用户名: 密码: 验证码:
改性处理活性炭纤维吸附氧化脱除SO_2/NO_X/Hg的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于我国目前燃煤排放SO_2、NO_x和Hg造成的环境污染严重状况,干法同时脱除技术具有脱除效率高、成本低、无二次污染以及便于布置等优点,特别是活性炭纤维(ACF)作为一种新型的炭质催化吸附材料,较以往的颗粒状活性炭、粉状活性炭,拥有更优越的吸附和脱附再生性能。虽然从上世纪60年代起国外已开始研制ACF,近年来国内外开始研究将其用于烟气净化,已取得了一些成果。其主要对脱除单种污染物的研究较多,但对于吸附氧化除汞研究较少,同时脱除SO_2/NO_x/Hg~0的情况则比较复杂,目前这方面的研究更少,因此仍有不少问题值得深入探讨。本课题提出了对ACF合适的改性方法,以满足同时脱除SO_2/NO_x/Hg~0的需要;并深入研究了改性ACF同时脱硫、脱硝和除汞的表面吸附过程和吸附机理,以及脱除性能,将复杂的反应过程清晰化;运用“混合模型法”建立了反应器模型;进行了实际燃煤电厂烟气同时脱除SO_2/NO_x/Hg的工艺系统设计及技术经济可行性分析。本课题研究开拓了ACF这种新型材料在大气污染控制工程中同时脱除多种污染物的环保应用前景,将对我国的燃煤污染物治理技术的发展及国产化有着重大的意义。
     本文针对同时脱除SO_2/NO/Hg多种污染物的要求,研究同时引进含氧官能团和含氮官能团的改性方法,并对改性前后的表面特性进行了分析研究。试验结果表明,经硫酸处理再经氨水溶液处理后,ACF表面含氧官能团特别是含氮官能团显著增加,对低温吸附氧化脱除SO_2/NO_x/Hg是十分有效的。用吸附能这一参数分析证明改性处理后化学吸附贡献量的增加是主要的。
     进行了同时脱除SO_2/NO/Hg的实验研究,并分析其反应机理及影响因素。当SO_2、NO同时存在时,活性炭纤维的脱硫性能有所提高,但对于NO的吸附有不利影响。Hg对SO_2、NO的脱除影响不大,然而SO_2和NO_2同时存在对Hg~0的吸附有不利影响,NO和NO_2则有利于Hg~0的吸附氧化。烟气中O_2和H_2O浓度高,有利于脱硫脱硝除汞,但过多的氧和水分将影响吸附。
     在大量实验研究获得的数据的基础上,结合机理分析,考虑多种污染物同时脱除的主要影响因素,建立了ACF脱除SO_2/NO/Hg反应器内浓度瞬态分布的数学模型;研究了传递过程对脱除污染物反应速率的影响,并将ACF与GAC的传递过程进行了比较。通过实验数据拟合建立了阻力计算数学模型。运用数学模型及实验数据对一些主要参数进行优化选择。
     评价了ACF脱附性能,分别采用水洗脱附和负压热空气脱附方法进行了脱附实验。认为负压热空气脱附具有较好的工业运用价值。
     进行了ACFs脱除SO_2/NO_x/Hg一体化工艺设计及技术经济比较。按脱硫效率90%,脱NO_x效率40%,Hg部分脱除。提出了两种方案:方案一,在ACF反应器中同时脱除SO_2/NO_x/Hg,布置在主体工程引风机与烟囱之间的烟道上。方案二,是针对已设有FGD系统的电厂,ACF主要脱除NO_x和Hg,反应器从FGD吸收塔出口至GGH进口的净烟道上并联接出。对工艺系统的主要设备进行了选型,并运用PDMS软件进行了三维布置设计。
Pollutants such as SO_2,NO_x,Hg etc. emitted from coal combution procerres will do harm to environment and mankind health. Dry Flue gas Desulfurization (DFGD) have many advantages such as high efficiency, low cost, no secondary pollution, easy arrangement, etc.. Activated carbon fibers (ACF) especially as a new carbonaceous material for adsorption, have better adsorption and desorption performance than granular activated carbon (GAC) and powder activated carbon (PAC). The research about ACF started from 60’s last century for several western. Recently, it is propsed to be used for flue gas purification and some achievements have be obtained. However, most of the research reports are about mono-pollutant removal, and the study on mercury removal is even less. Due to complexity of removal mechanisms for SO_2/ NO_x /Hg, The study is seldom reported as well. So there are many problems worth to be discussed further. Herein a suitable modified method was developed for ACF in order to meet the requirements of removal for SO_2/ NO_x /Hg, and the studies were carried out to investigate the surface adsorption process and mechanism for SO_2/ NO_x /Hg removal. A math model of ACF reactor was established through“compound model method”. Technical system designing and analysis of technical and economical feasibility for SO_2/ NO_x /Hg removal in flue gas from a power plant were also considered. Foreground of ACF used for removing multi-pollutants in air pollution control was developed for environment protection. There will be a great significance in developing and domestic of technology for coal-fired pollutants control.
