用户名: 密码: 验证码:
麦胚蛋白酶解物的制备及其抗氧化功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是我国的主要粮食作物之一,年产量在1亿t以上。作为小麦加工的副产物,目前我国麦胚年蕴藏量达200万t。麦胚是小麦籽粒的生命源泉,其中含有约30%的蛋白质,是一种优质的植物蛋白质资源。麦胚蛋白通过特异的蛋白酶水解可生成具有抗氧化活性的氨基酸序列,即抗氧化肽。已有研究表明,人类许多慢性疾病及衰老现象均和体内的自由基水平失衡有关,过量的自由基对机体产生氧化性损伤,当损伤不能及时修复并且累积到一定程度就会导致疾病的发生。而来源于食品的天然抗氧化剂则有助于消除过量的自由基,维持人体内的自由基平衡。因此,利用麦胚蛋白制备对抗自由基、延缓衰老的功能性食品或食品配料,既可为麦胚等富含蛋白质的农副产品资源的深度开发和利用提供理论依据,也为实现小麦资源的综合利用、提高其附加值开辟新的途径。
     本论文以脱脂麦胚为原料,对麦胚蛋白在稀碱和微细化处理条件下的提取工艺进行研究,并对麦胚蛋白的酶解工艺、抗氧化活性及作用机理进行研究,主要研究内容及结果如下:
     1.首先采用锤式粉碎与胶体粉碎相结合的方法对脱脂麦胚进行微细化处理,然后利用碱提、超滤浓缩法提取制备麦胚蛋白,并通过Box-Behnken中心组合设计(CCD)及响应面分析(RSM)建立预测麦胚蛋白提取率的二次多项数学模型,优化蛋白质的提取工艺,在麦胚粒度为23μm、pH值9.5、提取温度51℃的条件下,经微细化处理的蛋白提取率为68.6%,比未经微细化处理的(过80目筛)提高30.63%。
     2.采用SDS—PAGE法测定麦胚蛋白的分子量为11.6kDa-93.8kDa。功能特性研究结果表明,麦胚蛋白在pH4-5范围内溶解度最低,与大豆分离蛋白相比,其吸油性、乳化活性、发泡性较强,吸水性、乳化稳定性、泡沫稳定性相对较弱。
     3.以DH及酶解产物对DPPH·清除率为考察指标,从5种商品蛋白酶中确定了麦胚蛋白的最适水解酶为碱性蛋白酶Alcalase。预处理工艺研究结果表明,对麦胚蛋白进行高速剪切乳化5min,可将其水解度(DH)和肽得率(TCA-PSI)分别提高29.85%和12.53%。通过单因素试验确定了高速剪切乳化预处理(22000r/min,5min)条件下Alcalase水解麦胚蛋白的最适参数为:酶用量[E]/[S]为4000U/g、底物浓度为4%、pH为8.5、温度55℃、时间240min。在此条件下,体系水解度为18.61±0.23%,肽得率为71.02±0.45%,平均链长为5.37个氨基酸,平均分子量为555.3Da。
     4.为研究不同分子量分布的肽段的抗氧化活性,选用截留分子量为5kDa、3 kDa、1 kDa的改良纤维素平板膜对麦胚蛋白酶解物进行超滤分级,选择麦胚肽一级超滤的最佳操作参数为:压力为0.10MPa、料液浓度为2.0%-2.5%、温度为35℃。采用阴阳离子交换树脂脱盐法对超滤分级肽进行纯化,以肽回收率和脱盐率为考察指标,确定10 CV/h为最佳流速。经过分级和脱盐处理的4种精制麦胚肽除分子量最大的肽Ⅰ外,均具有显著的抗氧化活性。
     5.采用5种化学模型对3种精制麦胚肽的抗氧化活性进行研究,结果显示,肽IV的还原力最强,当浓度为1.7 mg.mL~(-1)时,其还原力与1.0 mg.mL~(-1) GSH相当;3种麦胚肽对DPPH·的清除均呈量效关系,其IC_(50)分别为肽Ⅳ为0.578mg.mL~(-1)、肽Ⅲ为0.769 mg.mL~(-1)、肽Ⅱ为1.661 mg.mL~(-1),其参考对照GSH为0.28 mg.mL~(-1)。在邻苯三酚体系中,肽Ⅳ对O_2~-·的清除能力最强,与同剂量的GSH无显著性差异(p>0.05)。相同浓度下,肽Ⅲ清除·OH的能力和对Fe~(2+)的螯合能力显著强于肽Ⅳ,表明肽Ⅲ与肽Ⅳ的抗氧化机制有所不同。荧光分光光度法测定肽Ⅳ和Ⅲ在全脂奶粉体系中均具有较好的抗氧化活性,当添加量达到脂质含量的5%时,抗氧化效果皆优于1%的BHT,而稍次于1%的GSH。
     6.采用离体小鼠肝脏线粒体,以Ca~(2+)和Fe~(2+)—Vc为诱导剂,建立了亚细胞水平的高效氧化损伤模型。经麦胚肽保护后,可显著抑制线粒体ATPase活性下降和MDA的生成,并有效促使膜蛋白羰基含量下降,对线粒体肿胀和膜电位的降低也都有明显的抑制作用。通过透射电镜观察线粒体超微结构的变化,发现麦胚肽对缓解线粒体氧化应激损伤、保持线粒体的完整结构具有显著作用。
     7.采用强阴离子型交换色谱、凝胶过滤色谱和反相高效液相色谱对麦胚肽Ⅳ进行分离纯化,得到了两种均为单一性组分的高抗氧化活性肽SEC-5和RP-2。采用ESI-MS对2种麦胚肽进行分子量测定及结构表征,SEC-5的分子量为296.2Da,氨基酸序列为Phe-Met;RP-2的分子量为246.1 Da,氨基酸序列为Leu-Asp。2个抗氧化肽的氨基酸组成和序列信息具有已报道抗氧化肽的表征结构特点。
As one of the main cereal crops, the annual output of wheat has been beyond 100,000,000 tons in China. The wheat germ, an kind of important by-product of flour milling, is produced with annual yield about 2,000,000 tons. It is the life source and the most nutritious part of wheat kernel, which contains about 30% protein and is a high quality source of vegetable protein. Some competent peptide fragments with antioxidant activity will be obtained through specific enzymatic hydrolysis. It is shown that chronic diseases and senility were related to the imbalance of free radicals in our body. Excessive free radicals could cause the organism being oxidized damage. If the damage could not be repaired in time and be accumulated to certain degree, it would result in some diseases. Some natural antioxidants from food were helpful to eliminate excessive radicals and keep the balance of free radicals. The research on investigating and developing functional food and/or food ingredients with anti-aging and antioxidant activity from wheat germ protein hydrolysates can not only provide the theoretical basis for further utilization of agricultural byproducts such as wheat germ rich in protein, but also achieve comprehensive utilization and improve added value of wheat.
     In this dissertation, serial researches have been carried out concerning the processing of wheat germ protein by micronization and alkali extraction, the preparation and the action mechanism of antioxidant hydrolysates from wheat germ proteins. The results are as follows:
     Defatted wheat germ was micronized useing both hammer mill and colloid mill to increase the extraction rate of protein, followed by alkali extraction and ultrafiltration, respectively. A quadratic mathematical model was statistically constructed by using of Box-Behnken central composite design (CCD) and response surface methodology (RSM). Under the optimized processing parameters of 23μm particle sizes, pH 9.5 and 51℃, a maximum extraction rate, 68.6%, was achieved, which is 30.63% higher than that of non- micronized wheat germ (passing through 80 mesh sieve).
