R. K. Chem Mater 2005,17,4574-4576.
    [43]Hua, D. B.; Cheng, K.; Bai, W.; Bai, R. K. Macromolecules 2005,38,3051-3053.
    [44]Zheng, H. T.; Hua, D. B.; Bai, R. K.; Hu, K. L.; An, L. J.; Pan, C. Y. J Polym Sci Part A Polym Chem 2007,45,2609-2616.
    [45]Li, G.; Zheng, H. T.; Bai, R. K. Macromol Rapid Commun 2009,30,442-447.
    [46]Zheng, H. T.; Bai, W.; Hu, K. L.; Bai, R. K.; Pan, C. Y. J Polym Sci Part A Polym Chem 2008, 46,2575-2580.
    [I]Morton, M. "Anionic Polymerization:Principles and Practice", Academic Press:New York 1983.
    [2]Hadjichristidis, N.; Pispas, S.; Floudas, G. A. "Block Copolymers:Synthetic Strategies, Physical Properties, and Applications", Wiley-Interscience:Hoboken, NJ 2003.
    [3]Matyjaszewski, K.; Davis, T. P. "Handbook of Radical Polymerization", Wiley:New York 2002.
    [4]Braunecker, W. A.; Matyjaszewski, K. Prog. Polym. Sci.2007,32,93-146.
    [5]Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998,31, 5559-5562.
    [6]Perrier, S.; Takolpuckdee, P. J. Polym. Sci. Part A:Polym. Chem.2005,43,5347-5393.
    [7]Favier, A.; Charreyre, M. T. Macromol. Rapid Commun.2006,27,653-692.
    [8]Lowe, A. B.; McCormick, C. L. Prog. Polym. Sci.2007,32,283-351.
    [9]Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J. M. J.:Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed.2004,43,3928-3932.
    [10]Fournier, D.; Hoogenboom, R.; Schubert, U. S. Chem. Soc. Rev.2007,36,1369-1380.
    [11]Binder, W. H.; Sachsenhofer, R. Macromol. Rapid Commun.2008,29,952-981.
    [12]Lundberg, P.; Hawker, C. J.; Hult, A.; Malkoch, M. Macromol.Rapid Commun.2008,29, 998-1015.
    [13]Johnson, J. A.; Finn, M. G.; Koberstein, J. T.; Turro, N. J. Macromol. Rapid Commun.2008, 29,1052-1072.
    [14]Quemener, D.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. Chem. Commun.2006, 5051-5053.
    [15]Qiu, X. P.; Tanaka, F.; Winnik, F. M. Macromolecules 2007,40,7069-7071.
    [16]Shi, G. Y.; Tang, X. Z.; Pan, C. Y. J. Polym. Sci., Part A:Polym. Chem.2008,46,2390-2401.
    [17]Zhang, X.; Lian, X.; Liu, L.; Zhang, J.; Zhao, H. Macromolecules 2008,41,7863-7869.
    [18]Hamley, I. W. "Block Copolymers in Solution:Fundamentals and Applications", Wiley: Hoboken, NJ 2005.
    [19]Blanazs, A.; Armes, S. P.; Ryan, A. J. Macromol. Rapid Commun.2009,30,267-277.
    [20]Torchilin, V. P. J. Controlled Release 2001,73,137-172.
    [21]Kakizawa, Y.; Kataoka, K. Adv. Drug Delivery Rev.2002,54,203-222.
    [22]Kita-Tokarczyk, K.; Grumelard, J.; Haefele, T.; Meier, W. Polymer 2005,46,3540-3563.
    [23]Ghoroghchian, P. P.; Frail, P. R.; Susumu, K.; Park, T. H.; Wu, S. P.; Uyeda, H. T.; Hammer,
    D. A.; Therien, M. J. J. Am. Chem. Soc.2005,127,15388-15390.
    [24]Christian, N. A.; Milone, M. C.; Ranka, S. S.; Li, G.; Frail, P. R.; Davis, K. P.; Bates, F. S.; Therien, M. J.; Ghoroghchian, P. P.; June, C. H.; Hammer, D. A. Bioconjugate Chem.2007, 18,31-40.
