用户名: 密码: 验证码:
秘鲁鱿鱼肌原纤维蛋白质凝胶特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秘鲁鱿鱼是美洲大赤鱿的俗称,学名为Dosidicus gigas,亦称jumboflying squid,属于真鱿科(Ommastrephidae)美洲大赤鱿属(Dosidicus)。该鱿鱼体形较大,成长迅速,是迄今为止发现的个体最大、资源最丰富的鱿鱼种类之一。但是秘鲁鱿鱼水分含量高,还含有不受人欢迎的酸、苦、涩味,大大影响了它的利用价值。目前对秘鲁鱿鱼的开发已成为国内水产加工的一个重要方向。鱼糜是经切碎、漂洗处理的鱼肉产品,是海洋食品加工中的一种重要功能性原料,其主要成分为盐溶性肌原纤维蛋白。本文以秘鲁鱿鱼和市售鱿鱼为研究对象,主要从鱿鱼肌原纤维蛋白的凝胶特性入手,系统地研究了其凝胶的特点,并从肌原纤维凝胶机理出发,研究改善肌原纤维蛋白凝胶特性的方法,进而为利用秘鲁鱿鱼加工优质冷冻鱼糜和鱼糜制品提供理论基础和技术指导。
     研究结果表明:大秘鲁鱿鱼、中秘鲁鱿鱼和市售小鱿鱼的水分含量、灰分含量、粗蛋白含量差异较显著,但中鱿鱼与大鱿鱼的营养成分更接近。秘鲁鱿鱼肉中含有17种氨基酸,8种人体必需氨基酸俱全,秘鲁大鱿鱼的氨含量特别高,而秘鲁中鱿鱼和市售鱿鱼的氨含量则比较低。秘鲁鱿鱼中钾元素含量高,钙、铜元素含量比市售鱿鱼低,秘鲁鱿鱼中其他微量元素含量与市售鱿鱼含量差异较小。
     大、中秘鲁鱿鱼的蛋白质组分较为相似,与市售小鱿鱼的蛋白质有较大差别。秘鲁鱿鱼肌原纤维Ca~(2+)-ATPase活性随保温时间、保温温度、离子强度的增加而显著降低(p<0.05),肌原纤维的Ca~(2+)-ATPase稳定性变差,肌原纤维变性速度增快。添加Ca~(2+)能抑制秘鲁鱿鱼肌原纤维Ca~(2+)-ATPase的失活,提高肌原纤维的稳定性。
     蛋白质、淀粉和阿拉伯胶等添加物对鱿鱼肌原纤维凝胶强度有显著影响。其中大豆蛋白和阿拉伯胶对秘鲁鱿鱼肌原纤维蛋白凝胶的影响更显著。正交试验分析得出,秘鲁大鱿鱼肌原纤维中添加大豆蛋白的最优化条件是添加4%大豆蛋白,pH值等于7,50℃加热1h;中鱿鱼肌原纤维中添加大豆蛋白的最优化条件是添加4%大豆蛋白,pH值为8,40℃加热1.5hrs;小鱿鱼肌原纤维中添加大豆蛋白的最优化条件是添加4%大豆蛋白,pH值为8,40℃加热1.5hrs。鱿鱼肌原纤维添加阿拉伯胶凝胶的最优化条件是pH值7,阿拉伯胶添加添加量是0.5%,凝胶温度50℃,凝胶时间1h。
     酶添加量、TG作用时间、TG作用温度、TG作用pH对鱿鱼肌原纤维凝胶强度有显著影响。正交试验分析得出,鱿鱼肌原纤维凝胶化的最优化条件是添加2%的TG,pH值为7,40℃加热2hrs。
     添加大豆蛋白和阿拉伯胶后,鱿鱼肌原纤维凝胶形成的三维网状结构更致密更均匀,多孔性和均一性更好。添加了TG后,鱿鱼肌原纤维凝胶所形成的三维网状结构更加致密,成孔性更好,孔隙更小更多,分布更加均匀,蛋白颗粒更细小。
     超高压诱导肌原纤维蛋白凝胶化,通过凝胶强度测定和SDS-PAGE电泳以及ESEM及盒维数分析可以发现超高压凝胶比热诱导凝胶的硬度小,强度接近。加热处理比超高压处理肌动蛋白(AC)含量要高,而肌球蛋白含量低,热诱导凝胶促使肌球蛋白重链(MHC)形成交联键,对肌动蛋白没有什么影响,而超高压对肌动蛋白、肌动球蛋白和副肌球蛋白有解聚作用或对蛋白质有聚集凝集等变性的影响。
     对超高压加工秘鲁鱿鱼鱼糜条件进行了优化,结果如下:
     随着超高压处理压力的增大,秘鲁鱿鱼鱼糜凝胶强度呈先增后减的变化趋势,在300MPa~600MPa的压力下,超高压处理的凝胶强度都比热处理的要高,说明超高压比热处理在凝胶的形成上有更大的优势。
     压力和保压时间对鱼糜凝胶硬度具有显著性影响(P<0.05),两者的交互作用对硬度值也具有显著性影响(P<0.05);压力对鱿鱼鱼糜的水分活度值无显著影响。先超高压凝胶化再热处理鱼糕化对鱿鱼鱼糜水分活度的影响不显著(P>0.05)。
     鱼糜凝胶强度随着马铃薯淀粉和大豆蛋白添加量的增大而增大,同一添加量时,先超高压凝胶化再热处理鱼糕化的效果均优于两段式热处理的效果。
     超高压加工的鱼糜白度随马铃薯淀粉和大豆蛋白添加量的增大呈现先增大,后减小的趋势,而两段式热加工鱼糜的白度随着马铃薯淀粉添加量的增大而下降。
Peru Squid is the informal name of Dosidicus gigas,also named jumbo flying squid.It belongs to Dosidicus Ommastrephidae.It grew rapidly and had quite big shape.The highest concentration occurs off the Peruvian coast in the southern hemisphere and in the Gulf of California in the northern hemisphere.Over recent years,D.gigas became one of the biggest and most abundant cephalopod fisheries in the Pacific Ocean, mainly in Peru and Mexico.But high moisture and disagreeable taste in the muscle of D.gigas utilization of this cephalopod resource.Surimi and surimi-based product are good choice because the disagreeable taste could be removed during the process.The bases of surimi and surimi-based product are myofibrils dissolved in salt solution.The objects of this research were Peru Squid and normal squid sold in market.Myofibrils of squid were extracted and the gel properties were studied to improve gelation capacity of myofibrils.From the concultion metioned above,Peru squid can be a new material for high quality surimi.