     The SDS-PAGE result showed that the molecular mass of wheat germ proteins was in the range of 11.6 kDa~93.8 kDa. The results of function determined indicated that in many ways such as the oil absorption, emulsifying activity and foaming activity, wheat germ protein was superior to those of soybean protein isolate (SPI), but it was not as good as SPI on the water absorption, emulsifying stability and foaming stability. In addition, the solubility of wheat germ protein was very poor when pH was at the range of 4 and 5.
     Five kinds of proteases were selected by comparing the degree of hydrolysis (DH) and the scavenging activity of wheat germ protein hydrolysates against DPPH radical. Alcalase showed the optimal protease activity. The pretreatment, shearing and emulsifying for 5 min, can significantly improve hydrolysis degree and the yield of peptides, up to 29.85% and 12.53%, respectivly. After pretreated by shearing and emulsifying at 22000r/min for 5min, the optimized hydrolysing conditions were determined through single factor tests, Alcalase dosage is [E]/[S] 4000U/g, substrate concentration [S]4%, pH value 8.5, temperature 55?, time 240min. Under these conditions, DH was 18.61±0.23%, TCA-PSI, 71.02±0.45%, PCL, 5.37 and average molecular weight, 555.3.
     To better understand the antioxidant activity of peptides with different molecular weight, wheat germ protein hydrolysates were ultrafiltrated consecutively by upgrade cellulose FP membrane with the molecular cut off of 5 kDa, 3 kDa and 1 kkDa. The optimum conditions of the first-degree ultrafiltration were: pressure 0.10 MPa, material concentration 2%~2.5% and temperature 35℃. Graded hydrolysates were desalted by cation ion- exchange resins and anion ion- exchange resins. By comparing the desalting rate and peptide recovery rate, the optimum hydrolyte flow rate was 10 CV/h. The antioxidant experiment results showed that refined wheat germ peptides possess of noticeable antioxidant activity, except for peptides I with the largest relative molecular mass.
     The antioxidant effect of 3 wheat germ peptides evaluated using five different chemical models showed that at the concentration of 1.7 mg.mL~(-1), peptides IV had the strongest reducing power, the same reducing power to that of 1.0 mg.mL~(-1) GSH. The scavenging activity of 3 peptides against DPPH·were all dose independent. Their IC_(50) were: peptides IV 0.578 mg.mL~(-1), peptides HI 0.769 mg.mL~, peptidesⅡ1.661 mg.mL~(-1), and the IC_(50) of the control GSH was 0.28 mg.mL~(-1). In the system of pyrogallic acid, peptidesⅣhad no significantly scavenging activity against O_2~-·with GSH. At the same concentration, the scavenging ability against·OH and the chelating activity on Fe~(2+) of peptidesⅢwere stronger than that of peptidesⅡ, which indicated that the action mechanisms of peptidesⅢand peptidesⅡwere somewhat different. In powder food, peptides III and peptides II with good antioxidant activity, comparing with that of 1% BHT and 1% GSH, were superior to the former and inferior to the latter when the concentration was 5% lipid content.
     Taken isolated rat heart mitochondria as targets, an oxidative damage pattern with high performance induced by Ca~(2+) and Fe~(2+)-Vc was established on a subcellsular level. Wheat germ peptides could inhibit oxidative stress induced increase of MDA formation and carbonyl content of mitochondria as well as the lose of ATPase activity of mitochondria. The swelling of mitochondria and the reduction of membrane potential of mitochondria induced by Ca~(2+) and Fe~(2+)-Vc were also prevented significantly by wheat germ peptides. The transmission electron micrographs of mitochondria showed that wheat germ peptides could release the injury to mitochondria induced by oxidative stress and help to maintain the integrity structure of mitochondria.
     The two peptides, SEC-5 and RP-2, showing strong antioxidant activity, were isolated using consecutive chromatographic methods including strong anion ion-exchange chromatography, gel-filtration chromatography and RP-HPLC. The molecular mass and the amino acid sequence of the two purified peptides were determined using electrospray ionization-mass spectrometry. For SEC-5, the molecular mass was 296.2, the amino acid sequence was Phe-Met; for RP-2, they were 246.1 and Leu-Asp, repectively.The amino acid composition and/or sequence of the two peptides agreed with the reported characteristics of antioxidant peptides.
引文
[1] Pomeranz,Y. Wheat chemistry and technology[M].USA: American Association of Cereal Chemists Inc., 1988,11-13.
    [2] 刘亚伟编著.小麦精深加工-分离重组转化技术[M].北京:化学工业出版社,2005:11-12.
    [3] Amado R, Arigoni E. Nutritive and functional properties of wheat germ[J].International Food Ingredients, 1992,4: 30-34.
    [4] Ge Y, Sun A, Ni Y, et al. Some nutritional and functional properties of defatted wheat germ protein[J]. Journal of Agricultural and Food Chemistry, 2000,48 (12 ): 6215-6218.
    [5] 朱天钦.制粉工艺与设备[M].成都:四川科学技术出版社,1988.
    [6] Method to get wheat germ during wheat grains processing into flour, RU 2039604.
    [7] Method for obtaining wheat germ in the process of flour milling, RU 2059434.
    [8] 周惠明,赵宇星.小麦胚的研究开发与利用[J].粮食与饲料工业,2003,(1):35-37.
    [6] Method to get wheat germ during wheat grains processing into flour, RU 2039604.
    [7] Method for obtaining wheat germ in the process of flour milling, RU 2059434.
    [9] Roasted wheat germ powder-containing milk or milk drink, JP59232047.
    [10] Manufacture of nutrient material from wheat germ, US2676888.
    [11] Roasted wheat germ powder having good taste, JP59232058.
    [12] Grewe E, Leclerc J A. Commercial wheat germ and its composition[J].Cereal Chemistry,1943,(20): 423-434.
    [13] Vani B, Zayas J. F. Wheat germ protein solubility and water retention[J].Food Sci., 1995, 60(4): 845-848.
    [14] 董英,王利群.脱脂麦胚蛋白粉的持水能力和蛋白溶解度试验研究[J].农业工程学报,1999,15(4):238-242.
    [15] Gnanasambandam R , Zayas J F . Functionality of wheat germ protein in comminuted meat products as compared with corn germ and soy proteins[J]. Journal Food Science, 1992, 57(4): 829-833. 1995,(19):341-360.
    [18] 董英,王利群.脱脂麦胚蛋白粉在火腿肠中的应用试验研究[J].农业工程学报,2000,16(3):141-142.
    [19] 张晖,王晓英,张艳媚.小麦胚芽蛋白饮料的研究与开发[J].食品工业科技,1997,(5):29-31.
    [20] 葛毅强,孙爱东.脱脂麦胚蛋白饮料的研制[J].食品工业,1999,(2):16-17.
    [21] 骆林,丁青芝.含二十八碳醇的脱脂小麦胚芽饮料的研制[J].食品工业,2004,(2):16-17.
    [22] 曹新志.高蛋白小麦胚水解液的初步研究[J].粮食与饲料工业,1995,(9):94-95.
    [23] 江伟强,李基.麦胚营养口服液的研制[J].食品科技,2000,(3):25-27.
    [24] 刘大川,张维农,胡小泓.花生蛋白制备工艺和功能特性的研究[J].武汉工业学院学报,2001,4:1-3.
    [25] N. S. Hettiarachchy, V. K.Griffin, Rgnanasambandam. Preparation and functional properties of a protein isolate from defatted wheat germ[J].Cereal Chemistry, 1996,73(3): 363-367.