    [25]Sun, G.; Fang, H.; Cheng, C.; Lu, P.; Zhang, K.; Walker, A. V.; Taylor, J. A.; Wooley, K. L. ACS Nano 2009,3,673-681.
    [26]Lu, X.; Gong, S.; Meng, L.; Li, C.; Liang, F.; Wu, Z.; Zhang, L. Eur. Polym. J.2007,43, 2891-2900.
    [27]Cuendias, A. d.; Ibarboure, E.; Lecommandoux, S.; Cloutet, E.; Cramail, H. J. Polym. Sci., Part A:Polym. Chem.2008,46,4602-4616.
    [28]Birks, J. B. "Photophysics of Aromatic Molecules", Wiley, London 1970.
    [29]Deans, R.; Kim, J.; Machacek, M. R.; Swager, T. M. J. Am. Chem. Soc.2000,122, 8565-8566.
    [30]An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y. J. Am. Chem. Soc.,2002,124,14410-14415.
    [31]Qin, A.; Jim, C. K. W.; Tang, Y.; Lam, J. W. Y.; Liu, J.; Mahtab, F.; Gao, P.; Tang, B. Z. J. Phys. Chem. B 2008,112,9281-9288.
    [32]Dong, S.; Li, Z.; Qin, J. J. Phys. Chem. B 2009,113,434-441.
    [33]Hiroseab, T.; Matsuda, K. Chem. Commun.2009,5832-5834.
    [34]Lai, J. T.; Filla, D.; Shea, R. Macromolecules 2002,35,6754-6756.
    [35]Malagu, K.; Guerin, P.; Guillemin, J. C. Synlett 2002,2,316-318.
    [36]Li, C.; Liu, X.; Yuan, M.; Li, J.; Guo, Y.; Xu, J.; Zhu, M.; Lv, J.; Liu, H.; Li, Y. Langmuir 2007,23,6754-6760.
    [37]Li, Y.; Yang, J. W.; Benicewicz, B. C. J. Polym. Sci. Part A:Polym. Chem.2007,45, 4300-4308.
    [38]Zheng, H. T.; Hua, D. B.; Bai, R. K; Hu. K. L.; An, L. J.; Pan, C. Y. J. Polym. Sci. Part A:Polym. Chem.2007,45,2609-2616.
    [39]Li, G.; Zheng, H. T.; Bai, R. K. Macromol. Rapid Commun.2009,30,442-447.
    [40]Ruud, C. J.; Jia, J. P.; Baker, G. L. Macromolecules 2000,33,8184-8191.
    [41]Nair, J. K.; Satpute, R. S.; Polke, B. G.; Mukundan, T.; Asthana, S. N.; Singh, H. Def. Sci. J. 2002,52,147-156.
    [42]Gaur, B.; Lochab, B.; Choudhary, V.; Varma, I. K. J. Therm. Anal.Calorim.2003,71, 467-479.
    [43]Arisawa, H.; Brill, T. B. Combust. Flame 1998,112,533-544.
    [44]Parr, T.; Hanson-Parr, D. Combust. Flame 2004,137,38-49.
    [45]Kubota, N. J. Propul. Power 1995,11,677-682.
    [46]Jiang, M.; Eisenberg, A.; Liu, G. J.; Zhang, X. "Macromolecular Self-Assembly", China Scientific:Beijing 2006.
    [47]Riegel, I. C.; Eisenberg, A. Langmuir 2002,18,3358-3363.
    [48]Liu, X.; Kim, J. S.; Wu, J.; Eisenberg, A. Macromolecules 2005,38,6749-6751.
    [49]Wang, J.; Kuang, M.; Duan, H.; Chen, D.; Jiang, M. Eur. Phys. J. E 2004,15,211-215.
    [50]Liu, X.; Liu, J.; Jiang, M. Macromol. Rapid Commun.2009,30,892-896.
    [51]Dong, S.; Li, Z.; Qin, J. J. Phys. Chem. B 2009,113,434-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700