     The result showed giant Peru squid(Carcass weight>6kg),medium Peru squid(Carcass weight between 3~6kg)and little squid(normal squid sold in market,carcass weight<1kg)had significance of difference in water content,ashes content and crude protein content.Ammonia content in giant Peru squid was much higher than the other which made giant Peru squid a strange astringent and acerbic flavour.There were more kalium content and less copper,calcium content in Peru squid than little squid and there were no significant difference in other trace element content among the three size squid.
     Similar protein constitute were observed in giant and medium Peru squid and different with little squid.Time,incubation temperature and ionic intensity showed significant effect on the activity of Ca~(2+)-ATPase in Peru squid myofibrils(p<0.05).Stability of Ca-ATPase could be improved by certain content of sodium chloride.
     Additives such as nonmuscle protein,starch and Acacia Gum showed significant influence to squid myofibrils gel strength in which soy protein and Acacia Gum exhibited salient effect.Operational conditions assay achieved optimization of giant squid myofibrils gellation adding nonmuscle protein were 4%w/w soy protein,pH 7,50℃heated for 1hrs and 4%w/w soy protein,pH 8,40℃heated for 1.5hrs for both medium and little squid. Operational conditions assay achieved optimization of squid myofibrils gellation adding Acacia Gum protein were 0.5%w/w concentration,pH 7, 50℃heated for 1hrs.
     TG concentration,time,incubation temperature and pH showed significant influence to squid myofibrils gel strength.Operational conditions assay achieved optimization of squid myofibrils gellation with TG were 2%w/w TG,pH 7,40℃heated for 2hrs.
     The microstructure showed that the clusters network of squid myofibrils added with soy protein,Acacia Gum and TG were composed by smaller aggregates than those control.The microstructure showed that both the size of the granules and the cavities among clusters seemed to be larger with the TG concentration decreased.
     Effect of high pressure on gel properties was studied.The result showed gels induced by 300MPa and 400MPa demonstrated better gel strength than other pressure treated gels.Microstructure of surimi gels induced by different high pressure showed significance of difference and exhibited a compact and homogeneous network at 300MPa and 400MPa.Gel hardness of high pressure-induced gels were less than heat-induced(40℃,2h and 90℃,30 min)gels and springness of high pressure-induced gels were higher than heat-induced(40℃,2h and 90℃, 30 min)gels and so gel formed by this two method showed similar gel strength.SDS-PAGE showed high pressure prompted more Actin and Paramyosin aggregating and cross-linked with Myosin or filled into the net-work formed by Myosin heavy chain than heat treated.
     Operational conditions for Peru squid surimi processed by high pressure were studied.The result showed:
     Surimi gel strength made from Peru squid was larger as the pressure increasing.Maximum of gel strength arrived at 500MPa,15min which was 7 times to heat-induced(40℃,2h)gels.Gel strength of surimi by high pressure between 300MPa~600MPa all higher than heat treated gels.
     Surimi gel strength of surimi gels processed by high pressure(300 MPa~600 MPa,10~20min)followed by heat treated(90℃,30 min)were higher than heat treated gels(40℃,2h and 90℃,30 min).
     Activity wet of giant squid surimi exhibited no significant difference as the pressure changed.
     The more potato starch added into surimi the higher gel strength.Gel strength of high pressure-induced gels were obviously higher than heat-induced gels with 4%or 6%w/w potato starch.
     Gel strength of surimi gels adding soy protein increaced along with the rising of pressure.Gel properties of surimi obtained from adding 6%or 8%w/w soy protein and treated by more than 350 MPa were satisfactory.
     Whiteness of surimi treated by high pressure followed heat showed no significant difference between gels with 6%and 8%w/w potato starch (P>0.05)while the whiteness of heat-induced gel dropped as the concentration of potato starch rised.
     Whiteness of surimi achieved maximum treated at 400MPa.Surimi properties were satisfied in these processing conditions.
引文
[1]Nigmatullin C.,Nesis K.,Arkhipkin A.,et al.A review of the biology of the jumbo squid Dosidicus gigas(Cephalopoda Ommastrephidae)[J].Fish Res,2001,54:9-19.
    [2]叶旭昌.秘鲁外海茎柔鱼生物学和渔场初步研究[D].上海:上海水产大学,2004.
    [3]陈新军,赵小虎.秘鲁外海茎柔鱼产量分布及其与表温关系的初步研究[J].2006,15(J):65-70.
    [4]Hideaki Y.,Misuzu M.,Keiko H,et al.Studies on components off-flavor in the muscle of America jumbo squid[J].Nippon Suisan Gakkaishi,1995,61(4):612-61
    [5]www.zgyy.com.cn,秘鲁鱿鱼丝的生产工艺[J].北京水产,2004,3:43
    [6]俞秋文,介绍秘鲁鱿鱼丝的生产工艺[J].中国水产,2003,12:70,73
    [7]郭立志,秘鲁鱿鱼串加工工艺的研究[J].食品研究与开发,2004,4:77-78
    [8]Tyre C.Lanier Chong M.Lee.Surimi Technology[M].Marcel Dekker,INC.New York,1992
    [9]汪之和,范秀娟,顾红梅,陈明洲.加热条件对几种西非鱼种鱼糜凝胶特性的影响[J].食品与生物技术,2002,21(1):33-38.