    [26] 葛毅强,郑如力,蔡同一.脱脂麦胚蛋白功能特性的研究[J].中国油脂,2000,25(4):53-56.
    [27] Ke-Xue Zhu, Hui-Ming Zhou, Hai-Feng Qian. Proteins extracted from defatted wheat germ:nutritional and structural properties[J].Cereal Chemistry, 2006, 83(1): 69-75.
    [28] 辛志宏,吴守一,马海乐.α-淀粉酶法制备小麦胚芽蛋白的研究[J].食品科技,2003,(6):11-13.
    [29] 刘玉德,曹雁平.生物蛋白肽的开发研究展望[J].食品科学,2002,23(8):319-320.
    [30] 庞广昌,王秋韫.生物活性肽的研究进展理论基础与展望[J].食品科学,2001,22(2):80-84.
    [31] Gill I, Rosina L-F, Forba X. Biologically active peptides and enzymatic approaches to their production[J].Enzyme and Microbial Technology, 1996,18: 162-183.
    [32] Matsui T, Li C. H, Osajima Y. Preparation and characterization of novel bioactive peptides responsible for angiotensin I-converting enzyme inhibition from wheat germ[J] Journal of Peptide Science, 1999, (5): 289-297.
    [33] Matsui T, Li C. H, Tanaka T, et al. Depressor effect of wheat germ hydrolysate and its novel angiotensin I-converting enzyme inhibitory peptide, Ile-Val-Tyr, and the metabolism in rat and human plasma[J].Biol.Pharm Bull., 2000, 3(4): 27-31.
    [34] 辛志宏,马海乐,吴守一,等.从小麦胚芽蛋白中分离和鉴定血管紧张素转化酶抑制肽 的研究[J].食品科学,2003,4(7):30-33.
    [35] 辛志宏,吴守一,马海乐,等.从麦胚蛋白质中制备降血压肽的研究[J].食品科学,2003,24(10):120-123.
    [36] Kexue Zhu, Huiming Zhou, et al. Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase[J]. Process Biochemistry, 2006, (41): 1296-1302.
    [37] 程云辉,王璋,等.酶解麦胚蛋白制备抗氧化肽的研究[J].食品科学,2006,27(6):147-151.
    [38] Sullivan, Howe. The separation of glutathione and glutamic acid using a simulated moving-bed aborber system[J].Ferment Technol., 1937,25(1): 61-70.
    [39] 周惠明.小麦胚水溶性提取物中功能性成分的研究[D].江南大学博士论文,2001.
    [40] 卢敏,殷涌光,刘喻.高压电脉冲提取小麦胚谷胱甘肽的的影响冈素研究[M].食品科学,2005,26(8):205-207.
    [41] M. Takahashi, M. voshikawa. Studies on the ileum contracting mechanisms and identification as a complement C3a receptor agonist of oryzatensin, a bioactive peptide derived from rice albumin[J].Peptides, 1996,17(1): 5-12.
    [42] Rerat A. Amino acid absorption and production of pancreatic hormones in nonanaesthetized pigs after duodenal infusions of milk enzymic hpdrolysate or of tree amino acids[J].Brit T Natr, 1988,(60): 121-136.
    [43] Tesseraud S. Protein metabolism in the growing fowl effect of dietary[J]. Productuction Animal, 1995, 8(3): 197-212.
    [44] Brantl VH. Novel opioid peptides derived from caseins peptone[J].Physiol Chem, 1979,(36): 201-211.
    [45] Ferreira SH, Bartelt DC, Greene LJ. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom[J]. Biochemistry, 1970, (9): 2583-2593.
    [46] 罗水中,潘利华,潘丽军.乳链菌肽产生菌的选育及其发酵性能研究[J].食品科学,2004,25(4):53-55.
    [47] Wang H X, Ng T B. Antifungal peptides, a heat shock protein-like peptide, and a serine-treonine kinase-like protein from ceylon[J].Peptides, 2004, (2)5: 1209-1214.
    [48] Ye X Y, Ng T B. Hypogin, a novel antifungal peptide from peanuts with sequence similarity to peanut allergen[J].Peptide Res, 2001, 57: 330-336.
    [49] Rajapakse N, Mendis E, Jung W K. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties[J].Food research international, 2005, 238: 175-182.
    [50] 周小理,李红敏.植物抗氧化(活性)肽的研究进展[J].食品工业,2006,3:11-13.
    [51] Adler-Nissen J. Enzymic Hydrolysis of Food Proteins[M].Elsevier Applied Science Publishers, 1986,25-30.
    [52] 陈怡宏.蛋白质酵素水解液之生产技术[J].食品工业(台湾版),1997,29(11):34-40.
    [53] Alfonso Clemente. Enzymatic protein hydrolysates in human nutrition[J].Trends in Food Science & Technology, 2001, (11): 251-263.
    [54] Olsman H. Hydrolyzed and autolyzed vegetable proteins as functional food ingredients[J]. JAOCS., 1979, 56: 375-376.
    [55] 吴建中.大豆蛋白的酶法水解及产物抗氧化活性的研究[D].华南理工大学博士论文,2003.
    [56] 刘健敏,钟芳,麻建国.大豆生理活性肽的研究(Ⅱ)-抗氧化性和ACE抑制活性的初步研究[J].无锡轻工大学学报,2004,23(4):50-55.
    [57] 吴建平,丁霄霖.大豆降压肽的研制(Ⅰ)-酶水解过程参数的研究[J].中国油脂,1998,23(4):12-14.
    [58] 吴建平,丁霄霖.大豆降压肽的研制(Ⅱ)-酶作用条件的优化[J].中国油脂,1998,23(3):6-8.
    [59] Lee K A, Kim S H. SSGE and DEE, new peptides isolated from a soy protein hydrolysate that inhibit platelet aggregation[J].Food chemistry, 2005,90: 389-393.
    [60] Byun H G, Kim S B. Purification and characterization of angiotensin I converting enzyme(ACE) inhibitory peptides from Alaska Pollack(Theragra chalcogramma) skin[J].Process biochemistry, 2001,36: 1155-1162.
    [61] Andersen AJ, Fomsgaard J, Aasmul Olsen S. Current enzymatic possibilities in the technology of peptide synthesis: Methods of synthesis and practical examples[J].Chimicaoggi, 1991, 3: 17-25.
    [62] Atherton E, Sheppard RC. Solid Phase Peptide Synthesis: A Practical Approach[M].IRL Press, Ofxford, 1989.
    [63] Berkessel A. The discovery of catalytically active peptides through combinatorial chemistry[J].Current Opinion in Chemical Biology, 2003, 7: 409-419.
    [64] Bodzansky M. Peptide Chemistry[M].Springer Verlag, New York, 1993.
    [65] Bongors J, Heimer E P. Recent applications of enzymatic peptide synthesis[J].Peptides,1994,15: 183-193.
    [66] 冯秀燕,计成.寡肽在蛋白质营养中的作用[J].动物营养学报,200l,13(3):8-13.
    [67] Nishimura T. Kato H Taste of free amino acids and peptides[J].Food Rev Int., 1998, 4:175-194.
    [68] 王岗,卢德勋.肽吸收的研究进展[J].动物营养学报,1999,11(12):69-72.
    [69] Hara H, Funabili R, Iwata M, et al. Portal absorption of small peptides in rats under unrestrained condition[J].Journal of Nutrition, 1984,114: 1122-1131.
    [70] Webb K. Intestinal absorption of protein hydrolysis product: A Review[J].Journal of Animal science, 1990,68:3011-3022.
    [71] Webb K. Peptide absorption: current concepts and future science perspectives[J].Journal of Animal, 1992,70: 3248-3257.
