用户名: 密码: 验证码:
城市化区域气候变化脆弱性综合评价理论、方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代以来,以气候变暖为标志的全球气候变化逐渐引起各国政府、国际组织和科学工作者的高度重视。自20世纪90年代脆弱性概念开始引入气候变化研究领域,尤其是2001年IPCC(Intergovernmental Panel on Climate Change)第三次评估报告对气候变化脆弱性给出了明确的定义以来,脆弱性已逐渐成为全球气候变化研究的重点和热点领域。自21世纪以来,国外不同领域和学科的学者对气候变化脆弱性概念体系展开研究,并相继在国家和区域尺度上开展了气候变化对农业、林业、水资源、生态环境、社会经济以及人体健康等方面的脆弱性评价。相对于国外的研究,我国气候变化脆弱性研究起步较晚,已有的研究主要集中在对国外气候变化脆弱性概念体系研究的综述,以及在农田和森林生态系统方面开展了一些基于气候变化影响的脆弱性评价,缺乏对气候变化脆弱性理论和评价方法的系统研究,评价对象也仅针对少数自然生态系统类型。另一方面,近年来,各国政府以及IPCC、UNFCCC(United Nations Framework Convention on Climate Change)、UNEP(United Nations Environment Programme)等相关机构已经把城市区域的气候变化问题以及应对策略作为全球气候变化研究的重点,并积极推进“城市应对气候变化的行动规划”以及“低碳城市”的规划和建设。因此,开展城市化区域的气候变化脆弱性研究,对拓展和深化气候变化脆弱性相关理论方法在城市尺度上的应用,科学指导城市应对气候变化具有重要的意义。
     上海作为典型的河口城市,一方面,在全球气候变化背景下,极易受到海平面上升、极端气候事件、盐水入侵、湿地生境退化、水资源的时相改变等众多影响,属于高度脆弱的河口自然生态系统;另一方面,作为中国城市化水平最高的国际化大都市,人口和经济资源高度集中,将进一步放大气候变化的社会经济影响。因此,选择河口城市上海作为案例研究对象,不仅对上海实现全球气候变化和快速城市化背景下的可持续发展具有重要的战略意义,而且对其他海岸带城市和河口城市开展应对气候变化的相关研究和实践具有一定的借鉴价值。
     本文从城市化区域气候变化脆弱性评价的理论和方法研究入手,剖析城市化和气候变化的耦合关系,明确城市化区域气候变化脆弱性的概念体系和评价模型,设计评价的主要模块内容和相关方法技术体系;在此基础上,以河口城市上海为例,开展气候变化脆弱性的综合评价案例研究。本论文主要研究结论包括理论方法和案例研究两个层面,并在此基础上提出上海应对气候变化的策略建议:
     1)城市化区域气候变化脆弱性评价的理论和方法研究
     城市化与局地气候变化之间存在着客观的动态耦合关系,主要表现为气候变化对城市“社会-经济-自然”复合生态系统的多级网络影响;城市化过程中的社会经济发展、能源需求和城市空间扩张对局地气候变化的胁迫;以及气候变化与城市化动态耦合的环境库兹涅茨曲线关系。
     构建城市化区域气候变化脆弱性评价概念模型。其中,评价的组成要素包括风险度、敏感度和适应度;胁迫输入要素包括气候变化胁迫和城市化胁迫;策略输出要素包括减缓和适应两个方面;各要素具有不同的时空尺度和系统属性特征,要素间存在不同类型的作用机制,包括决定流、影响流、响应流和信息流。
     根据评价模型,具体评价过程可归纳为6个模块,分别为城市化区域气候变化事实和情景预测,城市化进程对局地气候变化的胁迫分析,气候变化对城市复合生态系统的影响评价,基于时空尺度的城市化区域气候变化综合脆弱度评价以及城市应对气候变化的综合策略研究等;相关评价方法和技术涉及气候情景分析法、模型模拟法、指标体系法、决策支持评价法等方面。
     2)上海气候变化脆弱性评价的案例研究
     城市化对上海气候变化的影响方面,近50年城区增温趋势显著,增温速率为0.51℃/10a;气温变化在不同城市化发展阶段表现出不同的变化规律,自20世纪90年代进入高速城市化阶段以来,增温幅度显著增加,城市化对局地增温的贡献率高达49.51%。在此基础上,重点关注城市化过程中的社会经济发展驱动、能源需求增长和城市空间的扩张对局地气候变化的胁迫机制,其中生产总值、非农人口数、工业能源终端消费量、房屋竣工面积以及耕地面积等指标对城郊温差的胁迫效应极为显著,其胁迫关系除生产总值符合对数增长曲线以外,其余指标均符合三次多项式曲线;进一步分析上海市城市化压力综合指数(Urban Pressure Index, UPI)的胁迫机制,研究表明在不同的城市化发展阶段UPI指数对城市局地气候的胁迫存在着差异,可分为低强度胁迫期、线性胁迫期以及缓慢胁迫期,其变化规律在一定程度上验证了城市化对局地气候变化的影响存在环境库兹涅茨现象。
     气候变化对上海“社会-经济-自然”复合生态系统的影响方面,分别从定性和定量两个角度展开研究。定性分析表明,气候变化对上海自然生态系统的主要影响包括盐水入侵,风暴潮和洪涝灾害影响加剧,海岸侵蚀和潮滩湿地减少,城市供水系统稳定性的减少、需水量增加以及加剧水质污染等;对社会经济的影响主要包括农业、运输业、金融、保险以及旅游业的影响,能源需求量的增加,海岸防护工程、洪涝排水系、供水供电等基础设施的影响,空气质量下降以及对居民健康的影响等方面。为了进一步探讨气候变化影响的量化评价方法,本文尝试运用AVIM2'‘大气-植被”生态过程模型,量化评估气候变化和土地利用变化对上海农田生态系统净初级生产力的影响。
     气候变化综合脆弱度评价方面,基于评价指标体系,分别从时间和空间的尺度,分析城市化区域气候变化脆弱度指数(Urban Climate Change VulnerabilityIndex, UCCVI)的变化。从时间序列的变化来看,1998-2006年期间,上海UCCVI指数呈现出波动变化的特征,变化幅度较少,总体有减小的趋势,其中化石燃料消耗、水文和水资源、植被生态系统功能、人类健康、经济发展对能源需求的依赖性、人力和社会资本等要素的变化对其影响显著;从空间分异来看,上海气候变化高脆弱区和较高脆弱区面积为447.66 km2和1849.07 km2,分别占上海市总面积的7.06%和29.16%。
     3)上海应对气候变化的策略建议
     基于上海气候变化脆弱性综合评价结果,分别从减缓和适应两个方面,提出相关应对策略建议。其中,减缓策略建议包括优化产业结构,转变经济增长模式;发展可再生能源,改善能源消费结构;节约能源,提高能效;“低碳城市”的空间规划策略;以“碳排放交易”为切入点,推进低碳化发展的市场化措施等领域。适应策略建议包括构建上海气候变化背景下的自然生态安全保护格局;建设城市森林,增加城市碳汇;调节城市水资源供需平衡,增加城市应对洪水灾害的能力;加强气候变化对城市居民健康的影响识别和应对;建立有效的气候灾害应急和响应机制等领域。
Since the 1980s, global climate change, characterized by global warming, has a great deal of attention from governments, international societies and scientific researchers. Beginning in the 1990s, when the idea of fragility was introduced into the research domain of climate change, and more significantly, in2001 when the third assessment report gave a clear definition of climate change vulnerability, climate change vulnerability has become a focus and a hot-spot domain of research on global climate change. Since the turn of 21st century, foreign scholars from different fields and disciplines have discussed the conceptual framework of vulnerability to climate change and launched practical climate change vulnerability assessments on agriculture, forestry, water resources, ecological systems, human health and the socio-economic system. Compared with research abroad, vulnerability to climate change research in China has started later. This research mainly focused on the overview of the concept of vulnerability to climate change abroad, and also some case studies on agriculture and forestry ecosystem based on climate change impact analysis, which rarely involved the study of theory and methodology of climate change vulnerability and had a limited focus on natural systems. On the other hand, in recent years, governments of different countries and the relevant institutions like IPCC, UNFCCC, and UNEP have considered the issues of climate change on city scale as a focal point in the global climate change research field, and have also actively promoted "Climate Change Action Plan" and "Low Carbon City" planning and construction. Thus, the study of climate change vulnerability at the urban scale is so meaningful, not only for improving and expanding the theories and methodologies of climate change vulnerability at the urban scale, but also for guiding the urban relative planning and strategies in response to climate change with scientific knowledge.