    [10]鱿钓技术组,秘鲁海域的茎柔鱼渔业介绍
    [11]Isabel Sanchez-Alonso,Mercedes Careche,A.Javier Borderias.Method for producing a functional protein concentrate from giant squid(Dosidicus gigas)muscle[J].Food Chemistry,2005,100:48-54
    [12]Kunihiko Konno,Cho Young-Je,et.al.Thermal denaturation and autolysis profiles of myofibrillar proteins of mantle muscle of jumbo squid Docidicus gigas[J].Fisheries Science 2003,69:204-209
    [13]Hermansson AM.Aggregation and denaturation involved in gel formation functionality and protein structure[J].ACS Symp Series,1979,92:181.
    [14]Egelandsdal,B.Heat-induced gelling in solutions of ovalbumin[J].J.Food Science,1980,45:570
    [15]M.C.Gomez-Guillen,J.Turnay,et al.Structure and physical properties of gelatin extracted from different marine species:a comparative study[J].Food Hydrocolloids,2002,16:25-34
    [16]M.Carmen Go《mez-Guille《n(?)Pilar Montero,Improvement of giant squid(Dosidicus gigas)muscle gelation by using gelling ingredients[J].Z Lebensm Unters Forsch A(1997)204:379-384
    [17]M.Carmen Go'mez-Guille'n,A.Javier Borderi'as,Pilar Montero.Salt,Nonmuscle Proteins,and Hydrocolloids Affecting Rigidity Changes during Gelation of Giant Squid(Dosidicus gigas)[J].J.Agric.Food Chem.1997,45:616-621
    [18]Kunihiko Konno,ChoYoung-Je,Takeya Yoshioka,Park Shinho and Nobuo Seki.Thermal denaturation and autolysis profiles of myofibrillar proteins of mantle muscle of jumbo squid Docidicus gigas[J].Fisheries Science 2003,69:204-209
    [19]Ferry,J.Protein gels[J].Adv Protein Chem,1948,4(1):1.
    [20]杨龙江,南庆贤.肌肉蛋白质的热诱导凝胶特性及影响因素[J].肉类工业,2001,10:39-42.
    [21]纪家笙,黄志斌,杨运华,等.水产品工业手册[M].北京:中国轻工业出版社,1999,37.
    [22]杨速攀,彭增起.肌原纤维蛋白凝胶研究进展[J].河北农业大学学报,2003,26:160-162,166.
    [23]Fukazawa,T.,Hashimoto,Y.,et al.Effect of some proteins on the binding quality of an experimental sausage[J].Food Sci,1961,26:541.
    [24]Macfarlane,J.,Schmidt,G.,et al.Binding of meat pieces:a comparison of myosin,actomyosin and sarcoplasmic proteins as binding agents[J].Food Sci,1977,42:1603-1606.
    [25]Samejima,K.,lshioroshi,M.,et al.Heat-induced gelling properties of actomyosin:effect of tropomyosin and troponin[J].Agric Biol Chem,1982,46:535
    [26]Tagchi,T.,Tanaka,M,et al.Protein-protein interaction offish myosin in fragments[J].Food Sci,1987,52:1103-1104.
    [27]Kimura,I.,Sugimoto,M.,et al.A study on the cross-linking of myosin in kamaboko setting gels[J].Nippon Suisan Gakkaishi,1991,57:1389-1396.
    [28]Kamath,G.,Lanier,T.,et al.Non-disulfide covalent cross-linking of myosin heavy chain in setting of Alaska Pollock and Atlantic croaker surimi[J].Food Biochem,1992,26:151-172.
    [29]须山三千三,鸿巢章二编,昊光红等译.水产食品学[M].上海:上海科学技术出版社,1992
    [30]Wu,M.,Akahane,T.,et al.Thermal transitions of actomyosin and surimi prepared from Atlantic croaker as studied by differential scanning calorimetry[J].Food Sci,1985(50)a:10-14.
    [31]Yamashita,M.,Konagaya,S.Purification and characterization of cathepsin L from the white muscle of chum salmon[J].Comp Biochem Physiol,1990,96B:247-252.
    [32]Wu,M.,et al.Rigidity and viscosity changes of croaker actomyosin during thermal gelation[J].Food Sci,1985b,50:14-19,25
    [33]Sano.T.,Noguchi,S.F.,Tshchiya,T.Thermal gelation characteristics ofinyosin subragments.J.Food Sci,1990,55,55-58.
    [34]Foegeding.E.A.1988.Thermally induced changes in muscle proteins.Tood Technolj,1988, 42(6): 58, 60-62.
    [35] Wicker, I., Ianier. T. C., Hamann. D. D. and Akahane. Thermal transitions in myosin-ANS fluorescence and gel rigididy[J]. Food Sci, 1986. 51. 1440-1543, 1562.
    [36] Montejano, J., Hamann, D., et al. Effects of phosphates on heat gelation and flow properties of surimi[M]. Rheology. 1983, 27: 557.
    [37] Haejung, A., Margo, Y, et al. Roles of endogenous enzymes in surimi gelation[J]. Trends in Food Science and Technology, 1996, 7: 321-327.
    [38] Ziegler, G, Foegeding, E. The gelation of proteins[J]. Adu Food Nutr Res, 1993, 34: 203-297.
    [39] Foegeding, E., Dayton, W., et al. Interaction of myosin fibrinogen to form protein gels [J]. Food Sci, 1986, 51(1): 280-285.