    [72] Vincenzini M T. Glutathion transport across intestinal brush-border membranes effects of ions, pH and inhibitors[J].Biochim. Biophys. Acta, 1989, 987: 29-37.
    [73] Takuwa N.,Shimada T.,Matsumoto H,et al. Proton-coupled transport of giyclyglycine in rabbit renal brush-border membrane vesicles[J].Biochim Biopbys Acta 1985, 814: 186-194.
    [74] Fei Y J, Kanal Y, Nussberger S. Expression cloning of a mammalian proton-coupled oligopeptide transporter [J].Nature, 1994, 380: 563-566.
    [75] Ganapathy V, Mendicino JF, Leibach FH. Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit[J].J Biol Chem, 1981,256: 116-124.
    [76] Ganapathy V, Mendicino JF, Leibach FH. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesiclest[J].J Biol Chem, 1984, 259: 8954-8959.
    [77] Ganapathy V, Leibach FH. Is intestinal peptide transport energized by a proton gradient [J].Am J Physiol, 1985,249: 153-160.
    [78] 杨闯.生物活性肽在营养保健中的应用[J].食品科学,2003,24(11):153-154.
    [79] 励建荣,封平.功能肽的研究进展[J].食品科学,2004,25(11):415-419.
    [80] Mattews D M. Mechanisms of peptide transport. In: Dipeptides as New Substrates in Nutrition Therapy[M].Karger London ,1987.
    [81] Silk DB, Fairclough PD, Clark ML. Use of a peptide rather than free amino acid nitrogen source in chemically defined "elemental" diets[J].Purenter Enteral Nutrition, 1980, 4: 548-553.
    [82] 闵育娜,刘虎,陆元东.生物活性肽的生理作用及其在畜禽生产中的应用[J].动物医学进展,2003,24(6):64-66.
    [83] 周雪松.水解蛋白来源的抗氧化肽研究进展[J].中国食品添加剂.2005,6:85-88.
    [84] Jan Pokomy, Nedyalka Yanishlieva, Michael Gordon. Antioxidants in food Practicalapplications[M]. Woodhead Publishing Ltd, 2001:322-323.
    [85] Silk, D. B. A., Fairclough, P. D., Clark, M. L., et al. Use of a peptide rather than free amino acid nitrogen source in chemically defined "elemental" diets[J].Journal of Parenteral and Enteral Nutrition, 1980,4: 548-553.
    [86] 曹平.天然抗氧化肽研究进展[J].粮食与油脂.2004,10:8-11.
    [87] Zhou,S. Decker,E.A. Ability of carnosine and other skeletal muscle components to quenchunsaturated aldehydic lipid oxidation products [J]. J.Agric.Food Chem.1999,56:1179-1181.
    [88] Bishov S J, Henick K S .Antioxidant effect of protein hydrolysates in a freeze-dried model system [J] J Food Sci.1972,3:837-845.
    [89] 汪建斌,邓勇.大豆蛋白酶法水解产物抗氧化特性及产品的研究与开发[D]北京:中国农业大学,2002.
    [90] Chen H M, Muramotok, Yamauchif. Structure analysis of antioxidative peptides fromsoybean @@@-conglycinin [J].J A gric Food Chem,1995( 4}:574-578.
    [91] Chen H M, Muramotok, Yamauchif. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein[J].J Agric Food Chem 1996(4):2619-2623.
    [92] Vladmir N A, Sergey V M, Tatyana I O. Effect of melatonin and pineal peptide preparation epithalamin on life span and free radical oxidation in Drosophila melanogaster [J]. M ech A ge ing Dev. 1997,97(2):81-91.
    [93] Vladmir N A, Sergey V M, Vladmir K K.Pineal peptide preparation epithalrrnin increases the lifespan of fruit flies mice and rats[J]. M ech A ge ing Dev. 1998,103(2): 123-132.
    [94] 徐力,李相鲁,黄宜兵等.小分子玉米肽保护线粒体抗氧化损伤的研究[J].高等学校化学学报,2004,(6):1073-1075.
    [95] 孙艳辉.水飞蓟粕制备抗氧化物及其活性研究[D].江苏大学,2007.5.
    [96] Togashis I, Takahashin , Wamam,et al. Antioxidative collagen-derived peptides in human-placenta extract[J].Placenta.2002, 23(6):497-502.
    [97] Jae J Y, Park P J, Km S K. Antioxidant activity of a peptide isolated from alaska Pollack (Theragra chalcogramma) frame protein hydrolysate[J]. Food Res Int.2005,38(1):45-50.
    [98] Rajaoaksen, Mendise, Byunhg,et al. Investigation of jum bo squid(Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects [J].Life Sci.2005, 77(17):2166-2178.
    [99] Rajaoaksen, Mendise, Byunhg,et al. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical- mediated oxidative systrms[J].J Nutr Biochem, 2005,16(9):562-529.
    [100] 吴继卫,何海伦,路敬涛,等.海洋生物蛋白的酶解及酶解产物的抗氧化活性[J].海洋利学,2005,29(3):76-80.
    [101] Soo-Yong Kim, Jae-Young Je, Se-Kwon Kim. Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion[J]. Journal of Nutritional Biochemistry, 2007,18 :31-38.
    [102] 肖红.中华稻蝗蛋白的提取酶解及抗氧化肽的研究[D].陕西师范大学,2006.5.
    [103] 陈力宏.蚕茧层多肽的制备及其抗氧化活性研究[D].江苏大学,2006.11.
    [104] Hang Guo,Yoshiaki Kouzuma,Masami Yonekura. Structures and properties of antioxidative peptides derived from royal jelly protein[J]. Food Chemistry, 2009,113: 238-245.
    [105] Igene, J O. Pearson, A M. Role of phospholipids and triglycerides in warmed-over flavor development in meat model systems[J].Food. Sci. 1979,44: 1285-1292.
    [106] Sato,K. Hegarty, G H. Warmed-over flavor in cooked meats[J]. J.Food.Sci.1971,36:1098-1103.
    [107] Love, J D. The role of heme iron in the oxidation of lipids in red meats [J]. Food Technol.l983,37(7):117-125.
    [108] Jer-Hour Liang. Fluorescence due to interactions of oxidizing soybean oil and soy proteins [J].Food Chemistry, 1999,(66): 103-108.
    [109] Autor AP. Biosynthesis of mitochondrial manganese superoxide dismutase in saccharomyces cerevisiae. Precursor form of mitochondrial superoxide dismutase made in the cytoplasm[J].Biol Chem,1982,257(5): 2713-2718.
    [110] 徐力,李相鲁,吴晓霞.一种新的玉米抗氧化肽的制备与结构表征[J]高等学校化学学报.2004,25(3):466-469.
    [111] Decker, E. A, et al. Different antioxidant mechanism of carnosine in the presence of copper and iron [J]. J Agric Food Chem, 2003,(68):173-182.
    [112] Murase H, Nagao A, Terao J . Antioxidant and emulsfying activity of N-(long-chain-acy) histidine and N-( long-chainacyl) carnosine[J].JAgric Food Chem, 1993(41): 1601-1604.
    [113] 李敏.简述杭氧化肽的作用[J].内蒙古农业科技2002(增刊):146-148.
    [114] Hirose A, Miyashita K. Inhibitory effect of proteins and their hydrolysates on the oxidation of triacylglycerols containing docosahexaenoic acids in emulsion[J].J Jap Soc Food Sci Technol,1999(4}:799~785.
    [115] Morrissey, P. A., Sheehy, P. J. A., Galvin, K., et al. Lipid stability in meat and meat products [J]. Meat Science, 1998, (49): 73-86.