     In order to removal SO_2/NO/Hg, ACF modified method, increasing the oxygen functional groups and nitrogen functional groups on the ACF’s surface, was studied. ACF were immersed into sulfuric acid before impregnated with ammonia solution. The analytical study for surface chemistry texture was carried out before and after modified. The results show that it can efficiently increase the oxygen functional groups, and nitrogen functional groups, and is feasible for oxygenating removal SO_2/NO_x/Hg at low temperature. That chemical adsorption was the main contribution as proved by the analysis of adsorption energy after modified.
     The experiment of removal SO_2/NO/Hg were carried out. The reaction mechanism and affecting factors were proposed. If SO_2 and NO presented, efficient of removal SO_2 would be available. However, it is not good for deNO_x. Hg had fewer effects on removal of SO_2 and NO. Whilst If SO_2 and NO_2 presented , which was unfavorable for Hg~0adsorption. NO and NO_2 was favorable for Hg~0adsorption and oxygenating. The oxygen and moisture in flue increasing were favorable for removal of SO_2/NO/Hg. but higher concentration of O_2 and H_2O were unfavorable for the adsorption.
     According to the data attained from experiments, based on the mechanism analysis and removal muti-pollutants effect, mathematical models of concentration distribution was devolped in an ACF reactor. The reaction rate of removal pollutants affected by transport phenomena was studied. Transport process in ACF were compare with those of GAC. Resistance mathematical models were established using data getting from experiment. Optimizing methods of main parameters using math models were introduced.
     The studis of ACF desorption performance were carried out, i.e., Water scrubbing and hot air suction desorption experiment, and hot air suction method was seen predominant.
     Technical designing and analysis of technical and economical feasibility for removal SO_2/ NO_x /Hg in flue gas were carried out. According to the efficiency of desulfurization, denitrification, removal mercury were 90% ,40% and part, respectively. Two suggestions were proposed as: The plan I was considered to removal SO_2/ NO_x /Hg in an ACF reactor. The reactor was arranged in duct between the induced fan and the stack. The plan II was considered to removal NO_x and Hg in the plant with FGD. The reactor was arranged in the duct between FGD absorber and GGH. Main equipments used were chosen. Design of three-dimensional arrangement was realized by a PDMS softer.
引文
[1]《火电结构优化和技术升级研究》课题编写组.火电结构优化和技术升级研究.北京:中国电力工程顾问(集团)有限公司,2003. 49~51
    [2] D.J Swain. Trace elements in coal. Butterworth, London,1990:292
    [3] D. J. Swaine. Why trace elements are important. Fuel Processing Technology. 2000, 65–66:21~33
    [4] Xuchang Xu, Yuqun Zhuo,Yufeng Duan, et al. Onsite mercury emission test for coal-fired power plants, China Workshop on Mercury Control from Coal Combustion, Beijing, China, Oct. 31– Nov. 2, 2005
    [5]任建莉,周劲松,骆仲泱等.煤中汞燃烧过程析出规律试验研究.环境科学学报,2002,22(3):289~293
    [6]王起超,沈文国,麻壮伟.中国燃煤汞排放量估算.中国环境科学,1999,19(4):318~321
    [7] Resource conservation and recovery act, Subtitle C, 42 N.S.C., 1976,and Supplement IV 1980, amended 1986,Section 3001-3013,Sections 6921-6934
    [8] US Statutes at Large. Clean Air Act Amendments, Public Law 101-549, 1990. 104: 2399-2712
    [9] Ravi Srivastava, Nick Hutson, Frank Princiotta. Reduction of mercury emission from coal-fired electric utility boilers. the DOE/NETL’s Mercury Control Technology R&D Program Review, Pittsburgh, PA, July12, 2005
    [10]钟秦编著.燃煤烟气脱硫脱硝技术及工程实例.北京:化学工业出版社, 2002,4
    [11]郝吉明等编著.燃煤二氧化硫污染控制技术手册.北京:化学工业出版社, 2001,4:245~394
    [12]徐息.活性炭吸附烟气脱硫技术的工业性实验.国家发展计划委员会. 2001国际脱硫技术研讨会论文集.北京. 2001. 52~55