    [40] Niwa, E., Matsubara, Y., et al. Hydrogen and other polarbondings in fish flesh gel and setting gel[J]. Bull Jap Soc Sci Fish, 1982, 48(5): 667.
    [41] Shan T., Lan, C, et al. New approach to improving the quality of minced fish products from freeze thawed Copand Mackerel [J]. Food Sci, 1986, 51(2): 310-312.
    [42] Weerasinghe, V., Morrissey, M., et al. Whey protein concentrate as a proteinase inhibitor in pacific whiting surimi[J]. 1996,61(2): 15.
    [43] Samejima K, et al. Influence of reconstituted dark and light chickenmuscle myosin of filaments on the morphology and strength of heat-induced gels [J]. Food Science, 1989,54:1 158
    [44] Ishioroshi M, et al. Effect of blocking the myosin-actin interaction in heat-induced gelation of myosin in presence of actin [J]. Agriculture Biology Chemistry, 1980, 44(9): 2185-2194.
    [45] Samejima K, et al. Effect of temperature, actin-myosin ration, pH and salt and protein concentration on heat-induced gellingof cardiacmyosin and reconstituted actomyosin [J].Agriculture Biology Chemistry, 1986, 50(8): 2101-2110
    [46] Wang, SF, et al. Gelation of chicken breast muscle actomyosin as influenced by weight ratio of actin to myosin [J]. Agriculture Food Chemistry, 1995, 43: 331-336
    [47] 张俊杰,段蕊.鱼糜的凝胶机理[J].淮海工学院报,1999, 9(3): 59-62.
    [48] Haejung An, Margo Y Peters and Thomas A. Seymour. Roles of endogenous enzymes in surimi gelation. [J] Trends in Food Science & Technology, 1996, 10(7): 321-327
    [49] Wojtwicz, M., Odesn, P. Comparative study of the muscle catheptic activity of some marine species[J]. Fish Res Bd Can, 1972, 29 :85-90.
    [50] Goll, D., Otsuka, Y, et al. Role of muscle proteinases in maintenance of muscle integrity and mass[J]. Food Biochem, 1983, 7: 137.
    [51] Lee, M., et al. Proteolytic activity of surimi from Pacific whiting and heat-set gel texture[J].Food Science, 1989,54: 1116-1119.
    [52] Woodbury, R., et al. Immunofluorescent localization of a serine protease in rat small intestine[J].Proc Natl Acad Sci, 1978, 75(6): 2785-2789.
    [53] Kuo, T., et al. Biochemical characterization and cellular localization of serine protease in myopathic hamste[J]. Mol Cell Cardiol, 1981, 13(12): 1035-1049.
    [54] Yaser AbuDagga, Edward Kolbe. Thermophysical Properties of Surimi Paste at Cooking Temperature [J]. Journal of Food Engineering, 1997, 32: 325-337
    [55] Mieko Kagawa, Misuzu Matsumoto, et. al. Changes in meat texture of three varieties of squid in the early stage of cold storage. [J] Fisheries Science 2002, 68: 783-792
    [56] Soottawat Benjakul, Wonnop Visessanguan, et. al. Effect of frozen storage on chemical and gel-forming properties of fish commonly used for surimi production in Thailand [J] . Food Hydrocolloids, 2005, 19: 197-207
    [57] Gipsy Tabilo-Munizaga, Gustavo V. Barbosa-C-anovas. Color and textural parameters of pressurized and heat-treated surimi gels as affected by potato starch and egg white [J]. Food Research International, 2004, 37: 767-775
    [58] Trujillo A J, Capellas M, Buffa M, et al. Application of high pressure treatment for cheese production [J]. Food Research International, 2000, 33(3/4): 311-316
    [59] Montejano J, Hamann D. Rheology [M]. 1983, 27: 557.
    [60] Messens W, Van Camp J, Huyghebaert A. The use of high pressure to modify the functionality of food proteins [J]. Trends in Food Science Technology, 1997, 8: 107-112.
    [61] Cheftel J C, Culioli J. Effect of high pressure on meat: a review[J]. Meat Science, 1997,46:98-107.
    [62] Sano T, Noguchi S F, Tsuchiya T, et al. Role of F-actin in thermal gelation of fish actoyosin[J]. J Fod Sci, 1989,54: 800-804.
    [63] Messens W, Van Camp J, Huyghebaert A. The use of high pressure to modify the functionality of food proteins [J]. Trends in Food Science Technology, 1997, 8: 107-112.
    [64] Visessanguan W, Ogawa M, Nakay S, et al. Physico-chemical changes and mechanism of heat-induced gelation of Arrowtooth flounder myosin . Journal of Agricultural and FoodChemistry, 2000, 48: 1016-1023.
    [65] Visessanguan W, Ogawa M, Nakay S, et al. Physico-chemical changes and mechanism of heat-induced gelation of Arrowtooth flounder myosin . Journal of Agricultural and FoodChemistry, 2000, 48: 1016-1023.
    [66] Ko W C, Tanaka M, Nagashima. Effect of high pressure on the thermal gelation of sardine and Alaska pollack meat and myosin [J]. Nippon Shokuhin Kogyo Gakkaishi, 1990, 37: 637-642.
    [67]Ko W C,Tanaka M,Nagashima.Effect of high pressure on the thermal gelation of sardine and Alaska pollack meat and myosin[J].Nippon Shokuhin Kogyo Gakkaishi,1990,37:637-642.
    [68]Chung Y C,Gebrehiwot A,Farkas,et al.Gelation of surimi by hydrostatic pressure[J].Journal of Food Science,1994,59:523-524,543.