    [116] Rhee K S.Lipid oxidation of beef, chicken, and pork [J].Food Sci., 1996, (57): 354-359.
    [1] FAO/WHO. Energy and protein requirements. Nutrition meeting report (Series 52), Rome, Italy: Food and Agriculture Organization of United Nations; Technical Report (Series 522), World Health Organization of United Nations, 1973.
    [2] Ihekoronye, I. A., Ngoddy, P. O. Integrated food science and technology for the tropics[M]. London: Macmillan, 1985.
    [3] FDA (Food and Drug Administration) Food labeling: healt claims; soy protein and coronary heart disease. Final rule. 21 VFR Part 101. Dept. of Health and Human Services,Washington, DC, 1999.
    [4] Steel, R. G D., Torrie, J. H., Dickey, D. A. Principles and procedures of statistics, a biometrical approach (3rd ed.)[M]. New York: McGraw Hill Book Co. Inc., 1997.
    [5] Yiqiang, G, Aidong, S., Tongyi, C. The nutrition value and application deliberation of wheat germ[J].Science and Technology of Food Industry, 1999, (1), 52-53.
    [6] Muhammad Umair Arshad , Faqir Muhammad Anjum, Tahir Zahoor. Nutritional assessment of cookies supplemented with defatted wheat germ[J].Food Chemistry, 2007, 102:123-128.
    [7] N S HETTIARACHCHY, V K GRIFFIN, R GNANASAMBANDAM. Preparation and functional properties of a protein isolate from defatted wheat germ[J].Cereal Chemistry,1996, 73(3): 363-367.
    [8] 葛毅强,孙爱东,倪元颖.脱脂麦胚蛋白的制取和理化及其功能特性的研究[J].中国粮油学报,2002,17(4):20-24
    [9] Zhu Kexue, Zhou Huiming, Qian Haifeng. Proteins extracted from defatted wheat germ: nutritional and structural properties[J].Cereal Chemistry, 2006, 83(1): 69-75.
    [10] KAMPEN, Willem, H. Recovery of protein, protein isolate and/ or starch from cereal grains [P]. US: 487739,1990-02-03.
    [11] 王雪莉,邢东明.微细化工艺制备的葛根微粉溶出度和生物利用度的研究[J].中药学杂志,2004,39(4):283-286.
    [12] 郑慧,王敏,于智峰,等.超微粉碎对苦荞麸功能特性的影响[J].农业工程学报,2007,23(12):258-262.
    [13] 苏瑞强,何煜,林峰,等.超微粉碎技术提高愈风宁心片溶出度的研究[J].中成药,2002,24(3):167-170.
    [14] 王多宁,赵雁武,田芙蓉.考马斯亮蓝微盘比色法测定蛋白质含量[J].第四军医大学学报,2001,22(6):528-529.
    [15] Osborne, T. B. The vegetable proteins[M].Longmans Green Co.: London,1924.
    [16] 吴艳博,董英,徐斌.麦胚稳定化处理方法的比较研究[J].粮食与饲料工业,2008,(3):13-16.
    [17] 董英,王利群.脱脂麦胚蛋白粉的持水能力和蛋白溶解度试验研究[J].农业工程学报, 1999, 15(4): 9-17.
    [18] Khan K, Tammiga G, Lukow O. The effect of wheat flour on mixing and baking correlations with protein fractions and high molecular weight glutenin subunit composition by gel electrophoresis[J]. Cereal Chem, 1989,66: 391-396.
    [19] Lopez O P. Chickpea Protein Isolate: Physicochemical, functional and nutrional characterization[J].Food Sci, 1991,56(3): 726-729.
    [20] LiLian,U.Thompson,Young Sook Cho. Chemical Composition and Functional Properties of Acylated Low Phytate Rapeseed Protein Isolate[J].Food Sci., 1984, (49): 1584-1590.
    [21] Hee Sun, Choi Kyung, Hee Sohn. The study on emulsifying and foraming properties of buckwheat protein isolated[J].Journal of Korean Society of Food Science, 1995, (1): 43-51.
    [22] Pearce K.N., Kinsella J.E. Emulsifying properties of proteins: evaluation of a turbidimetric technique[J]. Agric. Food Chem, 1978,26(3): 716-723.
    [23] Tomotake H. Physcio-chemical and functional properities of buckwheat protein product[J].Journal of Aari and Food Chem, 2002, 50(7): 2125-2129.
    [24] Roy 1, Whistler. Methods in Carbohydrate Chemistry[J].Volume IV starch, 1964,6-9.
    [25] Stark J R. The effect of physical damage on large and and small barley starch granules[J].Starch, 1986, 38: 369-373.
    [26] 陈季旺,孙庆杰,夏文水,等.碱酶两步法制备大米蛋白的研究[J].农业工程学报,2006,22(5):169-173.
    [27] 张鸣镝,姚惠源.提高玉米胚蛋白浸出率的工艺研究[J].农业工程学报,2006,22(5):226-228.
    [28] Kinsella J.E. Functional properties of soy proteins[J].Am. Oil Chem.Soc, 1979, 56(3): 242-258.
    [29] 莫文敏,曾庆孝.蛋白质改性研究进展[J].食品科学,2000,21(6):6-10.
    [30] 周惠明.小麦胚水溶性提取物中功能性成分的研究[D].无锡轻工业大学,2001.
    [31] O.R.Fennema,王璋等译.食品化学(第二版)[M].中国轻工业出版社,1991:230-233.
    [32] Garcia M. C. Composition and characterization of soybean and related products[J].Food Science and Nutrition, 1997, 37(4): 361-391.
    [33] 华欲飞,顾玉兴.功能性大豆浓缩蛋白的性能及应用研究[J].中国油脂,1997,22(1):22-24.
    [34] 胡慰望,谢笔均.食品化学[M].科学出版社,1992.
    [1] Anne Pihlanto. Antioxidative peptides derived from milk proteins[J]. International Dairy Journal 2006,16:1306-1314.
    [2] Andre's Moure, Herminia Domt'nguez, Juan Carlos Parajo. Antioxidant properties of ultrafiltration - recovered soy protein fractions from industrial effluents and their hydrolysates Process Biochemistry, 2006,41:447-456.
    [3] R. Amarowicz, F. Shahidi. Antioxidant activity of peptide fractions of capelin protein hydrolysates [J]. Food Chemistry, 1997, 58(4): 355 -359.
    [4] Jae-Young Je, Pyo-Jam Park, Se-Kwon Kim. Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate [J]. Food Research International, 2005,(38): 45 -50.
    [5] Park P J, Jung W K, Nam K S, et ak Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk[J].Journal of the American Oil Chemists and Society, 2001,78(6):651-656.
    [6] Carlsen C U, Rasmussen K T, Kjeldsen K K, et al. Pro- and antioxidative activity of protein fractions from pork (longissimus dorsi) [J].European Food Research and Technology, 2003, 217(3): 195 -200.
    [7] 程云辉,王璋,等.酶解麦胚蛋白制备抗氧化肽的研究[J].食品科学,2006,27(6):147-151.
    [8] Kexue Zhu, Huiming Zhou, et al. Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase[J].Process Biochemistry, 2006,(41): 1296-1302.
    [9] Adler-Nissen J. Enzymic Hydrolysis of Food Proteins[M].Elsevier Applied Science Publishers, 1986, 25-30.
    [10] 杨兰,白勇.蛋白质酶解产物苦味的形成及脱除的研究进展[J].广州食品工业科技,2002,18(2):22-425.