     Shanghai is a typical estuarine city. On the one hand, this city is a vulnerable estuarine ecosystem, which is simply affected by sea level rise, extreme climate events, salt water intrusion, degradation of wetland habitats, water resource change and so on. On the other hand, Shanghai is also an international metropolitan area with a high population density, economic resource density, and the highest urbanization rate in China, where climate change has a dramatic impact on social life and economy. Thus, the case study of Shanghai has a strategic significance to urban sustainable development with the background of global climate change and fast urbanization processes, which could be also referenced by other coastal cities and estuarine cities.
     This paper addressed the relative theories and methodologies of climate change vulnerability in an urbanized area, including the coupling relationship between urbanization and climate change, the conceptual framework of climate change vulnerability of an urbanized area, the conceptual model of vulnerability assessment, and also related assessment methodologies and techniques. Based on the theoretical framework, the estuarine city of Shanghai, as a case study, was studied through the aspect of climate change vulnerability integrated assessment. The main conclusions in this paper are comprised of both theoretical and practical aspects. Some strategic recommendations of mitigation and adaptation polices were also proposed for Shanghai in response to climate change.
     1) Study of relative theories and methodologies of climate change vulnerability in an urbanized area
     There is an objective dynamic coupling relationship between urbanization and local climate change, which consists of the multi-level network effects of climate change on urban "social-economic-nature" complex ecosystems, the pressure of social-economic development, energy requirement and urban land sprawl in the process of urbanization on local climate change, and the dynamic coupling relationship of environmental Kuznets curve between urbanization and climate change.
     The conceptual model of climate change vulnerability assessment in an urbanized area was established in this research. According to the model, the structural elements of climate change vulnerability are exposure, sensitivity and adaptive capacity. The exposure elements are climate change exposure and urbanization exposure. The elements of strategy output in response to climate change are mitigation and adaptation. Each element in the model has its unique characteristics of temporal and spatial scales, and system attribution. Different kinds of flow type could be identified among elements, including decision flow, affecting flow, response flow and information flow.
     According to the model, the whole process of urban climate change vulnerability assessment could be divided into six analysis modules, including climate change fact and prediction, urbanization stress on local climate change, climate change impacts on urban complex ecosystems and index system based climate change vulnerability assessment at the spatial-temporal scale. Relative methodologies and techniques for assessment include climate change scenario analysis, model stimulation, evaluation index system, GIS and RS techniques, and decision-maker support tools.
     2) The case study of Shanghai climate change vulnerability assessment
     In terms of the urbanization impact on local climate change, in the most recent 50 years, there was a significant warming trend in the urban area with the rate of 0.51℃/10a; distinguishing features of temperature change were identified in different stages of the urbanization process. Since the 1990s, when Shanghai phased into the high-speed urbanization process, the degree of increase in temperature was higher, while the rate of urbanization contribution on local warming was 49.51%. Based on the study of climate change facts in Shanghai, the drive of social-economic development, energy requirement increases, and urban land sprawl were highlighted with the consideration of their stresses on local climate change. The results indicate that the stresses of indexes of gross domestic product, non-agricultural population, consumption of industrial energy, area of floor space of completed buildings and agricultural area, and differences of annual mean temperatures between urban and suburban areas are extremely significant. The dynamic relationship between the index of non-agricultural population and local climate change is perfectly reflected by a logarithmic growth curve, while a cubic polynomial curve is suitable to other indexes. Combining these signal indexes, UPI (Urban Pressure Index) was established to describe the whole urbanization process stress on local climate change. The results indicate that different aspects of UPI stress on local climate change in different stages of the urbanization process. The urbanization process could be identified as three different stages as follows:low intensity stress phrase, linear stress phrase, and slow stress phrase. The variation of three phrases also verified the theoretical hypothesis of an environmental Kuznets curve relating urbanization and climate change.
     The impacts of climate change affecting the "social-economy-nature" ecosystem in Shanghai were studied qualitatively and quantitatively. Qualitative analysis shows that the impacts of climate change on the natural eco-system in Shanghai were salt water intrusion, increases of storm surges and flood disasters, coastal erosion and decrease of tidal wetlands, decreasing stability of urban water supply systems, water demand increases, and water pollution. The impacts on the social and economic system include impacts on agriculture, transportation, finance, insurance and tourism industries; increasing demand for energy; impacts on coastal protection works, flood drainage systems, water supply, and other infrastructure; decreasing air quality and its impacts on human health. In order to make a further discussion on quantitative assessments of climate change impacts, this paper uses the AVIM2 "atmosphere-vegetation" ecological process model to quantitative evaluate the impacts on the net primary productivity of Shanghai's farmland ecosystem by climate change and agricultural land use change.
     The assessment of comprehensive climate change vulnerability, based on the evaluation indicator system, analyzes the change of the Urban Climate Change Vulnerability Index (UCCVI) on the scales of time and space, respectively. From the perspective of time series, during the period from 1998 to 2006, Shanghai UCCVI shows a small fluctuation and a decreasing trend in total amount, which is due to fossil fuel consumption, hydrology and water resources, vegetation ecosystem function, human health, economic development demand on energy, and human and social capital. From the view of spatial variation, the most vulnerable area to climate change in Shanghai comprise 447.66 km2of area, accounting for 7.06% of the total area of Shanghai, and highly vulnerable land area is 1849.07 km2, accounting for 29.16%.
     3) Shanghai's strategy on climate change
     Based on the comprehensive assessment of the climate change vulnerability of Shanghai, we put forward coping strategies corresponding to mitigation and adaptation. The mitigation strategies include the optimization of industrial structure and transforming economic growth models; development of renewable energy, improvement of the energy consumption structure; energy efficiency improvement; promoting the "low-carbon city" as the entry point and promotion of "carbon trading" development through market-oriented measures. Adaptation strategies include building an ecological security pattern for Shanghai; construction of urban forests, increasing urban carbon sinks; regulation of urban water resources balance, increasing the response capacity to flood disaster; identification and response to climate change impacts on urban human health; establishment of an effective contingency; and response mechanisms to climate disaster.
引文
[1]Adger W N. Vulnerability [J]. Global Environmental Change,2006,16 (3):282-281.
    [2]Antle J M, Capalb(?) S M, Elliot E T, et al. Adaptation, spatial heterogeneity and the vulnerability of agricultural systems to climate change and CO2 fertilization:an integrated assessment approach[J]. Climatic Change,2004,64:289-315.
    [3]Arkell B P, Darch G J C. Impact of climate change on London's transport network [J]. Municipal Engineer,2006,159:231-237.
    [4]Auregui E J, Romales E. Urban effects on convective precipitation in Mexico City [J]. A tmospheric Environment,1996,30:3383-3389.
    [5]Bales R C, Liverman D M, Morehouse B J. Integrated assessment as a step towards reducing climate vulnerability in the southwestern United States[J]. Bulletin of the American Meteorological Society,2004,11:1727-1734.
    [6]Bornstein R, Lin Q L. Urban heat islands and summertime convective thunderstorms in Atlanta:three case studies [J]. Atmospheric Environment,2000,34:507-516.
    [7]Box E. Quantitative evaluation of global primary productivity models generated by computers [A]. In:Lieth H, Whittaker R H, et al. Primary Productivity of the Biosphere [M]. New York:Springer Verlag,1975.