    [69]Cofrades S,Ferna' ndez P,Carballo J,et al..Cooked pork meat batters pressurized under non-thermal and thermal denaturating conditions.In Proc.44th International Congress of Meat Science Technology,1998,Vol.Ⅱ:544-545.
    [70]Macfarlane J J,Mckenzie I J,Turner R.H.Pressure-heat treatment of meat:Changes in myofibrillar proteins and ultrastructure[J].Meat Science,1986,17:161-176.
    [71]郝磊勇,李汴生,阮征,叶久东.高压与热结合处理对鱼糜凝胶质构特性的影响[J].食品与发酵工业,2005,31(7):35-38
    [72]沈月新.水产食品学[M].中国农业出版社,北京,2001:217-243.
    [73]顾世顺.谈谈冷冻鱼糜加工中的几个技术问题[J].中国水产,1992,(12):34-35.
    [74]潘世玲.鲤、草、鲢、鳙加工冷冻生鱼糜的特性研究[D].中国农业大学硕士学位论文,2003:3-40.
    [75]陈艳,丁玉庭,邹礼根,殷亚峰.鱼糜凝胶过程的影响因素分析[J].食品研究与开发,2003,24(3):12-13
    [76]杨贤庆,李来好,周婉君等.提高鲮鱼鱼糜弹性的方法[J].湛江海洋大学学报,2003,23(4):25-29
    [77]齐风生.漂洗工艺对鱼糜质量的影响[J].河北渔业,2002,3:9-10
    [78]汪之和,陈明洲,顾红梅,范秀娟.漂洗工艺和抗冻剂对几种西非鱼鱼糜凝胶特性和色泽的影响[J].中国水产科学,2001,8(2):80-84
    [79]王利琴,汪之和,龚蓉珠.漂洗水温对淡水鱼鱼糜蛋白质热变性的影响[J].上海水产大学学报,2002,11(2):134-137
    [80]J.A.Ramirez,R.Rodriguez-Sosa,et.al.Preparation of surimi gels from striped mullet(Mugil cephalus) using an optimal level of calcium chloride[J].Food Chemistry,2003,82:417-423
    [81]Oscar G.Moralesa,Jose A.Ramirez,Demian I.Vivanco,Manuel Vazquez.Surimi of fish species from the Gulf of Mexico:evaluation of the setting phenomenon[J].Food Chemistry,2001,75:43-48
    [82]Lin T.M.and Park J.W.Extraction of proteins from Pacific whiting mince at various washing conditions[J].Food Science,1996,61(2):432-438
    [83]孔保华,耿欣,高兴华,李威娜.不同漂洗方法对鳙鱼糜凝胶特性的影响[J].食品工业, 2000,1:41-43
    [84]周爱梅,潘珂,黄文华等.几种添加剂对鳙鱼鱼糜凝胶特性的影响[J].食品科学,2004,25(8):50-55
    [85]何松,孙远明,孟凌华等.钙与热处理对鱼糜凝胶强度的影响[J].食品科学,2000,21(2):30-33
    [86]Hong Yang,JaeW.Park..Effects of Starch Properties and Thermal-processing Conditions on Surimi-Starch Gels[J].Lebensm.-Wiss.u.-Technol.,1998,31:344-353
    [87]周爱梅,曾庆孝,刘欣,SoottawatBenjakul,潘珂.两种蛋白类添加剂对鳙鱼鱼糜凝胶特性的改良[J].华南理工大学学报(自然科学版),2005,4(33):87-91
    [88]Soichiro Nakamura,Masahiro Ogawa,et.al.Application of polymannosylated cystatin to surimi from roe-herring to prevent gel weakening[J].FEBS Letters,1998,427:252-254
    [89]I.Filipi,C.M.Lee.Preactivated Iota-carrageenan and its Rheological Effects in Composite Surimi Gel[J].Lebensm.-Wiss.u.-Technol.,1998,31:129-137
    [90]Gipsy Tabilo-Munizaga,Gustavo V.Barbosa-C-anovas.Pressurized and heat-treated surimi gels as affected by potato starch and egg white:microstructure and water-holding capacity[J].Lebensm.-Wiss.u.-Technol.,2005,38:47-57
    [91]M.Carmen Gomez-Guillen,Pilar Montero.Improvement of giant squid(Dosidicus gigas)muscle gelation by using gelling ingredients[J].Z Lebensm Unters Forsch A,1997,204:379-384
    [92]M.Carmen Gomez-Guillen,Pilar Montero.Salt,Nonmuscle Proteins,and Hydrocolloids Affecting Rigidity Changes during Gelation of Giant Squid(Dosidicus gigas)[J].Agric.Food Chem.1997,45:616-621
    [93]#12
    [94]Jose A.Ramirez,Roberto Rodriguez-Sosa,et.al.Surimi gels from striped mullet(Mugil cephalus)employing microbial transglutaminase[J].Food Chemistry,2000,70:443-449
    [95]Shaowei NI,Hisanori Nozawa and Nobuo Seki.Effect of pH on the gelation of walleye pollack surimi and carp actomyosin pastes[J].Fisheries science,2001,67:920-927
    [96]周红霞,江波.谷氨酰胺转胺酶胶凝肌球蛋白的机理研究[J].食品科学,2002,3(23):49-54
    [97]严菁,熊善柏,李清亮.转谷氨酰胺酶对淡水鱼糜制品凝胶强度的影响[J].食品科学,2002,8(23):59-62
    [98]王淼,黄司华.微生物转谷氨酰胺酶对鱼糜制品凝胶性能的影响[J].食品工业科技,2003,3:28-31
    [99]Soottawat Benjakul,Wonnop Visessanguan,Suttirak Pecharata.Suwari gel properties as affected by transglutaminase activator and inhibitors[J].Food Chemistry,2004,85:91-99
    [100]Soottawat Benjakul,Wonnop Visessanguan.Transglutaminase-mediated setting in bigeye snapper Surimi[J].Food Research International,2003,36:253-266
    [101].J.Yongsawatdigul,P.Piyadhammaviboon.Inhibition of autolytic activity of lizardfish surimi by proteinase inhibitors[J].Food Chemistry,2004,87:447-455
    [102].Rawdkuen,S.,et al.Effect of cysteine proteinase inhibitor containing fraction from chicken plasma on autolysis and gelation of Pacific whiting surimi.Food Hydrocolloids,(2006),doi:10.1016/j.foodhyd.2006.10.002
    [103]Shoshi Mizuta,Kojiro Nakashima,Reiji Yoshinaka.Behaviour of connective tissue in fish surimi on fractionation by sieving[J].Food Chemistry 100(2007):477-481
    [104]Ebina H,NagashimaY,Ishizaki T,et al.Myosin heavy chain-degrading protemase from spear squid muscle[J].Food Res.Intem,1995,28:31-36.