    [11] ChenH. M., MuramotoK., Yamauchi F.et al[J]. Agric. Food Chem., 1996,44: 2126-2130.
    [12] Julie E,Hardwick,Charles E. Enzymatic hydrolysis of corn gluten meal[J].Chem, 1989, (37):1188-1192.
    [13] Owueu-Apenten R.K. Food Protein Analysis[M].New York: Marcel Dekker, Inc, 2002.
    [14] 汪家政,范明.蛋白质技术手册[M].科学出版社,2002.
    [15] Coakley W.T, James C.J. A simple linear transform for the Folin-Lowry protein calibration curve to 1.0mg/mL[J].Anal Biochem 1978,85: 90-97.
    [16] Nielsen.P.M, Petersen.D and Dambmann.C. Improwed method for determining food protein degree of hydrolysis[J].Journal of food science, 2001, 66: 642-646.
    [17] 王镜岩,朱圣庚,徐长发.生物化学[M].高等教育出版社,2002.
    [18] Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthum on the antioxidation of soybean oil in cyclodextrin emulsion[J].Journal of Agricultural and Food Chemistry, 1992,40(6): 945-948.
    [19] ERESHA MENDIS, NIRANJAN RAJAPAKSE, SE-KWON KIM. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate[J].Agric. Food Chem. 2005, 53: 587-581.
    [20] Etsuo Minagawa. Debittering Mechanism in Bitter Peptides of Enzymatic Hydrolysates from Milk Casein by Aminopeptidase T[J].Food Science, 1989, 54: 1225-1230.
    [21] Hoyle, N.T., Merritt, J.H. Quality of fish protein hydrolysate from Herring (Clupea harengus) [J].Food Sci., 1994, 59: 76-79.
    [22] Stevenson DE. Protease-catalyzed condensation of peptides as a potential means to reduce the bitter taste of hydrophobic peptides found in protein hydrolysates [J].Enzyme and Microbial Technology, 1998,22(2): 100-110.
    [23] Chang Hyun, Kim, Kim Mi-ryung.The bitterness of the enzymatic hydrolysate of soybean protein and the amino acid composition of the UF filtrate[J].Foods and Biotechnology, 1997,6(4): 244-249.
    [24] 陶红,梁歧,张鸣镝.热处理对大豆蛋白水解度的影响[J].中国油脂,2003,28(9):61-63.
    [25] Tello.P.G Enzymatic hydrolysis of whey protein: I kinetic models[J].Biotechnology and Bioengineering, 1994,44: 523-528.
    [26] Wang H.X, NG T.B. Pleureryn, a novel protease from fresh fruiting bodies of the edible mushroom Pleurotus eryngii[J].Biochem Biophys Res Commun, 2001,289: 750-755.
    [27] Marquez M C, Vazquez M A. Modeling of enzymatic protein hydrolysis[J].Process Biochemistry, 1999,35:111-117.
    [28] Munilla-noran R, Saborido-rey F. Digestive enzymes in marine speies: Protease activities get from redfish (Sebastes mentella), seabream (Sparusaarata) and turbot (Scophthalmus inaximus)[J].Comp Biochem Physiol, 1996,113B(2): 395-402.
    [1] 冯彪,倪晋仁,毛学英.超滤技术处理酪蛋白酶解液的研究[J].中国乳品工业,2005,33(3):32-34.
    [2] Ras E T, Pomantoc J J, Tumulak E P, et al. ETRAS thermal desalination system[J].Desalination, 2000,132: 353-356.
    [3] 应如冰,张玉洁等.乳清粉离子交换脱盐工艺的研究[J].中国乳品工业,1994,22(3):100-112.
    [4] 刘菊湘,刘国栋,阎虎生,等.用离子交换树脂脱除氨基酸与盐混合液中的盐[J].离子交换与吸附,2000,16(6):521-527.
    [5] 赵新淮.大豆蛋白水解物的精制研究[J].东北农业大学学报,1997,28(1):94-97.
    [6] 宫霞,赵骏.大孔吸附树脂对酪蛋白酶解液的脱盐作用研究[J].食品科学,2006,27(11):301-303.
    [7] 周存山,马海乐,余莜洁等.麦胚蛋白降血压肽的大孔树脂脱盐研究[J].食品科学,2006,27(3):142-146.
    [8] 云霞,张彧,朱蓓薇等.酶解玉米黄粉制备多肽的工艺研究[J].食品工业科技,2002,23(11):69-71.
    [9] 张超,张晖,郭贯新等.超滤法纯化苦荞麦蛋白液的数学模型[J].食品与生物技术学报,2006,25(3):19-24.
    [10] 邓成萍,薛文通,孙晓琳等.超滤在大豆多肽分离纯化中应用[J].食品科学,2006,27(2):192-195.
    [11] Je J J, Park P J, Kim S K. Antioxidant activity of a peptide isolated from Alaska Pollack (Theragra chalcogramma) frame protein hydrolysate[J].Food Research International, 2005, 38:45-50.
    [12] 严瑞楦.水处理应用手册[M].北京:化学工业出版社,2000,424-487.
    [13] Yust.M.M, PedrocheJ, Giron-Calle, et al. Production of ace inhibitory peptides by digestion of chickpea legumin with alcalase[J].Food Chemistry, 2003, 81: 363-369.
    [14] 汪涛,曾庆祝,叶于明.采用超滤技术分离扇贝边酶解液[J].中国水产科学,2002,9(3):255-259.
    [1] Morrissey, P. A., Sheehy, P. J. A., Galvin, K., et al. Lipid stability in meat and meat products [J]. Meat Science, 1998, (49): 73 -86.
    [2] Rhee K S.Lipid oxidation of beef, chicken, and pork [J].Food Sci., 1996, (57): 354-359.
    [3] 万素英,赵亚军,李林,王慧君.食品抗氧化剂[M].北京:中国轻工业出版社,2000.10-13.
    [4] 凌关庭,食品抗氧化剂及其进展(二)[J].粮食与油脂,2000,8:45-48.
    [5] 科峰.食品抗氧化剂BHT的安全性研究[J].同济大学学报(医学版),2001,22(5):86-88.
    [6] 曾名勇,董士远.天然食品添加剂[M].北京:化学工业出版社,2005,3:77-118.
    [7] 郑裕国,王远山,薛亚平等.抗氧化剂的生产和运用[M].北京:化学工业出版社,2003.
    [8] Anne Pihlanto. Antioxidative peptides derived from milk proteins[J]. International Dairy Journal 2006,16:1306-1314.
    [9] Andre's Moure, Herminia Domt'nguez, Juan Carlos Parajo. Antioxidant properties of ultrafiltration - recovered soy protein fractions from industrial effluents and their hydrolysates Process Biochemistry, 2006,41:447-456.
    [10] R. Amarowicz, F. Shahidi. Antioxidant activity of peptide fractions of capelin protein hydrolysates [J]. Food Chemistry, 1997, 58(4): 355-359.
    [11] Jae-Young Je, Pyo-Jam Park, Se-Kwon Kim. Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate [J]. Food Research International, 2005,(38): 45-50.
    [12] Park P J, Jung W K, Nam K S, et ak Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk[J].Journal of the American Oil Chemists and Society, 2001,78(6):651-656.
    [13] Alvorsen B L ,Holte K, Myhrstad MCW,et al. A systematic screening of total antioxidants in dietary plants [J]. JNutr, 2002,132: 461-471.
    [14] 王璋,许时婴,汤坚.食品化学[M].北京:中国轻工业出版社,1999.9:111-116.
    [15] 黄进,杨国宇,李宏基等.抗氧化剂作用机制研究进展[J].科技进展,26(2):74-78.