    [8]Brooks N, Adgera W N, Kellyc P M. The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation [J]. Global Environmental Change 2005,15:151-163.
    [9]Brooks N. Vulnerability, risk and adaptation:a conceptual framework[R]. Norwich, UK: Tyndall Centre for Climate Change Research,2003.
    [10]Burton I, Huq S, Lim B, et al. From impact assessment to adaptation priorities:the shaping of adaptation policy [J]. Climate Policy,2002,2:145-149.
    [11]Cao M K, Prince S, Li K R, et al. Response of terrestrial carbon up take to climate interannual variability in China[J]. Global Change Biology,2003,9:536-546.
    [12]Cardona O D. The need for rethinking the concepts of vulnerability and risk from a holistic perspective:a necessary review and criticism for effective risk management[A]. In:Bankoff G, Frerks G, Hilhorst D. Mapping vulnerability:disasters, development and people[M]. London:Earthscan,1989.
    [13]Cassardo C, Ji J, Longhetto A. A study of the performance of a land surface processes model [J]. Boundary Layer Meteorology,1995,75:87-121.
    [14]Chicago Department of the Environment.Chicago Climate action plan[R]. Chicago:Chicago Department of the Environment,2008.
    [15]Christensen L, Coughenour M B, Ellis J E, et al. Vulnerability of the Asian typical steppe to grazing and climate change[J]. Climatic Change,2004,63:351-356.
    [16]Chung U, Choi J, Yun J I. Urbanization effect on the observed change in mean monthly temperatures between 1951-1980 and 1971-2000 in Korea [J]. Climate Change,2004,66:127-136.
    [17]Clark D A, Piper S C, Keeling C D, et al. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100 (10):5852-5857.
    [18]Cole M A, Rayner A J, Bate J M. The environmental kuznets curves. Environment and development[J]. Economics,1997,2 (4):401-416.
    [19]Corvalan C, Kjellstrom T. Health and environment analysis for decision making [J]. World Health Statistical Quarterly,1995,48:71-77.
    [20]Costanza R, Wainger L, Folke C, et al. Modeling complex ecological economic systems: toward an evolutionary, dynamic understanding of people and nature[J]. BioScience,1993, 43 (8):545-555.
    [21]Cutter S L. Vulnerability to environmental hazards [J]. Progress in Human Geography,1996, 20:529-539.
    [22]Dawson J P, Racherla P N, Lynn B H, et al. Impacts of climate change on regional and urban air quality in the eastern United States:Role of meteorology [J]. Journal of Geophysical Research,114, D05308, doi:10.1029/2008JD009849.
    [23]Diem J E, Mote T L. Interepochal changes in summer precipitation in the southeastern United States:Evidence of possible urban effect s near Atlanta, Georgia [J]. Journal of Applied Meteorology,2005,44:717-730.
    [24]Downing T E, Patwardhan A. Assessing vulnerability for climate adaptation [A]. In:Lim B., Spanger-Siegfried E. Adaptation policy frameworks for climate change:Developing strategies, policies, and measures[C]. Cambridge:Cambridge University Press,2004.
    [25]Downing T E, Patwardhan A. Vulnerability assessment for climate adaptation [R], APF Technical Paper 3, New York City, NY:United Nations Development Programme,2003.
    [26]Eakin H, Luers A L. Assessing the vulnerability of social-environmental systems [J]. Annual Review of Environment and Resources,2006,31:365-394.
    [27]Eakin H. Institutional change, climate risk, and rural vulnerability:cases from central Mexico [J]. World Development,2005,33:1923-1938.
    [28]Eakin H. The social vulnerability of irrigated vegetable farming households in central Puebla [J]. Environment Development,2003,12:414-429.
    [29]Feng Z, Yang Y, Zhang Y, et al. Grain-for-green policy and its impacts on grain supply in West China [J]. Land Use Policy,2005,22(3):301-312.
    [30]Ford J. Vulnerability:concepts and issues [J]. Scholarly Field Paper of University Guelph, 2002:06.
    [31]Fussel H M, Klein R J T. Climate change vulnerability assessments:an evolution of conceptual thinking [J]. Climatic Change,2006,75 (3):301-329.
    [32]Fussel H M, Klein R J T. Vulnerability and adaptation assessments to climate change:An evolution of conceptual thinking [A]. In:UNDP expert group meeting "Integrating disaster reduction and adaptation to climate change"[C]. Havana, Cuba:UNDP,2001.
    [33]Fussel H M. Coevolution of the political and conceptual frameworks for climate change vulnerability assessments [A]. In:Biermann F, Campe S, Jacob K. Proceedings of the 2002 berlin conference on the human dimensions of global environmental change "knowledge for the sustainability transition. The challenge for social science"[C]. Amsterdam, The Netherlands:Global Governance Project,2002:302-320.
    [34]Fussel H M. Vulnerability:A generally applicable conceptual framework for climate change research [J]. Global Environmental Change,2007,17 (2):155-167.
    [35]Gemperli A P, Vounatsou I, Kleinschmidt M, et al. Spatial patterns of infant mortality in Mali: The effect of malaria endemicity [J]. American Journal of Epidemiology,2004,159:64-72.
    [36]Grossman G M, Krueger A B. Environmental impacts of a north American free trade agreement [M]. Woodrow Wilson School, Princeton, NT.1992.
    [37]Hamin E, Gurran N. Urban form and climate change:balancing adaptation and mitigation in the U.S. and Australia [J]. Habitat International,2009,33:238-245.
    [38]Hammond A, Driaanse A, Rodenburg A, et al. Environmental indicators:a systematic app roach to measuring and reporting on environmental policy performance in the context of sustainable development [M]. Washington, D. C.:World Resources Institute,1995.
    [39]Hanne S, Lars K P, Dale R, et al. Discursive biases of the environmental research framework DPSIR [J]. Land Use Policy,2008(25):116-125.
    [40]Hayes E B, Maupin G O, Mount G A, et al. Assessing the prevention effectiveness of local Lyme disease control [J]. Journal of Public Health Management and Practice,1999, 5(3):84-92.
    [41]Hicke J A, Lobell D B, Asner G P. Cropland area and net primary production computed from 30 years of USDA agricultural harvest data [J]. Earth Interactions,2004,8:1-20.
    [42]Holdridge L R. Life Zone Ecology. San Jose, Costa Rica:Tropical Science Center.1967.
    [43]Holling C S. Simplifying the complex:the paradigms of ecological function and structure[J]. European Journal of Operational Research,1987,30,139-146.
    [44]Huang M, Ji J J, Li K, et al. The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of South China [J]. Tellus Series B-Chemical and Physical Meteorology,2007,59B:439-448.
    [45]Huff F A, Changnon S A J. Climatological assessment of urban effects on precipitation at St. Louis [J]. Journal of Applied Meteorology,1972,11:823-842.
    [46]Iglesias A, Erda L, Rosenzweig C. Climate change in Asia:a review of the vulnerability and adaptation of crop production [J]. Water Air Soil Pollute,1996,92:13-27.
    [47]IPCC. Climate change 2001:synthesis report. a contribution of working groups Ⅰ,Ⅱ, and Ⅲ to the third assessment report of the intergovernmental panel on climate change [M]. Cambridge, UK:Cambridge University Press,2001.
    [48]IPCC. Climate change 2007:synthesis report. Contribution of working groups Ⅰ, Ⅱ and Ⅲ to the fourth assessment report of the intergovernmental panel on climate change [M]. Geneva, Switzerland:IPCC,2007.
    [49]IPCC. Climate change:The IPCC scientific assessment [M]. Cambridge, UK:Cambridge University Press,1990.
    [50]IPCC. Special Report on emissions scenarios (SRES). Cambridge:Cambridge University Press,2000.
    [51]IPCC. The regional impacts of climate change:An assessment of vulnerability [M]. Cambridge, U K:Cambridge University Press,1996.