    [13]王幸锐,崔莲溪.活性炭吸附烟气脱硫技术及工程应用.国家发展计划委员会. 2001国际脱硫技术研讨会论文集.北京. 2001. 162~166
    [14] Zhenping Zhu, Zhenyu Liu, Shoujun Liu, et al. NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures. Applied Catalysis B: Enviromental, 2000,26::25~35
    [15] Stefan Br?er, Thomas Hammer. Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a V2O5/TiO2 catalyst. Applied Catalysis B: Enviromental, 2000,28:101~111
    [16] Pzolo Carniti, A.Gervasini, V.H.Modica, et al. Catalytic selective reduction of NO with ethylene over a series of copper catalysts on amorphous silicas. Applied Catalysis B: Enviromental, 2000 ,28:175~185
    [17] Zhenping Zhu, Zhenyu Liu, Shoujun Liu, et al. Catalytic NO reduction with ammonia at low temperatures on V2O5/TiO2 catalysts: effect of metal oxides addition and SO2. Applied Catalysis B: Enviromental, 2000,30:267~276
    [18]胡洪营,张旭,黄霞等合编.环境工程原理.北京:高等教育出版社, 2005,8. 304~340,484~503
    [19]高洪亮.模拟燃煤烟气中汞形态转化及脱除技术的实验及机理研究:[博士学位论文]。浙江:浙江大学机械与能源工程学院,2004.4
    [20]任建莉,周劲松,骆仲泱等,活性炭吸附烟气中气态汞的试验研究,中国电机工程学报,2004,24(2):171~175
    [21] W. Liu, Radisav D.Vidic. Optimization of sulfur impregnation protocal for fixed bed application of activated carbon-based sorbents for gas-phase mercury removal. Environmental Science Technology, 1998, 32: 531~538
    [22] J.R.Flora, R.D.Vidic, W.Liu. Modeling powdered activated carbon injection for the uptake elemental mercury vapors. Journal of air & waste management association, 1998, 48:1051~1059
    [23] David G. Olson, K.Tsnji, I.Shiraishi. The reduction of gas phase air toxics from combustion and incineration sources using the MET-Mitsui-BF activated coke process. Fuel Process Technology, 2000,65-66:393~405
    [24] Kazuhiko Tsuji , Ikuo Shiraishi. Combined desurfurization, denitrification and reduction of air toxics using activated coke 1.Activity of activated coke. fuel, 1997,76(6):549~553
    [25] Kazuhiko Tsuji and Ikuo Shiraishi. Combined desurfurization, denitrification andreduction of air toxics using activated coke 2.Process applications and performance of activated coke. fuel, 1997,76(6):555~560
    [26] Tang Qiang, Zhang Zhigang, Zhu Wenpei, et al. SO2 and NO selective adsorption properties of coal-based activated carbons. Fuel ,2005 (84):461~465
    [27] Y.H.Li, C.W.Lee, B.K.Gullett. Importance of activated carbon oxygen surface functional groups on elemental mercury adsorption. Fuel, 2003 ,82 :451~457
    [28] Juray De Wilde, Asit K.Das, Geraldine H. Heynderickx, et al. Development of a Transient Kinetic Model for the Simultaneous Adsorption of SO2-NOX over Na/γ-Al2O3 Sorbent. Ind. Eng. Chem. Res, 2001, 40:119~130
    [29]贺福编著碳纤维及其应用技术化学工业出版社2004,9. 166~188
    [30]吴军良,尹华强,刘勇军等.活性炭纤维在环境保护中的应用及前景.环境污染治理技术与设备, 2001,8(4):65~71
    [31]唐志红,朱文魁,马蓉等.活性炭再生技术.煤化工,2004,100(1):43~46
    [32]刘义,曹子栋,王盛.活性炭纤维与柱状活性炭用于烟气脱硫的对比试验.西安交通大学学报. 2002,36 (7):701~704
    [33] I.Mochida, Y.Korai, M.Shirahama, S.Kawano, et al. Removal of SOX and NOX over activated carbon fibers. Carbon, 2000,38(2): P227~239
    [34]魏有富.活性炭脱硫剂使用寿命影响因素的分析.煤气与热力,2001,22(4) :365~366
    [35] H. Tamon and M. Okazaki. Influence of acidic surface oxides of activated carbon on gas adsorption characteristics. Carbon,1996,34(6) :741~746,
    [36] Bhabendra K. Pradhan, N.K. Sandle.Effect of different oxidizing agent treatments on the surface properties of activated carbon. Carbon, 1999,37:1323~1332
    [37]沈曾民主编.新型碳材料.北京:化学工业出版社,2003. 209~309
    [38]张守玉,向银花,赵建涛等.活性炭质材料脱硫机理探讨.煤炭转化,2002, 25, No.2 (4):29~34
    [39] Despina Karatza, Amedeo Lancia, Dino Musmarra, et al. Study of mercury absorption and desorption on sulfur impregnated carbon. Experimental Thermal and Fluid Sience, 2003, 21:150-155
    [40]汪多仁.活性炭纤维的开发与应用进展.低温与特气,2001,19(5):12~14
    [41]王建英,胡永琪,赵瑞红等.活性炭纤维的制备及其在环保领域的研究应用.河北工业科技,2004,21(4):46~49
    [42]高德霖,孙小玉.活性炭纤维和微孔吸附的容积充填理论.精细化工原料及中间体. 2003,10:2~6