    [1]陈新军.世界“头足类”经济资源及其开发利用状况[j].世界科学,2005,3:25-26
    [2]童军锋,张英.加强鱿鱼资源的加工和综合利用技术研究[j].东海海洋2001,19(4):46-50
    [3]陈庆新.鱿鱼钓船经济性特征[D].大连:大连水产学院,1999.
    [4]陈荣辉,彭清勇.鱿鱼之加工利用[J].食品工业,1988,20(7):25-31.
    [5]郭俊德,周照仁,何宗保.日本鱿鱼加工及包装技术[J].食品工业,1991,23(12):8-16.
    [6]王晓晴.鱿鱼资源开发利用现状与潜力[J].浙江渔业,1994,(2):4-71
    [7]童军锋,张英.加强鱿鱼资源的加工和综合利用技术研究[J].东海海洋,2001,19(4):46-50
    [8]郭立志.秘鲁鱿鱼串加工工艺的研究[J].食品研究与开发,2004,25(4):77-78
    [9]朱亚珠.秘鲁鱿鱼烧烤工艺的研究[J].浙江海洋学院学报.2006,25(2):192-195
    [10]张继军,段德功.基于80C51单片机控制的快速水分检测系统研究[J].安阳工学院学报,2005,(3):12-13
    [11]Nutrition value of the Chinese grasshopper Acrida cinerea(Thunberg)for broilers[J].Animal Feed Science and Technology,2007,135:66-74
    [12]无锡轻工大学,天津轻工业学院合编.食品分析[M].北京:轻工业出版社,2005
    [13](GB/T5009.5—2003)食品中蛋白质的测定[S].北京:卫生部食品卫生监督检验所,2003
    [14]王文芹,田晓燕.淀粉中粗脂肪含量的测定[j].发酵科技通讯,2005,34(4):
    [15]刘长华,殷学博.等离子质谱(ICP-MS)对高含量元素硫样品中的微量元素分析前处理方法初探[J].海洋科学,2006,30(9):1-5
    [16]韩素珍,董明敏,汤丹剑,裘迪红.鱿鱼营养成分分析[j].东海海洋,1999,17(2):63-68
    [17]杨德康.两种鱿鱼资源和其开发利用[J].上海水产大学学报,2002,11(2):176-179
    [18]石碧,何先祺,张敦信,等.水解类植物鞣质性质及其与蛋白质反应的研究-Ⅳ.植物鞣质与氨基酸的反应[J].皮革科学与工程,1994,4(1):18-21.
    [1]李桂芬.鱿鱼的营养与开发利用[J].科学养鱼,2003,(7):56
    [2]郭尧君.创新者的报告第4集[M].科学出版社,P205
    [3]SDS—聚丙烯酰胺凝胶垂直板电泳分离蛋白质[EB/OL].www.bbioo.com/biol01/2007/8637.htm.生物秀,2007
    [4]蛋白质的聚丙烯酰胺凝胶电泳[EB/OL].www.ustcers.com/blogs/shininglake/articles/3185.aspx.2004-10-28
    [5]张俊杰,段蕊.鱼糜的凝胶机理[J].淮海土学院学报,1999,9(3):59-62.
    [6]Ramairez,J.,Martha,O.,et al.Fish myosin aggregation as affected by freezing and initial physical state[J].Food Sci,2000,65:556-560.
    [3]陈焕铨,韩名竹,陶江萍等.关于鱼糜在冷藏过程中蛋白质变性的研究[J].水产学报,1984,8(1):1-7.
    [8]Kijowski,J.,Mast,M.,et al.Effect of sodium chloride and phosphates on the thermal properties of chicken meat proteins[J].Food Sci,1988,53:367-370.
    [9]Azuma,Y.,Konno,K.Freeze denaturation of carp myofibril compared with thermal denaturation [J].Fisheries Science,1998,64(2):287-290.
    [10]Weeds,A.,et al.Substructure of the myosin molecule:The light chains of myosin[J].Mol Biol,1971,(61):701-725.
    [11]Trout,G.,Schmidt,G.,et al.Utilization of phosphates in meat products[J].Reciprocal Meat Conference Proceedings,1983,36:24-27.
    [12]Wright,D.,Wilding,P.Differential Scanning calorimetric study of muscle and its proteins:myosin and its subfragments[J].Sci Food Agric,1984,35:357-372.
    [13]Robe,G.,Xiong,Y.Phosphates and muscle fiber type influence thermal transitions[J].Sci Food Agric,1986,37:915-926.
    [14]Eggleton,G.,et al.Inorganic phosphate and a labile form of organic phosphate in the gastrocnemius of the frog[J].Biochem,1927,21:190-195.
    [15]Sano,T.,et al.Thermal gelation characteristics of myosin subfragments[J].Food Sci,1990,55:55-58,70.