    [52]IPCC.2006 IPCC guidelines for national greenhouse gas inventories [M].Japan:Institute for Global Environmental Strategies,2006.
    [53]Janssen M A, Schoon M L, Ke W, et al. Scholarly networks on resilience, vulnerability and adaptation within the human dimensions of global environmental change [J]. Global Environmental Change, doi:10.1016/j.gloenvcha.2006.04.001.
    [54]Jensen J R. Introductory digital image processing:a remote sensing perspective [M].Upper Saddle:River Prentice Hall,1996.
    [55]Jetten T H, Focks D A. Changes in the distribution of dengue transmission under climate warming scenarios [J]. American Society of Tropical Medicine and Hygiene.1997, 57:285-297.
    [56]Ji J J, Hu Y C. A multi-level canopy model including physical transfer and physiological growth processes [J]. Climate and Environmental Research,1999,4(2):152-164.
    [57]Ji J J, Huang M, Li K. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century [J]. Science in China Series D:Earth Sciences,2008,51(6): 885-898.
    [58]Ji J J. A climate-vegetation interaction model-simulating the physical and biological processes at the surface [J]. Journal of Biogeography,1995,22:445-451.
    [59]Jones P D, Groisman P Ya, Coughlan M, et al. Assessment of urbanization effects in time series of surface air temperature over land [J]. Nature,1990,347 (4):169-172.
    [60]Karl T R, Jones P D. Urban bias in area-averaged surface air temperature trends [EB]. Bulletin of the American Meteorological Society,1989,70:265-270.
    [61]Karl T R., Diaz H F, Kukla G. Urbanization:its detection and effect in the United States climate record [J]. Climate,1988,1:1099-1123.
    [62]Kasperson J X, Kasperson R E, Turner Ⅱ B L, et al. Vulnerability to global environmental change[A]. In:Kasperson J X, Kasperson R E, Social Contours of Risk. Vol. Ⅱ:Risk analysis corporations and the globalization of risk [M], London:Earthscan,2005:245-285.
    [63]Kasperson J X, Kasperson R E. SEI risk and vulnerability programme report[R]. Stockholm, Sweden:Stockholm Environment Institute,2001.
    [64]Klein R J T, Nicholls R J. Assessment of coastal vulnerability to climate change [J]. Ambio, 1999,28(2):182-187.
    [65]Kolokotroni M, Giannitsaris I, Watkins R. The effect of the London urban heat island on building summer cooling demand and night ventilation strategies [J]. Solar Energy,2006,80: 383-392.
    [66]Kramer P J. Carbon dioxide concentration, photosynthesis, and dry matter production [J]. Bio-Science,1981,31:29-33.
    [67]Li Y, Ji J. Model estimates of global carbon flux between vegetation and the atmosphere [J]. Advances in Atmospheric Sciences,2001,18:807-818
    [68]Liu J,Liu M,Tian H, et al. Spatial and temporal patterns of China's cropland during 1990-2000:an analysis based on Landsat TM data[J].Remote Sensing of Environment,2005, 98:442-456
    [69]Liverman D M. Vulnerability to global environmental change [A].In:Kasperson R E, Dow K., Golding D, et al. Understanding global environmental change:The contributions of risk analysis and management[C]. Worcester, M A:Clark University,1990:27-44.
    [70]Liverman D M. Vulnerability to global environmental change [A]. In:Kasperson R E, Dow K, Golding D, et al. Understanding global environmental change:The contributions of risk analysis and management[M]. Worcester:Clark University,1990:27-44.
    [71]Lobo A, Maisongrande P. Stratified analysis of satellite imagery of SW Europe during summer 2003:The differential response of vegetation classes to increased water deficit [J]. Hydrology and Earth System Sciences Discussions,2005,2:2025-2060.
    [72]Lozada A V, Gonzalez J E, Winter A. Urban heat island effect analysis for San Juan, Puerto Rico [J]. Atmospheric Environment,2006,40:1731-1741.
    [73]Luers A L, Lobell D B, Sklar L S, et al. A method for quantifying vulnerability, applied to the Yaqui Valley, Mexico [J], Global Environmental Change,2003,13 (4):255-267.
    [74]Malone T, Yohe G. Towards a general method for analyzing regional impacts of global change [J]. Global Environmental Change.1992,2(2):101-1-10.
    [75]Martens P. Health and climate change:modeling the impacts of global warming and ozone depletion [M]. London:Earth scans Publications,1998.
    [76]Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production[J]. Nature,1993,363:234-240.
    [77]Moss R H, Brenkert A L, and Malone E L. Vulnerability to climate change-a quantitative approach [R]. Department of Energy,2001
    [78]Myrup L O. A numerical model of the urban heat island [J]. Journal of Applied Meteorology, 1969,8:908-918.
    [79]Neilson R P. Vegetation redistribution:A possible biosphere source of CO2 during climatic change [J]. Water, Air and Soil Pollution,1993,70:659-673.
    [80]O'Brien K, Eriksen S, Schjolen A, et al. What's in a word? Conflicting interpretations of vulnerability in climate change research[R]. Oslo University, Norway:Center For International Climate And Environmental Research,2004:04,17.
    [81]O'Brien K, Leichenko R, Kelkar U, et al. Mapping vulnerability to multiple stressors:climate change and globalization in India[J]. Global Environment Change 2004,14:303-313.
    [82]Oke T R. Boundary layer climates,2nd edition [M]. London:Methuen & Co,1987.
    [83]Oke T R. City size and t he urban heat island [J]. Atmospheric Environment,1973,7:769-779
    [84]Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems [J]. Nature,2003,421:37-42
    [85]Parris K M, Hazell D L. Biotic effects of climate change in urban environments:The case of the grey-headed flying-fox (Pteropus poliocephalus) in Melbourne, Australia [J]. Biological Conservation,2005,124:267-276.
    [86]Patt A, Klein R J T, de la Vega-Leinert A. Taking the uncertainty in climate change vulnerability assessment seriously [J]. Comptes Rendus Geoscience,2005,337:411-424.
    [87]Peterson T C, Gallo K P, Lawrimore J, et al. Global rural temperature trends[J]. Geophysical Research Letters,1999,26 (3):329-332.
    [88]PetersonG D. Estimating resilience across landscapes [J]. Conservation Ecology,2002, 6:1-17.
    [89]Polley H W, Johnson H B, Marino B D, et al. Increase in C3 plant water-use efficiency and biomass over glacial to p resent CO2 concentrations [J]. Nature,1993,361:61-64.
    [90]Poorter H. Inter-specific variation in the growth response of plants to an elevated ambient CO2 concentration [J]. Vegetation,1993,104/105:77-97.
    [91]Prentice I C, Cramer W, Harrison S P, et al. A global biome model based on plant physiology and dominance, soil properties and climate [J]. Journal of Biogeography,1992,19:117-134.
    [92]Prowse M. Towards a clearer understanding of vulnerability in relation to chronic poverty[R]. Manchester, UK:Chronic Poverty Research Centre,2003.
    [93]Reilly J. Climate change, global aquiculture and regional vulnerability[R]. FAO Report,1996.
    [94]Roberto S R. Learning to adapt to climate change in urban areas. A review of recent contributions [J]. Current Opinion in Environmental Sustainability,2009,1:201-206.
    [95]Roloff A, Korn S, Gillner S. The Climate-Species-Matrix to select tree species for urban habitats considering climate change [J]. Urban Forestry & Urban Greening,2009,8:295-308.
    [96]Rosenzweig C, Solecki W D, Parshall L, et al. Characterizing the urban heat island in current and future climates in New Jersey[J]. Environmental Hazards,2005,6:51-62.
    [97]Rothman D S, Robinson J B. Growing pains:A conceptual framework for considering integrated assessments[J]. Environmental Monitoring and Assessment,1997,46:23-43.
    [98]Rozelle S, Rosegrant M W. China's past, present and future food economy:can China continue to meet the challenges? [J]. Food Policy,1997,22:191-200.