    [43]陆安慧,郑经堂,王茂章.高比表面积PAN-ACF的吸附与孔结构解析.高分子材料科学与工程,2001,17(5):62~66
    [44]陆安慧,李文翠,郑经堂.分子筛型PAN-ACF制备及表面结构的XPS研究.物理化学学报,2001,17(3):216~221
    [45]安丽,顾国维.活性炭纤维及其在环境保护领域中的应用.四川环境. 2000,19(1):23~26
    [46] Vivekanand Gaur, Ritesh Ashana, Nishith Verma. Removal of SO2 by activated carbon fibers in the presence of O2 and H2O. Carbon, 2006,44:46-60
    [47]黄伯芬.活性炭纤维(ACF)及其应用.化工纵横, 2003,17(11):16~18
    [48]高正中.实用催化.北京:化学工业出版社, 1996,6
    [49] S.Kisamori, K.Kurida, S.Kawano,et al. Oxidative removal of SO2 and recovery of H2SO4 over poly-based ACF. Energy & Fuel, 1994,8(6 ):1337-1340
    [50] I.Mochida, S.Miyamoto, K.Kuroda, S.Kawano, K.Sakanishi, Y.Korai,“Oxidative fixation of SO2 into acqueous H2SO4 over a pitch-based active carbon fiber above room temperature”Energy and Fuels, 1999,13(2):374~378.
    [51] Li K, Ling L, Lu C, et al. Catalytic removal of SO2 over ammonia-activated carbon fibers. Carbon, 2001,39:231~242
    [52] Py X, Roizard C, Midoux N. Kinetics of sulfur dioxide oxidation in slurries of activated carbon and concentrated sulfuric acid. Chem Eng Sci, 1995,50:2069~2079
    [53] Moreno-Castill C, Carrasco-Martin F, Utera-Hidalgo, et al. Activated carbons as adsorbents of SO2 in flowing air. Effects of their pore texture and surface basicity. Langmiur, 1993,9:1378~1383
    [54] Begoňa Rubio,María Teresa Izquierdo. Low cost absorbents for Low Temperature Cleaning of Flue gas. Fuel, 1998,77(6):631~637
    [55] Lizzo AA, DeBarr JA. Effect of surface area and chemisorbed oxygen on the SO2 adsorbtion capacity of activated char. Fuel ,1996,75(13):1515~1522
    [56] I.Mochida, K.Kuroda, S.Kawano, et al. Kinetic study of the continuous removal ofSOx on polyacrylonitrile-based activated carbon fibres 1. Catalytic activity of PAN-ACF heat-treated at 800℃. Fuel, 1997,76(6): P533~536.
    [57] I.Mochida, K.Kuroda, S.Kawano, et al. Kinetic study of the continuous removal of SOx on PAN-ACF 2. Kinetic model. Fuel , 1997, 76(6):537~545.
    [58]李开喜,吕春祥,凌立成.活性炭纤维的脱硫性能.燃料化学学报, 2002,30(1):89~94
    [59] E.Raymundo-Pieňro, D.Cazorla-Amorós, A.Linares-Solano. Temp. programmed desorption study on the mechanism of SO2 oxidation by activated carbon and ACFs. Carbon, 2001,39(2):231
    [60] María Teresa Izquierdo, Begoňa Rubio, Carmen Mayoral,et al. Low cost coal-based carbons for combined SO2 and NO removal from exhaust gas. Fuel, 2003,82:147~151
    [61]尹华强,邹长武,吴军良等.活性炭纤维在烟气脱硫过程中的催化作用.环境工程, 2003,21(2):32~34
    [62]吕莉,罗德明,尹华强,刘勇军.活性炭纤维脱硫的催化特性研究[J].四川大学学报(工程科学版),2003,35(4):42~44
    [63]楚英豪,尹华强,刘中正等.活性炭纤维(ACF)脱硫动力学研究.四川环境,2001,20(2):8~11
    [64] Masaaki Yoshikawa, Akinori Yasutake, Isao Mochida. Low-temperature selective catalytic reduction of NOX by metal supported on ACF. Applied catalysis A:general 1998 ,173:239~245
    [65] J.Muňiz, G.Marbán, A.B.Fuertes. Low-temperature selective catalytic reduction of NO over modified activated carbon fibres. Applied Catalysis B: Enviromental, 2000 ,27:27~36
    [66] Zhenping Zhu, Zhenyu Liu, Shoujun Liu, et al. NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures. Applied Catalysis B: Enviromental, 2000,26 :25~35
    [67]郭世永,张守臣,赵修仁等.活性碳纤维作还原剂降低NO的实验研究.燃烧科学与技术, 2001,16(4):40~43
    [68] I.Mochida, N.Shirahama, S.kawano,et al. NO oxidation over activated carbon fiber(ACF). Part 1, extended Kinetic over a pitch based ACF of very large surfacearea. Fuel,2000,79(4):1713~1723
    [69] Zhanceng Guo, Yusheng Xie, Ikpyo Hong, et al. Catalytic oxidation of NO to NO2 on activated carbon. Energy conversion and management, 2001, 42(15~17): 2005~2018
    [70]杨姣兰,赵炳成,曹守仁.活性碳纤维对NO2气体动态吸附研究.环境与健康杂志, 1996,14(3):110~112
    [71] Zhenyu Ryu, Jingtang Zheng, Maozhang Wang,et al. Nitrogen adsorption studies of PAN-based activated carbon fibers prepared by different activation methods. Journal of colloid and interface science, 2000,230 (2):312~319.