    [16] Yen, G C, Chen , H. Y. Antioxidant activity of various tea ectracts in relation to their antimutagenicity[J].Journal of Agricultural and Food Chemistry, 1995,43(1): 27-32.
    [17] 静天玉,赵晓瑜.用终止剂改进超氧化物歧化酶邻苯三酚测活法[J].生物化学与生物物理进展,1995,22(1):84-86.
    [18] Fan Xiaobing, Li Cijuan, Sha Danian, et al. The establishment of ophenathroline chemiluminescent system for measuring@@@@OH radical[J].Basic Medical Science and Clinics, 1998, 8(6): 468-471.
    [19] 乳酸菌抗氧化活性的研究[D].南昌大学,2006,5.
    [20] Jer-Hour Liang. Fluorescence due to interactions of oxidizing soybean oil and soy proteins [J].Food Chemistry, 1999, (66): 10-108.
    [21] Gillespie Jr, A. M. A manual of fluorometric and spectrophotometric experiments[M]. New York: Gordon and Breach Science Publishers, 1985: 19-23.
    [22] Kikugawa, K., & Ido, Y. Studies on peroxidized lipids Formation and characterization of 1,4-dihydropyridine-3,5-dicarbaldehydes as model of fluorescent components in lipofusin[J]. Lipids, 1984, (19): 600-608.
    [23] 刘峥,陆桦.黄连素对油脂抗氧化作用的研究[J].中国粮油学报,2007,22(3):88-93.
    [24] 杨淑珍,张友胜,彭丽桃,等.二氢杨梅树皮素的抗氧化效果研究[J].中国粮油学报,2004,19(2):82-84.
    [25] Nair, V., & Turner, G A. The thiobarbituric test for lipid peroxidation:structure of the adduct with malondialdehyde [J]. Lipids, 1984: (19): 804 -809.
    [26] Zhao K, Zhao GM, Wu D, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury[J]. Biol Chem, 2004,279(33): 34682-34690.
    [27] Lee,B.J.,Hendricks,D.G Antioxidant effect of L-camosine on liposomes and beef homogenates[J].Food Sci.,1997,62:931-938.
    [28] 陈瑗,周玫.自由基医学基础与病理生理[M].北京:人民卫生出版社,2002,230.
    [29] Decker E A, Crum A D, Calvert J T. Differents in the antioxidant mechanism of carnosine in the presence of copper and iron[J].J.Agric. Food Chem. 1992,40: 756-759.
    [30] Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthum on the antioxidation of soybean oil in cyclodextrin emulsion[J].Joumal of Agricultural and Food Chemistry, 1992,40(6): 945-948.
    [31] Halliwell B. Oxidant and human disease: some new concepts[J].FASEBJ., 1987, 1:358-370.
    [32] 郑荣梁,黄中洋.自由基生物学[M].北京:高等教育出版社,2006,9-25.
    [33] Dreher D, Junod AF. Role of oxygen free radicals in cacer development[J].J Eur Cancer, 1996,32(1): 30-35.
    [34] 庞战军,周玫,陈瑗.自由基医学研究方法[M].北京,人民卫生出版社,1999,32-35.
    [35] Gordon, M. H.. The mechanism of the antioxidant action in vitro: Food Antioxidants [M].New York: Elsevier Applied Science, 1990,1-18.
    [36] Halliwell, B. Gutteridge, J. M. C. Role of free radicals and catalytic metal ions in human disease: an overview[J]. Methods Enzymol. 1990,186, 81-85.
    [37] Afans E S, Dcrozhko A I, Brodskii A. Chelating and free radical scavenging mechanisms of inhibitory action of ruin and quercetin in lipid peroxidation[J]. Biochem Pharmacol, 1989,38(11): 1763-1989.
    [1] Dora E, ZeuthenT, Silver IA, et al. Effect of arterial hypoxia on the cerebrocortical redox state, vascular volume, oxygen tension, electrical activity and potassium ion concentration[J].Acta Physiol Acad Sci Hung, 1979, 54(4): 319-331.
    [2] Livingston FR, Lui EM, Loeb GA, Forman HJ. Sublethal oxidant stress induces a reversible increase in intracellular calcium dependent on NAD(P)H oxidation in rat alveolar macrophages[J].Arch Biochem Biophys, 1992, 299(1): 83-91.
    [3] Autor AP. Biosynthesis of mitochondrial manganese superoxide dismutase in saccharomyces cerevisiae. Precursor form of mitochondrial superoxide dismutase made in the cytoplasm[J].Biol Chem,1982,257(5): 2713- 2718.
    [4] Oshino N, Chance B. Properties of glutathione release observed during reduction of organichydroperoxide, demethylation of aminopyrine and oxidation of some substances in perfused rat liver, and their implications for the physiological function of catalase[J].Biochem, 1977,162(3): 509-525.
    [5] Togashi H, Shinzawa H, Wakabayashi H, et al. Activities of free oxygen radical scavanger enzymes in human liver[J].Hepatol, 1990,11: 200- 205.
    [6] Blum J, Fridovich I. Inactivation of glutathione peroxidase by superoxide radical[J].Arch Biophys, 1985,240-250.
    [7] Ishii M, Shimizu S, Nawata S. Involvement of reactive oxygen species and nitric oxide in gastric ischemia-reperfusion injury in rats: protective effect of tetrahydrobiopterin[J].Dig Dis Sci, 2000, (45): 93- 98.
    [8] Sawyer D B, Colucci W S. Mitochondrial oxidative stress in heart failure: "oxygen wastage" revisited[J].Circ Res, 2000, (86): 119- 120.
    [9] Wallace D C. Mitochondrial diseases in man and mouse[J].Science, 1999, (283): 1482-1488.
    [10]Majno,G,Joris,I.,1995.Apoptosis,oncosis,and necrosis.An overview of cell death[J].Am.J.Pathol.146,3~15.
    [11]Ly J D,Grubb D R,Lawen A.The mitochondrial membrane potential in apoptosis[J].Apoptosis,2003,8(2):15~28.
    [12]Pedersen,P.L.,Greenawalt,J.W.,Reynafarje,B.,et al.Preparation and characterization of mitochondria and submitochondrial particles of rat liver and liver-derived tissues[J].Methods in Cell Biology,1978,20:411~481.
    [13]Sims,N.R.Rapid isolation ofmetabolically activemitochondria fromrat brain and subregions using Percoll density gradient centrifugation[J].Neurochem,1990,55:6 98~707.
    [14]Emaus,R.K.,Grunwald,R.,Lemasters,J.J.Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria:spectral and metabolic properties[J].Biochim.Biophys.,1986,850:436~448.
    [15]Bradford,M.M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Anal.Biochem.,1976,72:248~254.
    [16]Crompton,M.The mitochondrial permeability transition pore and its role in cell death[J].Biochem,1999,341:233~249.
    [17]X.Lin,L.Y.Xue,R.Wang,et al.Protective effects of endomorphins,endogenous opioid peptides in the brain,on human low density lipoprotein oxidation[J].FEBS,2006,273:1275~1284.
    [18]Kim,D.Y.,Won,S.J.,Gwag,B.J.Analysis of mitochondrial free radical generation in animal models of neuronal disease[J].Free Radic.Biol.Med.,2002,33:715~723.
    [19]Elston,T.,Wang,H.,Oster,G.Energy transduction in ATP synthase[J].Nature,1998,391:510~513.
    [20]R L Levine,D Garland,C N Oliver,et al.Determination of carbonyl content in oxidatively modified proteins[J].Methods Enzymol,1990,186:464~487.