    [99]Running S W, Gower S T. FOREST-BGC, A general model of forest ecosystem processes for regional applications. Ⅱ. Dynamic carbon allocation and nitrogen budgets[J]. Tree Physiology,1991,9:147-160.
    [100]San Francisco Department of the Environment. Climate action plan for San Francisco[R]. San Francisco:San Francisco Department of the Environment,2004.
    [101]Smit B, Burton I, Klein R J T, et al.. The science of adaptation:a framework for assessment [J]. Mitigation and Adaptation Strategies for Global Change,1999,4:199-213.
    [102]Smith J B, Bhatti G, Menzhulin R, et al. Adaptation to climate change:assessments and issues[M]. New York:Springer-Verlag,1996.
    [103]Solecki W D, Oliver C. Downscaling climate change scenarios in an urban land use change model [J]. Journal of Environmental Management.2004,72:105-115.
    [104]Storch V H, Zorita E, Cubasch U, et al. Downscaling of global climate change estimates to regional scales:an application to Iberrian rainfall in winter time [J]. Journal of Climate, 1993,6(6):161-171.
    [105]Stratus Consulting Inc. Compendium of decision tools to evaluate strategies for adaptation to climate change[R]. Bonn, Germany:UNFCCC Secretariat,1999.
    [106]Suarez P, Anderson W, Mahal V, et al. Impacts of flooding and climate change on urban transportation:A system wide performance assessment of the Boston Metro Area [J]. Transportation Research,2005,10:231-244.
    [107]Timmermann P. Vulnerability, resilience and the collapse of society[R]. Toronto, Canada: Institute for Environmental Studies,1981.
    [108]Turner II B L, Kasperson R E, Matson P A, et al. A framework for vulnerability analysis in sustainability science[J]. PANS,2003,100 (14):8074-8079.
    [109]Uchijima Z, Seino H. Agroclimatic evaluation of net primary productivity of natural vegetation. Ⅰ. Chikugo model for evaluating net primary productivity [J]. Journal of Agricultural Meteorology,1985,40:343-352.
    [110]United National Development Programme. User's guidebook for the adaptation policy framework[R]. New York:United National Development Programme,2004.
    [111]United National Environmental Programme. Assessing human vulnerability due to environmental change:concepts, issues, methods and case studies[R]. Nairobi, Kenya: United Nations Environmental Programme,2002.
    [112]Ursula K, Lino B, Helena M, et al. Environmental Vulnerability Index (EVI) to summarize national environmental vulnerability profiles[R].SOPAC,1999.
    [113]VanMinnen J G, Onigkeit J, Alcamo J. Critical climate change as an approach to assess climate change impacts in Europe:Development and application[J]. Environmental Science and Policy,2002,5:335-347.
    [114]Vulnerability and adaptation to climate change in Europe[R]. European Environmental
    Agency,2005:07.
    [115]Wardekker J A,Jong A D, Knoop J M, et al. Operationalising a resilience approach to adapting an urban delta to uncertain climate changes[J]. Technological Forecasting & Social Change,2009,11:5.
    [116]Wong N H, Yu C. Study of green areas and urban heat island in a tropical city [J]. Habitat International,2005,29(3):547-558.
    [117]Woodward F I, Smith T M, Emanuel W R. A global land primary productivity and phytogeography model [J]. Global Biochemical Cycles,1995,9:471-490.
    [118]陈惠娟,千怀遂.中国特大城市水资源消费及其与经济和气候的关系-以北京、上海和广州为例[J].生态环境,2006,15(6):1331-1336.
    [119]蔡运龙,Barry Smit全球气候变化下中国农业的脆弱性与适应对策[J].地理学报,1996,51(3):202-212.
    [120]曹爱丽,张浩,张艳等上海近50年气温变化与城市化发展的关系[J].地球物理学报.2008,51(6):1663-1669.
    [121]车慧正,张小曳,李杨等.近50年城市化对西安局地气候影响的研究[J].干旱区地理.2006,29(1):54-58.
    [122]车慧正,张小曳,李杨等.过去50年西安气候演变趋势的研究[J].干旱区资源与环境.2005,19(7):96-100.
    [123]陈春根,史军.长江三角洲地区人类活动与气候环境变化[J].干旱气象,2008,26(1):28-34.
    [124]陈飞,诸大建.低碳城市研究的理论方法与上海实证分析[J].城市可持续发展,2009,16(10):71-79.
    [125]陈飞,诸大建.低碳城市研究的内涵、模型与目标策略确定[J].城市规划学刊,2009,4:7-13
    [126]陈惠娟,千怀遂.中国城市水资源消费与气候的关系研究[J].自然资源学报,2008,23(2):297-306.
    [127]陈隆勋,朱文琴.中国近45年来气候变化的研究[J].气象学报,1998,56(3):257-271.
    [128]陈佑启.我国耕地利用变化及其对粮食生产的影响[J].农业工程学报,2000,16(6):29-32.
    [129]程胜龙,王乃昂.近70年来兰州城市气温的变化[J].干旱区地理,2004,27(4):558-563.
    [130]程胜龙.城市化对兰州气温变化影响的定量分析[J].气象,2005,31(6):29-34.
    [131]仇保兴.我国城市发展模式转型趋势-低碳生态城市[J].城市发展研究,2009,16(8):1-6.
    [132]崔林丽,史军,杨引明等.长江三角洲气温变化特征及城市化影响[J].地理研究,2008,27(4):775-786.
    [133]戴亦欣.低碳城市发展的概念沿革与测度初探[J].现代城市研究,2009,11:7-12.
    [134]邓兵,范代读.海平面上升及其对上海可持续发展的影响[J].同济大学学报,2002,30(11):1 321-1325.
    [135]邓莲堂,束炯,李朝颐.上海城市热岛的变化特征分析[J].热带气象学报,2001,17(3):273-280.
    [136]邓自旺,丁裕国,陈业国.全球气候变暖对长江三角洲极端高温事件概率的影响[J].南京气象学院学报,2000,23(1):42-47.
    [137]丁金才,叶其欣,丁长根.上海地区高温分布的诊断分析[J].应用气象学报,2001,12(4):494-499.
    [138]丁金才,张志凯,奚红,周红妹.上海地区盛夏高温分布和热岛效应的初步研究[J]2002,26(3):412-420.
    [139]丁一汇,戴晓苏.中国近百年来的温度变化[J].气象,1994,20(12):19-26.
    [140]丁一汇,任国玉,石广玉,等.气候变化国家评估报告(Ⅰ)-中国气候变化的历史和未来趋势[J].气候变化研究进展,2006,2(1):3-8.
    [141]杜瑞英,杨武德,许吟隆,等.气候变化对我国干旱/半干旱区小麦生产影响的模拟研究[J].生态科学,2006,25(1):34-37.
    [142]范金,胡汉辉.环境Kuznets曲线研究及应用.数学的实践与认识[J].2002,(6):944-951
    [143]方创琳,鲍超,乔标,等.城市化过程与生态环境效应[M].北京:科学出版社,2008.
    [144]方创琳.耗散结构理论与地理系统论[J].干旱区地理,1989,12(3):51-56
    [145]方锋,白虎志,赵红岩,杨苏华.中国西北地区城市化效应及其在增暖中的贡献率[J].高原气象,2007,26(3):579-585.
    [146]方和俊.上海城市绿地植物群落现状及综合评价研究[D].上海:华东师范大学,2006.
    [147]方修琦,余卫红.物候对全球变暖响应的研究综述[J].地球科学进展,2002,17(5):714-719.
    [148]方一平,秦大河,丁永建.气候变化脆弱性及其国际研究进展[J].冰川冻土,2009,31(3):540-545.
    [149]符淙斌,王强.气候突变的定义及检测方法[J].大气科学,1992,16(4):482-493.
    [150]高峰,孙成权,曲建升.气候变化对自然和人类社会系统的影响-IPCC第三次气候变化评价报告:第二工作组报告概要[J].地球科学进展,2001,16(4):590-592.