    [72]郭世永,陈家骅.催化改性活性碳纤维降低NO的实验研究.燃烧科学与技术, 2002,l.8(2):117~121
    [73] Indrek Aaran, Eric M. Suuberg. A review of the kinetics of the nitric oxide-carbon reaction. Fuel, 1997,76(6):475~491
    [74] Alejandro Montoya, Fanor Mondragón,Thanh N. Truong. Kinetics of nitric oxide desorption from carbonaceous surfaces. Fuel Processing Technology, 2002, 77-78:453~458
    [75] Y.H. Li, C.W. Lee, B.K. Gullett. The effect of activated carbon surface moisture on low temperature mercury adsorption. Carbon, 2002, 40:65-72
    [76] Frank E. Huggins, Nora Yap, Gerald P. Huffman, et al. XAFS characterization of mercury captured from combustion gases on sorbents at low temperatures, Fuel Processing technology, 2003, 82(2-3):167– 196.
    [77] S.V. Krishman, B.K. Gullett, Wojciech Jozewicz. Sorption of elemental mercury by activated carbons . Environmental Science Technology,1994, 26 (8):1506~1512
    [78] Frank B. Meserole, Ramsay Chang, Todd R. Carey, et al. Modeling mercury removal by sorbent injection. J. Air & Waste Manage. Assoc,1999, 49(6): 694~704.
    [79] Joseph R.V. Flora, Radisav D.Vidic, Wei Liu, et al. Modeling powdered activated carbon injection for the uptake of elemental mercury vapors, J. Air & Waste Manage. Assoc, 1998, 48(12):1051~1059.
    [80] T.C. Ho, N. Kobayashi, Y.K. Lee, et al. Modeling of mercury sorption by activated carbon in a confined, a semi-fluidized, and a fluidized bed. Waste Management2002, 22 (4):391~398.
    [81] Aurora M. Rubel, John M. Stencel. The effect of the low-concentration of SOx on the adsorption of NO from gas over activated carbon. Fuel,1997, 76(6):521~526
    [82] L.Laudal Dennis, D.Brown Thomas, R.Nott Babu. Effects of flue gas consitituent on mercury speciation. Fuel Processing Technology, 2000, 65–66:157-165.
    [83] E.S. Olson, R.K. Sharma, S.J. Miller, et al. Identification of the breakthrough oxidized mercury species from sorbents in flue gas. Proceedings of the Specialty Conference on Mercury in the Environment. Minneapolis, MN, 1999, 15–17: 121~126.
    [84]高洪亮,周劲松,骆中泱等. SO2对模拟燃煤烟气中汞形态分布影响的实验.环境科学学报, 2004,24(2):204~309
    [85] Rebecca N. Sliger, John C. Kramlich, Nick M. Marinov. Towards the development of a Chemical kinetic model for the homogeneous oxidation of mercury by chlorine species. Fuel Processing Technology,2000, 65-66: 423~438.