    [16]金再宿,丁玉庭.猪PSE肉和正常肉与淡水鱼MfATPase热稳定性的比较研究[J].食品科学,2004,25(7):63-66.
    [17]王力琴,汪之和.斑点叉尾鮰鱼肌肉基本性质及其加工利用的研究[D].上海:上海水产大学,2002.
    [18]Uchiyama,H.,Katoh,N.,Kudo,Y.,et al.Biochemical studies on myofibrils of fish Thermo-stability of Ca2+-activated myofibrillar ATPase of Epipelagic and Mesopelagic fish species[J].Bull Jap Soc Sci Fish,1978,44(5):491-497.
    [19]新井健一,山本常治(万建荣译).冷冻鱼糜[M].上海:上海科学技术出版社,1991,94-108.
    [20]Konno,K.,Young,J.Thermal denaturation and autolysis profiles of myofibrillar proteins of mantle muscle of jumbo squid Docidicus gigas[J].Fisheries Science,2003,69:204-209.
    [21]刘海梅,熊善柏,谢笔钧.钙离子对白鲢鱼糜热诱导凝胶化的影响[J],食品科学,2006,27(8):87-90
    [1]Hamann,D.D.,Amato,P.M.,W u,M.C.and Foegeding,E.AInhibition ofmodori (gel weakjng)in surimi by plasma hydrolysate and egg whte.J.Food Sci,1990,55:665-669,795.
    [2]Wasson D,Babbitt J K,French J S.Characterization of heat stable protease from arrowtooth flounder.J.Aquit.Food Prod.Technol,1992,1(3/4):167-182.
    [3]Morrissey M T,Wu,J.W.Lin.D.and An,H.Protease inhibitor effects on torsion measurements and autlysis of Pacfic whiting surimi[J].Food Sci,1993,58:1050-1054.
    [4]Reppond,K.D.and Babbitt.J.K.Protease inhibitory affect physical properties of arrowth flouder and walleye Pollock surimi.J.Food Scj,1993.58:96-98.
    [5]Saroat Rawdkuen,Soottawat Benjakul,Wonnop Visessanguan et al.Chicken plasma protein:Proteinase inhibitory activity and its effect on surimi gel properties[J].Food Research International,2004,37:156-165
    [6]Gipsy Tabilo-Munizaga,Gustavo V.Barbosa-C-anovas.Pressurized and heat-treated surimi gels as affected by potato starch and egg white:microstructure and water-holding capacity.[J]Lebensm.-Wiss.u.-Technol.,2005,38:47-57
    [7]M.Carmen Gomez-Guillen,Pilar Montero.Improvement of giant squid(Dosidicus gigas)muscle gelation by using gelling ingredients[J].Z Lebensm Unters Forsch A,1997,204:379-384
    [8]M.Carmen Gomez-Guillen,Pilar Montero.Salt,Nonmuscle Proteins,and Hydrocolloids Affecting Rigidity Changes during Gelation of Giant Squid(Dosidicus gigas)[J].Agric.Food Chem.1997,45:616-621
    [9]Wang Weiping and D.M.W.Anderson,“Non-food applications of tree gum exudates”[J]..林产化学与工业,1994,14(3),67-76
    [10]胡国华,阿拉伯胶在食品工业中的应用[J].粮油食品科技,2003,11(2):7-8
    [11]叶丹英,彭志英,赵谋明.转谷氨酰胺酶在食品加工中的应用[J].郑州粮食学院学报,2000,21(2):46-49,77.
    [12]吴介文,蔡国珍,江善宗.谷氨酰胺转胺酶生产菌株之筛选及影响产量因子之探讨[J].中国农业化学会志,1996,34(2):228-240.
    [13]郑美英,堵国成.发酵生产谷氨酰胺转胺酶的摇瓶条件[J].无锡轻工大学学报,1999,18(3):37-41.
    [14]江波,周红霞.谷氨酰胺转胺酶对大豆 7s蛋白质及肌球蛋白质胶凝性质的影响[J].无锡轻工大学学报,2001,20(2):122-127.
    [15]Ando,H.,Matsuura,A.et al.Manufacture of transglutainase with steptomyces[J].Jpn Kokai Tokkyo Koho,1992,2:286.
    [16]Zhu Y,Rinzema,A.,Tramper,J.,et al.Microbial transglutaminase-a review of its production and application in food processing[J].Appl Microbiol Biotechnol,1995,44:277-282.
    [17]Sakamoto,H.,soeda,T.Minced meat products containing transglutaminase[J].Jpn Kokai Tokkyo Koho,1991,Jp 03,175,929.
    [18]江波,周红霞.谷氨酰胺转胺酶对火腿肠凝胶性质的影响[J].食品与发酵,2000,27(4):1-6.
    [19]吕心泉,肖有玉,安辛欣.重组牛肉生产牛肉干的研究[J].食品工业科技,2002,23(11):53-55.
    [20]倪新华,江波.谷氨酰胺转胺酶在小麦粉制品中的应用[J].食品工业,2002,(5):6-8.
    [21]Kato,T.,Tminmatsu,K.,et al.Manufacture of storage-stable retort mapuo-duofu[J].Jpn Kokai Tokkyo Koho,199,Jp03,168,059.
    [22]Seguro,K.,Kumazawa,Y.et al.Microbial transglutaminase and ε-(γ-glutamyl)lysine crosslink effects on elastic properties of kamaboko gels[J].Food sci,60:305-311.
    [23]Sakamoto,H.,et al.Strength of protein gels prepared with microbial transglutaminase as related to reaction conditions[J].Food Sci,1994,59:866-871.
    [24]Jiang,T.,et al.Combination effects of microbial transglutaminase,reducing agent and protease inhibitor on the quality of Hairtail Surimi[J].Food Sci,2002,65(2):241-245.