    [151]高峻.上海自然植被的特征、分区与保护[J],地理研究,1997,16(3):82-88.
    [152]高晓梅,秦增良,李树军,等.近45年来潍坊市气温的年际和年代际变化分析[J].现代农业科技,2008,12:351-359.
    [153]葛庆龙.城市主要能源及用水量对全球气候变化的响应-以大连市为例[D].辽宁辽宁师范大学,2004.
    [154]葛向东,赵咏梅.城市化对上海的增温效应[J].云南地理环境研究,1999,11(1).
    [155]顾朝林,谭纵波,刘宛,等.气候变化、碳排放与低碳城市规划研究进展[J].城市规划学刊,2009,3:38-45.
    [156]郭建,孙惠莲.气候变暖与城市化发展[J].城市与减灾,2006,4:6-9.
    [157]郭金玉,张忠彬,孙庆云.层次分析法的研究与应用[J].中国安全科学学报.2008,18(5):148-153.
    [158]国家海洋局.2007年中国海平面公报[R].北京:国家海洋局,2008.
    [159]国家统计局.新中国五十五年统计资料汇编[M].北京:中国统计出版社,2005
    [160]国家统计局.中国统计年鉴(1996-2007)[M].北京:中国统计出版社,1996-2007.
    [161]国家统计局工业交通统计司.中国能源统计年鉴(1995-2006)[M].北京:中国统计出版社,1995-2006.
    [162]郝丽萍,方之芳,李子良,等.成都市近50a气候年代际变化特征及其热岛效应[J].气象科学,2007,27(6):649-654.
    [163]郝欣,秦书生.复合生态系统的复杂性与可持续发展[J].系统辩证学学报,2003,4.
    [164]何剑锋,庄大方.长江三角洲地区城镇时空动态格局及其环境效应[J].地理研究,2006,25(3):388-396.
    [165]何磊.气候变化对北方农牧交错带农业生产脆弱性的影响研究[D].南京信息工程大学,2007.
    [166]贺芳芳,顾旭东,徐家良.20世纪90年代以来上海地区热量资源变化研究[J].自然资源学报,2006,20(6).
    [167]贺芳芳,徐家良.20世纪90年代以来上海地区降水资源变化研究[J].自然资源学报,2006,21(2):210-216.
    [168]侯学英.中国城市化水平与城市气温变化的灰色关联分析.[J]生态经济.2009,1:59-62.
    [169]胡永宏.贺思辉.综合评价方法[M].北京:科学出版社,2000
    [170]黄铖,郑大伟,钱志瀚.上海邻近海域海平面变化规律和预测研究[R].中科院上海天文台,1996.
    [171]黄金川,方创琳.城市化与生态环境交互耦合机制与规律性分析[J].地理研究,2003,22(2):211-220.
    [172]黄鹭新,杜澍.城市复合生态系统理论模型与中国城市发展[J].国际城市规划,2009,42(1):30-36
    [173]黄玫,季劲钧,彭莉莉.2008.青藏高原1981-2000年植被净初级生产力对气候变化的响应[J].气候与环境研究,13(5):608-616
    [174]季子修,蒋自巽,朱季文,等.海平面上升对长江三角洲附近沿海海滩和湿地的影响[J].海洋与湖沼,1994,25(6):582-590.
    [175]江志红,丁裕国.近百年上海气候变暖过程的再认识-平均温度与最低、最高温度的对比[J].应用气象学报,1999,10(2):151-159.
    [176]江志红,张霞,王冀IPCC-AR4模式对中国21世纪气候变化的情景预估[J].地理研究,2008,27(4):787-799
    [177]蒋自翼.海平面上升对长江三角洲附近地区海堤工程的影响[J].中国科学院南京地理与湖泊研究所集刊,1994,11:28-35.
    [178]金龙,刘雅芳,陶玫,等.长江三角洲近百年的温度变化及未来趋势预测研究[J].南京气象学院学报,1999,22(增刊):553-557.
    [179]康慕谊.城市生态学与城市环境[M].北京:中国计量出版社,19971
    [180]黎夏,叶嘉安.利用遥感监测和分析珠江三角洲的城市扩展过程-以东莞市为例[J].地理研究,1997,16(4),56-62
    [181]李 娜,许有鹏,陈爽.苏州城市化进程对降雨特征影响分析[J].长江流域资源与环境,2006,15(3):335-339.
    [182]李莉,王杰,王旭.气候变化对我国水文水资源系统的影响研究[J].地下水,2007,29(3):8-10
    [183]李良杰,戴雪荣.上海市工业化和城市化的历史演变[J].国土与自然资源研究,2004,4:17-18
    [184]李全胜,王兆蓦,杨忠恩.气候变化对长江三角洲农业生态系统的影响[J].生态学报,1994,14(3):295-299.
    [185]李书严,陈洪滨,李伟.城市化对北京地区气候的影响[J].高原气象,2008,27(5):1]02-1110.
    [186]李双成,吴绍洪,戴尔阜.生态系统响应气候变化脆弱性的人工神经网络模型评价[J].生态学报,2005,25(3):611-626.
    [187]李维亮,刘洪利,周秀骥等.长江三角洲城市热岛与太湖对局地环流影响的分析研究[J].中国科学(D辑),2003,33(2):97-104.
    [188]李秀彬.中国近20年来耕地面积的变化及其政策启示[J].自然资源学报,1999,14(4):329-333.
    [189]李永平,秦曾灏,端义宏.上海地区海平面上升趋势的预测和研究[J].地理学报,1998,53(5):393-403.
    [190]林而达,王京华.中国农业对全球变暖的敏感性和脆弱性[J].农村生态环境学报,1994,10(1):1-5.
    [191]林而达,许吟隆,蒋金荷,等.气候变化国家评估报告(Ⅲ):气候变化的影响与适应[J].气候变化研究进展,2006,2(2):51-56.
    [192]林树枝.厦门市低碳城市总体规划研究[J].建筑节能,2010,38(1):1-4.
    [193]林学椿,于淑秋,唐国利.北京城市化进程与热岛强度关系的研究[J].自然科学进展,2005,15(7):882-886.
    [194]林学椿,于淑秋,唐国利.中国近百年温度序列[J].大气科学,1995,19(5):525-534.
    [195]林学椿,于淑秋.北京地区气温的年代际变化和热岛效应[J].地球物理学报,2005,48(1):39-45.
    [196]刘春玲,许有鹏,张强,等.长江三角洲地区气候变化趋势及突变分析[J].曲阜师范大学学报(自然科学版),2005,31(1):109-114.
    [197]刘杜娟,叶银灿.长江三角洲地区的相对海平面上升与地面沉降[J].地质灾害与环境保护,2005,16(4):400-404.
    [198]刘国华,傅伯杰.全球气候变化对森林生态系统的影响[J].自然资源学报,2001,16(1):71-78.
    [199]刘健,陈星,彭恩志等.气候变化对江苏省城市系统用电量变化趋势的影响[J].长江流域资源与环境,2005,14(5):546-550.
    [200]刘盛和,吴传钧,沈洪泉.基GIS的北京城市土地利用扩展模式[J].地理学报,2000,55(4):407-416
    [201]刘世荣,郭泉水,王兵.中国森林生产力对气候变化响应的预测研究[J].生态学报,1998,18(5):478-483.
    [202]刘卫星.可持续发展的上海能源战略研究[D].上海:上海大学博士学位论文,2008.
    [203]刘文泉,雷向杰.农业生产的气候脆弱性指标及权重的确定[J].陕西气象,2002(3):32-35.
    [204]刘文泉.农业生产对气候变化的脆弱性研究方法初探[J].南京气象学院学报,2002(4):214-220.
    [205]刘耀彬,李仁东,宋学锋.中国区域城市化与生态环境耦合的关联分析[J].地理学报,2005,60(2):237-247
    [206]刘允芬.气候变化对我国沿海渔业生产影响的评价[J].中国农业气象,2000,21(4):1-6.