    [86] K. Wang,D.D.Do. Multicomponent adsorption, desorption and displacement kinetics of hydrocarbons on activated carbon-dual diffusion and finite kinetics model. Saperation and Purification Technology, 1999,17:131-146
    [87]李平,修国华,江雷.活性炭纤维填充床内多组分竞争吸附.化工学报,2001,52(11):987~992
    [88]芩泽文. PAN-ACF脱硫脱硝实验研究:[硕士学位论文]。武汉:华中科技大学, 2005.4
    [89]王欣.活性炭纤维低温吸附脱除汞的试验研究:[硕士学位论文]。武汉:华中科技大学,2006.4
    [90]近藤精一,石川达雄,安部郁夫著.吸附科学(原著第二版).李国希译.北京:化学工业出版社,2006.1
    [91]黄仲涛主编.工业催化剂手册.北京:化学工业出版社,2004,10. 44~65
    [92] M.A.Daley, C.L.Mangun, J.A.Debarr, et al. Adsorption of SO2 onto oxidized and heat-treated Activated Carbon Fibers. Carbon, 1997,35(3):411~417
    [93] Raymuudo-Pinero E, Cazorla-Amoros D, Salinas-Martinez de Lecea C, et al. SO2 adsorption on activated carbons and activated carbon fibers: influence of surface chemistry and porosity. Eurocarbon’98 Science and Technology of Carbon,Strasbourg, 1998. 341~342
    [94] Muniz J, Herrero JE, Fuertes AB. Treatments to enchance the SO2 capture by activated carbon fibers. Appl Catal B: Environmental, 1998,18(1~2):171~179
    [95] I.Mart?n-Gull?n, R.Andrews, M.Jagtoyen, et al. PAN-based activated carbon fibers.composites for SO2conversion, influence of fiber activation method. Fuels, 2001, l.80(7):969~977.
    [96] E.Raymundo-Piňero, D.Cazorla-Amor1s, C.Szlinas-Martinez de Lecea, et al. Factors controling the SO2 removal by porous carbons: relevance of the SO2 oxidation step. Carbon , 2000,38(3):335~344
    [97] E.Raymundo- Piňero, D.Cazorla-Amor1s, A.Linares-Solano. The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powers and fibres. Carbon, 2003,41(10):1925~1932
    [98] I.Mochida, S.Miyamoto, K.Kuroda, et al. Adsorption and Adsorbed Species of SO2 during Its Oxidative Removal over Pitch-Based Activated Carbon Fibers. Energy & Fuels, 1999,13(2):369~373.
    [99] Boehm H P. Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon, 1994,32(5):759~769
    [100]高志明,吴越,田玟.活性炭表面含氧官能团对NO的还原作用.高等学校化学学报,1996,17(6):961~964
    [101] Davini P. Adsorption and Desorption of SO2 on Active Carbon: The Effect of Surface Basic Groups. Carbon,1990,28(4):565~571
    [102] Carrosco-Marin F., Ultrera-Hidalgo E, Rivera-Utrilla J,et al. Adsorptuin of SO2 in fFlowing Air onto Activated Carbons from Olive stones. Fuel.1992,71:575~578
    [103] C.L.Mangun, J.A.Debarr, J.Economy. Adsorption of Sulfur on ammonia-treated activated carbon fibers. Carbon, 2001, 39(11):1689~1696
    [104] J.Muňiz, J.E. Herrero, A.B. Fuertes. Treatments to enhance the SO2 capture by activated carbon fibres. Applied Catalysis B:Enviromental ,1998,18:171~179
    [105] Christian L.Mangun, Kelly R,Benak, James Economy, et al. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia. Carbon, 2001,39(12): P1809~1820.
    [106] Zhenyu Ryu, Haiqin Rong, Jingtang Zheng, et al. Microstructure and chemicalanalysis of PAN-based activated carbon fibers prepared by different activation methods. Carbon, 2002, 40(7):1131~1150.
    [107]沈曾民,张学军.沥青氧化制备活性炭纤维过程中空隙结构的变化.北京化工大学学报,2000,27(1):29~32
    [108]赵乃勤,藏科研,马铁军等.活化方法对沥青基炭纤维表面的影响.碳素技术. 2001,116(5):5~9
    [109]罗艳.不同活化条件下制得粘胶基的孔结构.材料学报,2003,14(3):58~60
    [110]戴星,朱本松.活化工艺对活性炭纤维结构的影响.北京服装学院学报,2002,22(2):11~15
    [111]杨全红,郑经堂等.由含氮官能团的演变考察PAN-ACF的改性.炭素,1998(1):26~28