    [25]Park,S.,Cho,S.et al.Effects of microbial transglutaminase and starch on the thermal gelation of salted squid muscle paste[J].Fisheries Science,2005,71:896-903.
    [26]Guo-jane Tsai,et al.Transglutaminase from Streptoverticillium ladakanum and application to minced fish product[J].Food Sci,1996,61(6):1234-1238.
    [27]孙哲浩,赵谋明,张源,等.明胶与k-卡拉胶交互作用特性及机理的研究[J].食品科学,2001,22(1):14-18.
    [28]Maria,D.,et al.Influence of deformation rate and degree of compression on textural parameters of potato and apple tissues in texture profile analysis[J].Europe Food Research Technology,2002,(215):13-20.
    [29]Surrey.Stable Micro Systems[M].User Manual of TA-XT2i.England,2000.
    [30]李里特.食品物性学[M].北京:中国农业出版社,2001.
    [31]Bourne M C.Food texture and viscosity[M].2nd edition,New York:Academic Press,2002.
    [32]Bourne M C.The texture profile of ripening pears[J].Food Sci,1968,33:223.
    [33]Bourne M C.Texture profile analysis[J].Food Technology,1978,32(7):62-66,72.
    [34]Filipi I,Lee C M.Preactivated Iota-carrageenan and its Rheological Effects in Composite Surimi Gel[J].Lebensm.-Wiss.u.-Technol.,1998,31:129-137
    [35]Saroat R,Soottawat B,Wonnop V,et al.Chicken plasma protein affects gelation of surimi from bigeye snapper(Priacanthustayenus)[J].Food Hydrocolloids,2004,18:259-270
    [36]Gipsy T,Gustavo V B.Color and textural parameters ofpressurized and heat-treated surimi gels as affected by potatostarch and egg white[J].Food Research International,2004,37:767-775
    [1]励建荣,夏道宗.食品超高压杀菌技术[J].广州食品工业科技,2002,18(3):45-47.
    [2]马永昆.超高压技术在功能性食品加工中的应用及其安全评价[J].食品科学,2005,26(8):457-460.
    [3]Ko W C,Tanaka M,Nagashima.Effect of high pressure on the thermal gelation of sardine and Alaska pollack meat and myosin[J].Nippon Shokuhin Kogyo Gakkaishi,1990,37:637-642.
    [4]Macfarlane J J,Mckenzie I J,Turner R.H.Pressure-heat treatment of meat:Changes in myofibrillar proteins and ultrastructure[J].Meat Science,1986,17:161-176.
    [5]Cheftel J C,Culioli J.Effect of high pressure on meat:a review[J].Meat Science,1997,46:98-107.
    [6]Messens W,Van Camp J,Huyghebaert A.The use of high pressure to modify the functionality of food proteins[J].Trends in Food Science Technology,1997,8:107-112.
    [7]梁淑如,赵国建.超高压技术在食品工业中的最新研究进展[J].食品研究与开发,2006,127(8):1-4.
    [8]潘巨忠,薛旭初.超高压食品加工技术的研究进展[J].农产品加工,2005,6(3):15-17.
    [9]纵伟.超高压技术对水产品的影响[J].北京水产,2006(6):52-55.
    [10]邱伟芬.食品超高压杀菌技术及其研究进展[J].食品科学,2001,22(5):81-84.
    [11]潘见,曾庆梅,谢慧明,等.草莓汁的超高压杀菌研究[J].食品科学,2004,25(1):31-34.
    [12]钱建亚,孙芝杨.超高压技术在食品加工中的应用[J].扬州大学烹饪学报,2006(3):57-61.
    [13]徐倩,叶怀义.超高压对果胶聚半乳糖醛酸酶的影响[J].哈尔滨商业大学学报(自然科学版),2003,19(2):194-196.
    [14]Motoki M,Seguro K.Transglutaminase and its use for food processing[J].Trends in Food Science and Technology,1998,9(5):204-210.
    [15]郭晓君.蛋白质电泳实验技术[M].北京:科学出版社,1999.
    [16]Laemm Li U K.Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J].Nature,1970:227.
    [17]石英,全书海,李志俊,张立炎.SEM图像分形维数的影响因素研究[J].黄石理工学院学报,2007,23(3):23-26.
    [18] Palou, E. High Hydrostatic Pressure as a Hurdle for Zygosaccharomyces bailii Inactivartion [J].Journal of Food Science, 1997, 62(4): 855-857.
    [19] Hayakawa, I. Application of High Pressure for Spore Inactivation and protein denaturation [J] Journal of Food Science, 1994, 59(1): 159-163.
    [20] Zahra Zare. High pressure processing of fresh(tuna fish )and its effects on shelf life [D].Montreal, Quebec, Canada: Macdonald Campus of McGill University, 2004.
    [21] Soottawat B, Wonnop V, Chakkawat C. Effect of porcine plasma protein and setting on gel properties of surimi produced from fish caught in Thailand[J]. Lebensm-Wiss u- Technol,2004,37:177-185
    [22] Ko W C, Tanaka M, Nagashima. Effect of high pressure on the thermal gelation of sardine and Alaska pollack meat and myosin [J]. Nippon Shokuhin Kogyo Gakkaishi, 1990, 37: 637-642.
    [23] Seguro K, Kumazawa Y. Transglutaminase and Lysis cros-link effect on elastc properties of kamaboko gels[J]. Food Sci, 1995, 60: 305-311.
    [24]HsiehJ, Tsai G, Jiang S, et al. Microbial Transglutaminase and Recombinant Cystatin Effects on Improving the Quality of Mackerel Surimi [J]. Journal of Food Science 2002, 67(8):3120-3125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700