    [21]E R Stadtman.Protein oxidation and aging[J].Science,1992,257:1200~1224.
    [22]C D Smith,J M Carnet,P E Starke-Rend,et al.Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease[J].Proc Natl Acad Sci.1991,88:10540~10543.
    [23] Oliver, C. N., Ahn, B. W., Moerman, E. J. Aged- related changes in oxidised proteins[J].Journal of Biological Chemistry, 1987, 262: 5488-5491.
    [24] Decker E A, Ivanov V. Ben Zhanzhu, et al. Inhibition of low-density lipoprotein oxidation by carnosine and histidine[J].Food Chemistry, 2001,49(1): 511-516.
    [25] Yang C Y, Wiseman W S, Roger L K, et al. Oxidation of bovine - casein by hypochlorite[J].Free Radical, 1997,(22): 1235-1240.
    [26] Halliwell, B. Gutteridge, J. Role of free radicals and catalytic metal ions in human disease:an overview[J].Methods Enzymol, 1990,186: 81-85.
    [27] Englund, M., Hyllienmark, L., Brismar, T. Chemical hypoxia in hippocampal pyramidal cells affects membrane potential differentially depending on resting potential. Neuroscience,2001,106:89-94.
    [28] 周林珠,杨祥良,刘宏.灯盏乙素对大鼠肝线粒体氧化损伤的抑制作用[J].华中科技大学学报(自然科学版),2002,30(5):98-100.
    [29] Joshi, G, Sultana, R., Perluigi, M., et al. In vivo protection of synaptosomes from oxidative stress mediated by Fe2+/H2O2 or 2,2-azobis-(2-amidinopropane) dihydrochloride by the glutathione mimetictricyclodecan-9-yl-xanthogenate[J].Free Radic. Biol. Med., 2005,38:1023-1031.
    [30] Karina F. Devienne, Ieda M.R. Antioxidant activity of isocoumarins isolated from Paepalanthus bromelioides on mitochondria[J].Phytochemistry, 2007, 68: 1075-1080.
    [31] Solange C. Sousa, Evelise N. Maciel, Anibal E. Verces. Ca2+-induced oxidative stress in brain mitochondria treated with the respiratory chain inhibitor rotenone[J].FEBS Letters,2003, 543: 179-183.
    [32] Zhou, D, Lauderback, C. M, Brown, et al. D609 inhibits ionizing radiation-induced oxidative damage by acting as a potent antioxidant[J].Pharmacol. Exp. Then, 2001, 298:103-109.
    [33] Shacter,E.Quantification and significance of protein oxidation in biological samples[J].Drug Metab. Rev.2000,32,307-326.
    [34] Mercier, Y, Gatellier, P., & Renerre, M. Relationships between lipid and protein oxidation in different beef muscles. In Proceedings of41st ICoMST San Antonio, USA.1995,562-564.
    [35] Viljanen, K., Kivikari, R., & Heinonen, M. Protein-lipid interactions during liposome oxidation with added anthocyanin and other phenolic compounds. Journal of Agricultural and Food Chemistry.2004a,52:1104-1111.
    [36] 阎明.乙醇所致线粒体损伤与酒精性肝病机制的研究[D].山东大学,2006,12.
    [1] 钱庭宝.离子交换剂应用技术[M].天津:天津科学技术出版社,1984.
    [2] 沈同,王镜岩.生物化学(上册)(第二版)[M].北京:高等教育出版社,1993.
    [3] A S Egito, L Miclo, et al. Separation and characterization of mares milk α_(s1-),β-,κ-caseins,γ-casein-like, and protease peptone component 5-like peptides[J]. Dairy Sci, 2002, 85: 697-706.
    [4] S Bouhallab, C Henry, et al. Separation of small cationic bioactive peptides by strong ion-exchange chromatography[J].Chromatography A, 1996, 724:137-145.
    [5] 吴建平.大豆降压肽的研制[D].无锡轻工大学博士学位论文,1998.
    [6] 汪家政,范明.蛋自质技术手册[M].化京:科学出版社,2001.
    [7] Hearn M T W. Protein Purification, 2nd ed.[M]. New York: Jorn Wiley & Sons Inc., 1998,239-282.
    [8] Aguilar M I, Hearn T W. High-resolution reversed-phase high performance liquid chromatography of peptide and proteins[J]. Methods Enzymology, 1996, 270: 3-26.
    [9] P. Roepstorff, J. Fohlman. Proposal for a common nomenclature for sequence ions in mass spectra of peptides[J].Biomed Mass Spectrum, 1984, 11: 601-602.
    [10] 盛泉虎.串联质谱蛋白质鉴定方法的研究[M].上海:中国科学院上海生命科学研究院,2003.
    [11] Roepstorff, P., Fohlman, J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides[J].Biomedical Mass Spectrometry, 1984, 11: 601.
    [12] Recio, I., Visser, S. Two ion-exchange chromatographic methods for the isolation of antibacterial peptides from lactoferrin. In situ enzymatic hydrolysis on an ion-exchange membrane[J].Journal of Chromatography A, 1999a, 831: 191-201.
    [13] Hernandez-Ledesma, B., Miralles, B. Identification of antioxidant and ACE-inhibitory peptides in fermented milk[J].Journal of the Science of Food and Agriculture, 2005, 85:1041-1048.
    [14] Recio, I., Visser, S. Identification of two distinct antibacterial domains within the sequence of bovine as2-casein[J].Biochimicaet BiophysicaActa, 1999b, 1428: 314-326.
    [15] Papayannopoulos, I. A. The interpretation of collision-induced dissociation tandem mass spectra of peptides[J]. Mass Spectrometry Reviews, 1995,114:49-73.
    [16] Blanca Hern'andez-Ledesma, Lourdes Amigo, Mercedes Ramos. Application of high-performance liquid chromatography-tandem mass spectrometry to the identification of biologically active peptides produced by milk fermentation and simulated gastrointestinal digestion[J].Journal of Chromatography A, 2004,1049:107-114.
    [17] Chen H M, Muramoto K, Yamauchi F, et al. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein[J]. Agri Food Chem,1996,44:2619-2623.
    [18] Pena-Ramos EA, Xiong YL, Arteaga GE. Fractionation and characterization for antioxidant activity of hydrolyzed whey protein[J]. Sci Food Agri. 2004, 84(14): 1908-1918.
    [19] Saito K, Jin D. H., Ogawa T, et al. Antioxidative properties of tripeptide libraries prepared by the combinationa chemistry[J]. Agri Food Chem, 2003,51: 3668-3674.
    [20] Rajapakse N, Mendis E, Jung W K, et al. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties[J].Food Research International, 2005,38:175-182.
    [21] 吴建中.大豆蛋白的酶法水解及产物抗氧化活性的研究[D].华南理工大学,2003,5.
    [22] 李敏.简述杭氧化肽的作用[J].内蒙古农业科技,2002:146-148.
    [23] D(?)valos A, Miguel M, Bartolom(?) B. Antioxidant activity of peptides derived from egg white proteins by enzyme hydrolysis[J]. Food Protein, 2004,67(9): 1939-1944.
    [24] 史英钦.丙氨酰一谷氨酰胺二肽对烧伤大鼠血清谷胱甘肽浓度及抗氧化作用的影响[J].肠外和肠内营养,2002,9(1):40-41.
    [25] Suetsuna K, Ukeda H, Ochi H. Isolation and characterization of free radical scavenging activities peptides derived from casein[J]. Nutr Biochem, 2000,11(3): 128-131.
    [26] 沈蓓英.大豆蛋白抗氧化肽的研究[J].中国油脂,1996,21(6):21-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700