    [112]李开喜,凌立诚,刘朗等.乙烯渣油沥青基活性炭纤维和粘胶基活性炭纤维的表面性质与脱硫活性.化学物理学报,2000,13(2):231~237
    [113]刘振宇,郑经堂,王茂章等. PAN基活性炭纤维的氨吸附研究.物理化学学报,2001,17(7):594~599
    [114]张守臣,赵修仁,刘长厚等.硝酸浸渍对活性碳纤维还原NO性能的影响.化工学报,2001,52(8):691~695
    [115]符若文,张永成,增汉民.磷酸活化粘胶基活性纤维的研究.合成纤维工业,2000,23(1):33~36
    [116]李开喜,凌立成,刘朗等.热处理改性的活性炭纤维的脱硫活性.催化学报. 2000,21(3):264~268
    [117] Lizzo AA, DeBarr JA, Mechanism of SO2 removal by carbon. Energy Fuels, 1997,11(2): 284-291
    [118] DeBarr JA, Lizzo AA, Daley MA. Adsorption of SO2 on bituminous coal char and activated carbon fiber. Energy Fuels, 1997,11(2): 267-271
    [119] M.A.Daley, C.L.Mangun, J.A.Debarr et al. Adsorption of SO2 onto oxidized and heat-treated Activated Carbon Fibers. Carbon,1997,35(3): 411-417
    [120] Soo-Jin Park, Yu-Sin Jang, Jae-Woon Shim et al. Studies on pure structures and surface functional groups of pitch-based ACFs. Journal of colloid and interface sei., 2003,26(2):259~264
    [121]李开喜,凌立成,刘朗等.氨水活化的活性炭纤维的脱硫作用.环境科学学报, 2001,21(1):74~78
    [122] Orfamoundaki T, Skodras G,Dollos I, et al. Production of Carbon Molecular Sieves by Plasma Treated Activated Carbon Fibers. Fuel,2003,82:2045~2049
    [123]陆益民,梁世强.活性炭纤维在催化领域种的应用.合成纤维工业,2005,28(2):51~54
    [124]高强,季涛,王春梅等.活性炭纤维的表面功能设计与控制[I][II].南通大学学报(自然科学版),2003,2(3):15~19,38~43
    [125]张月,刘家护,阎维平等.活性炭和活性炭纤维烟气脱硫技术.锅炉制造, 2003,(3):17~19
    [126]李永贵,张海泉,陈东生.活性炭纤维吸附转化SO2的应用研究.产业用纺织品,2001,19(127):26~29
    [127]邹长武,尹华强,楚英豪等.黏胶基活性炭纤维的脱硫性能.环境工程,2001,19(1):28~30。
    [128]刘义,曹子栋,唐强等.有效脱附在活性炭法烟气脱硫中的应用.西安交通大学学报,2003,37 (1): 96~99
    [129]刘义,曹子栋,唐强等.水涤脱附条件下活性炭脱硫中吸附反应空间的研究.西安交通大学学报,2004,38(1):73-76
    [130]贾民选.活性炭纤维的应用与开发[J].科技情报与开发经济. 2004,14(11):205~206
    [131]郝吉明马广大主编.大气污染控制工程(第二版).北京:高等教育出版社, 2002.156~157
    [132]王建祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)引论.北京:国防工业出版社,1992
    [133]刘杰,王平华. PAN基ACF的结构表征——XPS与元素分析.新型炭材料,1999,14(1):48~52
    [134]钟毅.低温催化吸附剂及其脱除SO2研究:[硕士学位论文]。武汉:华中科技大学, 2003.4
    [135]张鹏宇催化活性炭脱硫脱硝除汞的试验研究: [硕士学位论文]。武汉:华中科技大学,2004.4
    [136] Zheng-Ming Wang, Katsumi Kaneko. Effect of Pore Width on Micropore Filling Mechanism of SO2 in Carbon Micropores. Journal of physical chemistry B, 1998,102(16):2863~2868
    [137] DeMore,W.B. Metal Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 12 JPL Publication ,1997,4:254~266
    [138] Clyne, M. A. Determination of the Rate Constant of Reaction of N(4S3/2) with NO2 using Resonance Fluorescence in a Discharge Flow System Chem. Phys., 1982,69: 381 ~395
    [139] Kevin C. Galbreath, Christopher J. Zygarlicke. Mercury transformation in coal combustion flue gas. Fuel Processing Technology, 2000, 65-66:289 ~ 310.
    [140] E.S. Olson, S.J. Miller, R.K. Sharma. Catalytic effects of carbon sorbents for mercury capture. Journal of Hazardous Materials,2000,74 (1): 61~79。
    [141] Stanley J. Miller, Grant E. Dunham, Edwin S. Olson, et al. Flue gas effects on a carbon-based mercury sorbent. Fuel Processing Technology, 2000, 65-66 : 343~362
    [142]高洪亮,周劲松,骆仲泱等,NO对燃煤烟气中汞形态影响的实验研究,工程热物理学报,2004,25(6):1057-1060。
    [143]张旺玺,宋清臣.一种全新活性炭-活性炭纤维.金山油化纤, 2001(2): 42~46
    [144] Rong Yan, David Tee Liang, Leslie Tsen, et al. Bench-scale experimental evaluation of carbon performance on mercury vapour adsorption. Fuel, 2004, 83(18): 2401–2409.