    [207]刘志林,戴亦欣,董长贵,等.低碳城市理念与国际经验[J].节能减排,2009,16(6):1-12.
    [208]刘宗发,邹进泰,余宏平.气候变化对我国城市社会经济的影响及对策-以武汉市为例[J].区域科技-经济-社会,2006,11:89-92.
    [209]陆晨.北京城市气候变化与上呼吸道感染的关系分析[J].中华流行病学杂志,2003,24(10):955-956.
    [210]陆其峰,潘晓玲,钟科,李永东.区域气候模式研究进展[J].南京气象学院学报,2003:26(4):557-565
    [211]栾兆擎,章光新,邓伟,等.松嫩平原50年来气温及降水变化分析[J].中国农业气象,2007,28(4):355-358.
    [212]马明敏,姜晓艳,刘树华,等.近47年城市化发展对沈阳区域局地气候的影响研究[J].北京大学学报(自然科学版),2007,2(2):1-7.
    [213]马世俊,王如松.社会-经济-自然复合生态系统[J].生态学报,1984,4(1):1-9.
    [214]潘海啸,汤锡,吴锦瑜,等.中国“低碳城市”的空间规划策略[J].城市规划学刊,2008,6:57-64.
    [215]潘愉德,Melillo J M, Kicklighter D W,等.大气CO2升高及气候变化对中国陆地生态系统结构与功能的制约和影响[J].植物生态学报,2001,25(2):175-189.
    [216]钱维宏,符娇兰,张玮玮,等.近40年中国平均气候与极值气候变化的概述[J].地球科学进展,2007,22(7):673-684.
    [217]乔标,方创琳.城市化与生态环境协调发展的动态耦合模型及其在干旱区的应用[J].生态学报,2005,25(11):3003-3009.
    [218]曲格平.能源环境可持续发展研究[M].北京:中国环境科学出版社,2003.
    [219]任春艳,吴殿廷,董锁成.西北地区城市化对城市气候环境的影响[J].地理研究.2006,25(2):233-241.
    [220]任国玉,郭军,徐铭志,等.近五十年来中国地面气候变化基本特征[J].气象学报,2005,63(6):942-956.
    [221]任国玉,吴虹,陈正洪.我国降水变化趋势的空间特征[J].应用气象学报,2000,11(3):322-330.
    [222]沙万英,邵雪梅,黄玫.20世纪80年代以来中国的气候变暖及其对自然区域界线的影响[J].中国科学D辑,2002,32(4):317-326.
    [223]上海市发展和改革委员会.上海能源白皮书[R].上海:上海市发展和改革委员会,2007
    [224]上海市气候中心.分析和预测上海市气候变化趋势支持应对气候变化相关行动[R].上海:世界自然基金会,2010.
    [225]上海市统计局.2007年上海统计年鉴[M].上海:中国统计出版社,2007.
    [226]上海市水务局.上海市水资源公报(2000-2008)[R].上海:上海市水务局,2000-2008
    [227]上海市统计局.上海统计年鉴(2000-2007)[M].上海:中国统计出版社,2000-2007.
    [228]上海市统计局.上海市国民经济和社会发展历史统计资料(1949-2000)[M].北京:中国统计出版社,2001
    [229]沈列英.上海城市森林德植被特征与综合评价研究[D].南京:南京林业大学,2008.
    [230]施雅风,朱季文,谢志仁,等.长江三角洲及毗连地区海平面上升影响预测与防治对策[J].中国科学D辑,2000:30(3):225-232.
    [231]石振武,赵敏.运用层次分析法确定指标的权值[J].科技和产业.2008,8(2):23-25.
    [232]史军,崔林丽,周伟东.1959年-2005年长江三角洲气候要素变化趋势分析[J].资源科学,2008,30(12):1803-1810.
    [233]史培军,潘耀忠,陈晋等.深圳市土地利用/覆盖变化与生态环境安全分析[J].自然资源学报,1999,14(4):293-299
    [234]宋秋洪,千怀遂,赖纯佳.农业气候变化脆弱性评价研究进展[J].安徽农业科学,2008,36(22):9646-9649
    [235]宋永昌,由文辉,王祥荣.城市生态学[M].上海:华东师范大学出版社,2000.
    [236]孙芳,杨修.农业气候变化脆弱性评估研究进展[J].中国农业气象,2005,26(3):170-173.
    [237]孙芳.中国主要作物对气候变化的敏感性和脆弱性研究[D].中国农业科学院,2005.
    [238]孙清,张玉淑,胡恩和,等.海平面上升对长江三角洲地区的影响评价研究[J].长江流域资源与环境,1997,6(1):58-64.
    [239]孙亚东,邓斌,魏春璇,贾黎.合肥城市化进程对气候的影响[J].安徽农业科学,2008,36(26):11484-11486.
    [240]孙奕敏,边海.天津市城市热岛效应的综合性研究[J].气象学报,1988,46(3):341-348.
    [241]唐国利,丁一汇.近44年南京温度变化的特征及其可能原因的分析[J].大气科学.2006,30(1):56-68.
    [242]唐国利,任国玉.近百年中国地表气温变化趋势的再分析[J].气候与环境研究,2005,10(4):791-798.
    [243]唐国平,李秀彬,Fischer G, Prieler S气候变化对中国农业生产的影响[J].地理学报,2000,55(2):129-138.
    [244]唐为安.区域农业对气候变化的脆弱性评价-宁夏案例研究[D].中国农业科学院,2007.
    [245]屠其璞.近百年来我国降水量的变化[J].南京气象学院学报,1987,10(2):117-189.
    [246]屠其璞.近百年来我国气温变化的趋势和周期[J].南京气象学院学报,1984,2:151-162.
    [247]王馥堂,刘文泉.黄土高原地区农业生产气候脆弱性的初步分析[J].气候与环境研究,2003,89(1):91-100.
    [248]王桂新,戴贤晖.外来人口与上海发展:影响、趋势与对策[J].中国人口科学,2005,(增刊):7-15.
    [249]王桂新,刘旖芸.上海人口经济增长及其对环境影响的相关分析[J].亚热带资源与环境学报.2006,l(1):41-50
    [250]王国忠.上海旧政权建置志[M].上海:上海社会科学院出版社,2001
    [251]王如松.循环经济建设的产业生态学方法[J].产业与环境,2003,49(supp l):48-52.
    [252]王绍武,叶瑾琳,龚道溢,等.近百年中国年气温序列的建立[J].应用气象学报,1998,9(4):392-401.
    [253]王绍武.近百年我国及全球气温变化趋势[J].气象,1990,16(2):11-15.
    [254]王绍武.气候模拟研究进展.气象,1994,20(12):9-18
    [255]王喜全,王自发,齐彦斌,郭虎.城市化进程对北京地区冬季降水分布的影响[J].中国科学D辑:地球科学,2008,38(11):1438-1443.
    [256]王雪臣,王守荣.城市化发展战略中气候变化的影响评价研究[J].科技发展,2004,5:107-109.
    [257]王叶,延晓冬.全球气候变化对中国森林生态系统的影响[J].大气科学,2006,‘30(5):1009-1018
    [258]王遵亚,丁一汇,何金海等.近50年来中国气候变化特征的再分析[J].气象学报,2004,62(2):228-236.
    [259]魏凤英.现代气候统计诊断与预测技术(第一版)[M].北京:气象出版社,1999.
    [260]魏子听,龚士良.上海地区未来海平面上升及产生的可能影响[J].上海地质,1998,1:14-20.
    [261]吴可军,王兴荣,王善型,赵雯,严芳娟,潘钟跃.利用NOAA卫星资料分析气温的
    城市热岛效应[J].气象学报,1993,51(3):203-208.
    [262]吴险峰,刘昌明.流域水文模型研究的若干进展[J].地理科学进展,2002,21(4):341-348
    [263]吴艳际.广州城区热岛特征及其对空气污染的影响[J].热带气象,1986,2(3):212-230.