    [145]袁一主编.化学工程师手册. 2001.448~550
    [146]李希编著.化工问题的建模与数学分析方法.北京:化学工业出版社, 2006.3~4,17~19
    [147]李绍芬编著.化学与催化反应工程.北京:化学工业出版社, 1986. 152~237
    [148]王绍亭,陈涛编.化工传递过程基础.北京:化学工业出版社,1987. 217~221,278~279
    [149]黄华江.实用化工计算机模拟-MATLAB在化学工程中的应用.北京:化学工业出版社,2004. 149~151
    [150] R.Byron Bird Warren E.Stwart Edwin N.Lightfoot. TRANSPORT PHENOMENA Second Edition.北京:化学工业出版社, 2002,8. 454~474,513~539
    [151]陈敏恒,丛德滋,方图南等编.化工原理(第二版).化学工业出版社, 2004.
    [152]刘义.活性炭法烟气脱硫机理和应用研究: [博士学位论文]。西安:西安交通大学,2003.11
    [153] (日)北川浩,铃木谦一郎著.吸附的基础与设计.北京:化学工业出版社,1983.162~182
    [154]谢裕坛,金一中.活性炭固定床操作参数的优化.环境污染裕防治,2002,24,(5):265~267
    [155]罗永刚,李大骥,杨亚平.活性炭联合脱硫脱硝工艺.热能动力工程,2001,16(94):444~446
    [156] Salvador F,Sanchez Jimenez C. A New Method For Regeneration Actived Carbon By Thermal Desorption With Liquid Under Subcritical Conditions. carbon,1996,34(4):511~516.
    [157] N. Shirahama, S.H.Moon, K.-H.Choi, et al. Y.Korai, M.Tanoura, I.Mochida,“Mechanistic study on adsorption and reduction of NO2 over activated carbon fibers. Carbon, 2002,.40(14):2605~2611.
    [158] An-Hui Lu and Jing-Tang Zheng. Study of microstructure of high-surface-area poly acry louifrile ACFs. Journal of colloid and interface sei, 2001,236(2):369~374
    [159] Zhenyu Ryu, Jingtang Zheng, Maozhang Wang. Porous structure of PAN-based ACFs. Carbon, 1998,36(4):427~432
    [160]李开喜,凌立成,刘朗等.不同反应温度下活性炭纤维脱除SO2的能力.新型炭材料,1999,14(1):8 ~ 12
    [161] Y.Kawabuchi, S.Kawano, I.Mochida. Molecular sieving selectivity of active carbons and active carbon fibers improved by chemical vapour deposition of benzene. Carbon, 1996,34(6):711~717.
    [162]胡晓敏,张博.活性炭纤维及其在脱硫、脱氮中的应用.河南化工.2005,22:5~7
    [163]李国希,刘晓春.活性炭纤维的微孔结构及水吸附.离子交换吸附, 2001,17(4):355~359
    [164]颜俭.国外干法脱硫工艺高效吸收剂的研究与开发.电力环境保护,1996,12(1):52~55
    [165]李国希.活性炭纤维微孔结构分析方法.新型炭材料,2001,16(1):76 ~ 79
    [166]石林,古国榜,黄少烈等.一种新型烟气脱硫技术在燃煤锅炉上的扩大试验.环境污染与防治,2002,24(2):79 ~ 81
    [167]蔡来胜,刘燕春.活性炭纤维及其在空气净化器中的应用.上海防治科技,2003,31(4):10~12
    [168]梅建庭.活性炭纤维吸附性能和表面结构的研究.炭素,2001,2:9~11
    [169]刘振宇,郑经堂,王茂章等. PAN基活性炭纤维的表面及其孔隙结构解析.化学物理学报,2000,13(4):473 ~ 480
    [170]姜军清,黄卫红,陆晓华.活性炭纤维及其应用研究进展.工业水处理,2001,21(6):4 ~ 6
    [171]李旭明,张茂林,李龙.活性炭纤维的性能特征与应用.河北纺织,2002,2:18 ~ 21
    [172] Jason D. Laumb, Steven A. Benson, Edwin A. Olson. X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry. Fuel Processing Technology, 2004, 85(6-7):577-585.
    [173] Zewadzki J. Infrared Studies of SO2 on Carbon-II: The so2 Species Activity of Activated Carbon Films, Carbon, 1987,25(4): 495-502
    [174]杨全红,郑经堂,王茂章等.超大比表面积ACF和常规ACF表面结构比较新型炭材料,2000,15(3):28~32
    [175]狄虹,仲兆平.活性炭纤维(ACF)在环境保护中的应用.能量研究与利用,2003,(5):17~19
    [176]邓继勇,张海涛,王亚龙等.活性炭纤维的吸附能力.材料研究学报2001,15(3):303~307
    [177]金涧,岳雪梅.聚丙烯腈基活性炭纤维选择性吸附机理研究初报.中国烟草学报,2003,9(4):47~50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700