    [264]吴玉萍,董锁成,宋键峰.北京市经济增长与环境污染水平计量模型研究[J].地理研究,2002,21(2):239-246.
    [265]肖国举,张强,王静.全球气候变化对农业生态系统的影响研究进展[J].应用生态学报,2007,18(8):1877-1885.
    [266]谢志清,姜爱军,杜银等.长江三角洲强降水过程年极值分布特征研究[J].
    [267]谢志清,杜银,曾燕等.长江三角洲城市带扩展对区域温度变化的影响[J].地理学报,2007,62(7):717-727.
    [268]徐家良,柯晓新,周伟东.长江三角洲城市地区近50年气候变化及其影响[J].大气科学研究与应用,2005,28:8-16.
    [269]徐家良.近百余年来上海两次增暖期的特征对比及其成因[J].地理学报,2000,55(4):501-506.
    [270]徐家良.近百余年上海气温变化的若干特征[J].地理学报.1993,48(2):26-32.
    [271]徐明,马超德.长江流域气候脆弱性评估报告[M].北京:中国水利水电出版社,2009.
    [272]闫慧敏,刘纪远,曹明奎.中国农田生产力变化的空间格局及地形控制作用[J].地理学报,2007,62(2):171-180.
    [273]杨桂山,朱季文.全球海平面上升对长江口盐水人侵的影响研究[J].中国科学B辑,1993,23(1):69-76.
    [274]杨凯,唐敏,周丽英.上海近30年来蒸发变化及其城郊差异分析[J].地理科学,2004,24(5):557-561.
    [275]杨凯.上海城市废弃物的环境库兹涅茨特征研究.地理研究[J],2003,22(1):60-661
    [276]殷永元,王桂新.全球气候变化评估方法及其应用[M].北京:高等教育出版社,2004:6-9.
    [277]殷永元.气候变化对中国西部地区影响的脆弱性和适应性综合评价[J].世界环境,2004,3:23-25.
    [278]殷永元.气候变化适应对策的评价方法和工具[J].冰川冻土,2002,24(4):426-432
    [279]尹飞,毛任钊,傅伯杰,等.农田生态系统服务功能及其形成机制[J].应用生态学报,2006,17(5):929-934.
    [280]由文辉.上海的水资源管理和保护[J].长江流域资源与环境,1999,8(4):372-377.
    [281]游松财,Takahashi K,Matsuoka Y.全球气候变化对中国未来地表径流的影响[J].第四纪研究,2002,22(2):148-157.
    [282]於利,曹明奎,李克让.全球气候变化背景下生态系统的脆弱性评价[J].地理科学进展,2005,24(1):61-69.
    [283]曾四清.全球气候变化对传染病流行的影响[J].国外医学,2002,23(1):4-7.
    [284]翟盘茂,任福民.中国近四十年最高最低温度变化[J].气象学报,1997,55(4):418-429.
    [285]张恩洁,赵昕奕,张晶晶.近50年深圳气候变化研究[J].北京大学学报(自然科学版),2007,43(4):535-541.
    [286]张厚暄.水稻气候生产力对气候变暖的响应问题的模拟计算[J].中国农业气象, 1993,14(1):35-40.
    [287]张晶晶,陈爽,赵听奕.近50年中国气温变化的区域差异及其与全球气候变化的联系[J].干旱区资源与环境,2006,20(4):1-6.
    [288]张景哲,刘启明.北京城市气温与下垫面关系的时相变化[J].地理学报,1988,43(2):158-168.
    [289]张景哲,周一星,刘继韩.北京城市气温与下垫面结构[J].自然杂志,1984,7(2):112-115.
    [290]张雷.经济发展对碳排放的影响[J].地理学报,2003,58(4):629-637.
    [291]张泉,叶兴平,陈国伟.低碳城市规划-一个新的视野[J].城市规划,2010,34(2):13-18
    [292]张润杰,何新凤.气候变化对农业害虫的潜在影响[J].生态学杂志,1997,16(6):36-40.
    [293]张素琴,任振球,李松勤.全球温度变化对我国降水的影响[J].应用气象学报,1994,5(3):333-339.
    [294]张先恭,李小泉.本世纪我国气温变化的某些特征[J].气象学报,1982,40(2):198-208.
    [295]张妍,杨志峰,李巍.城市复合生态系统中互动关系的测度与评价[J].生态学报,2005,25(7):1734-1740
    [296]张永勤,彭补拙,缪启龙.气候变化对江苏省经济的影响研究[J].长江流域资源与环境,2001,10(1):8-14
    [297]仉安娜,尚尔泰,张国毅.气候变化对人类健康影响的探讨[J].环境保护与循环经济,2009,(5):52-54.
    [298]赵海江,景元书.南京市城市化进程对城市增温的影响分析[J].安徽农业科学,2008,36(28):12366-12397.
    [299]赵慧霞,吴绍洪,姜鲁光.自然生态系统响应气候变化脆弱性评价研究进展[J].应用生态学报,2007,18(2):445-450.
    [300]赵晶,王乃昂,杨淑华.兰州城市化气候效应的R/S分析[J].兰州大学学报(自然科学版).2000,36(6):122-128.
    [301]赵晶,王乃昂.近50年来兰州城市气候变化的R/S分析[J].干旱区地理2002,25(1):90-95.
    [302]赵艳霞,何磊,刘寿东等.农业生态系统脆弱性评价方法[J].生态学杂志,2007,26(5):754-758.
    [303]赵跃龙,张玲娟.脆弱生态环境定量评价方法的研究地理科学进展[J],1998,17(1):67-72
    [304]赵宗慈.近39年中国的气温变化与城市化的影响[J].气象,1991,17(4):14-17.
    [305]郑景云,葛全胜.近40年中国植物物候对气候变化的响应研究[J].中国农业气象,2003,24(3):28-32.
    306] 郑思轶,刘树华.北京城市化发展对温度、相对湿度和降水的影响[J].气候与环境研究,2008,13(2):123-133.
    [307]郑新奇,姚慧,王筱明.20世纪90年代以来《Science》关于全球气候变化研究述评[J].生态环境,2005,14(3):422-428.8] 郑艳,潘家华,吴向阳.影响北京城市增温的主要社会经济因子分析[J].气候变化研究进展,2006,2(4):188-192.
    [309]中国科学院可持续发展战略研究组.2009中国可持续发展报告:探索中国特色的低 碳道路[M].北京:科学出版社,2009
    [310]中国气候变化国别研究组.中国气候变化国别研究[M].北京:清华大学出版社,2000.
    [311]周广胜,王玉辉.全球生态学[M].北京:气象出版社,2003.
    [312]周建康,黄红虎,唐运忆,等.城市化对南京区域降水量变化的影响[J].长江科学院院报,2003,20(4):44-46.
    [313]周建玮,王咏青.区域气候模式RegCM3应用研究综述[J].气象科学,2007:27(6):702-708
    [314]周丽英,杨凯.上海降水百年变化趋势及其城郊的差异[J].地理学报,2001,56(4):467-476.
    [315]周淑贞,束炯.城市气候学[M].北京:气象出版社,1994.
    [316]周淑贞,吴林.上海下垫面温度与城市热岛-气象卫星在城市气候研究中的应用之[J].1987,7(3):261-268.
    [317]周淑贞,张超,等城市气候学导论[M].上海:华东师范大学出版社,1985.
    [318]周淑贞.上海城市对风速的影响[J].华东师范大学学报(自然科学版).1988.3:67-76.
    [319]周淑贞.上海城市发展对气温的影响[J].地理学报.1983,38(4):397-404.
    [320]周淑贞.上海市热岛效应[J].地理学报.1982,37(4):372-331.
    [321]朱季文,季子修,蒋自粪,等.海平面上升对长江三角洲及邻近地区的影响[J].地理科学,1994,14(2):109-117.
    [322]朱建华,侯振宏,张治军,等.气候变化与森林生态系统:影响、脆弱性与适应性[J].林业科学,2007,43(11):138-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700