用户名: 密码: 验证码:
羊血浆蛋白—肌原纤维蛋白复合凝胶形成的作用力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血浆蛋白是一种营养、廉价的蛋白质资源,可与肌肉共同作用形成良好的凝胶,明显改善肉制品品质。本文以解析血浆蛋白复合型凝胶形成的作用力为目的,以羊背最长肌、羊血浆蛋白为实验材料,研究了羊肉肌原纤维蛋白、羊血浆蛋白热诱导凝胶的凝胶特性以及凝胶形成过程中的作用力变化规律;构建了羊血浆蛋白-羊肉肌原纤维蛋白复合凝胶模拟体系,明确了羊血浆蛋白对羊肉肌原纤维蛋白热诱导凝胶特性的提升作用;从分子间相互作用的角度入手,系统研究了疏水相互作用、静电作用、氢键及二硫键等作用力在复合凝胶形成过程中的作用与贡献;重点研究了肌球蛋白与白蛋白在热诱导过程中的相互作用方式;并在低盐羊肉乳化香肠中进行了应用。主要结论如下:
     (1)pH对羊肉肌原纤维蛋白热诱导凝胶特性具有显著影响(P<0.05)。pH7.5时,羊肉肌原纤维蛋白热诱导凝胶的硬度、保水性最高,微观结构致密、有序。形成羊肉肌原纤维蛋白热诱导凝胶的主要作用力为疏水相互作用,较低pH时二硫键也有参与;pH主要影响体系的离子键、氢键等作用力。
     (2)pH对羊血浆蛋白热诱导凝胶特性具有显著影响(P<0.05)。pH8.6时,羊血浆蛋白热诱导凝胶的硬度、保水性最高,形成典型的良好线状凝胶结构。pH5.0时羊血浆蛋白变性温度为71.5°C,pH8.6时则为80.9°C,二者与其凝胶点温度一致。凝胶形成过程中,羊血浆蛋白的-螺旋含量总体下降、无规卷曲含量升高。球蛋白、白蛋白聚集体是形成凝胶体的主要蛋白;pH5.0时,其中部分51kDa蛋白质先以二聚体、再以多聚体的形式进行聚集。
     (3)pH6.2时,羊血浆蛋白-羊肉肌原纤维蛋白复合凝胶中血浆蛋白含量的增加可明显改善复合凝胶的硬度、保水性(P <0.05),其中羊血浆蛋白含量10%时复合凝胶的最终储能模量最高,羊血浆蛋白含量50%时复合凝胶硬度最高(P <0.05);pH7.5时,羊血浆蛋白含量的增加反而降低了羊肉肌原纤维蛋白的保水性、硬度与储能模量(P <0.05)。pH6.2时,羊血浆蛋白可提高凝胶微观网络结构的有序性,形成了致密的多孔网状结构。
     (4)疏水相互作用、二硫键是形成羊血浆蛋白-羊肉肌原纤维蛋白复合凝胶的主要作用力。氢键、静电作用的改变对含羊肉肌原纤维蛋白较多的体系的凝胶特性影响较大;而在羊肉肌原纤维蛋白、羊血浆蛋白比例各半的体系中,pH介导的静电作用是造成其体系凝胶特性不同的主要原因。
     (5)pH6.2时,将50%的白蛋白替代肌球蛋白后可获得较好的凝胶特性;pH7.0时,凝胶性能反而变差。静电作用是造成肌球蛋白-白蛋白复合凝胶特性差异的主要原因,热诱导作用下肌球蛋白与白蛋白之间可形成二硫键交联,该交联反应涉及了肌球蛋白重链的所有部位,但轻链结构因无法提供足量的巯基,而不能与白蛋白发生热聚集反应。
     (6)添加2%~4%的羊血浆蛋白可明显改善羊肉乳化香肠的保水性、质构特性及感官特性(P<0.05);当羊血浆蛋白添加量为4%时,总体可接受性评分最高。在低盐羊肉乳化香肠中,羊血浆蛋白并未对产品质量产生不良影响。
As a nutritional, low-cost protein resource, plasma proteins could improve the gel properties ofmeat products significantly. To explain the molecular force of plasma proteins composite gelformation, longissimus dorsi muscle and plasma protein of lamb were used for the experimentalmaterial in the present study. The heat-induced gel properties of lamb myofibrillar proteins andplasma proteins were studied. A model system of plasma proteins-myofibrillar proteins composite gelwas constructed, and the effects of plasma proteins promoting to the texture of the heat-induced gelof lamb myofibrillar proteins were verified. The changes of molecular interactions during the processof gel forming was taken as a key point, and that the molecular forces of hydrophobic interactions,electrostatic interactions, hydrogen bonds and disulfide bonds, which promote the forming ofcomposite gel, were explored. The interaction modes of the myosin and albumin were studied. At last,the applications of plasma proteins on the low salt lamb emulsified sausages were studied. The resultswere as follows:
     (1) pH had a significantly influence on the heat-induced gel properties of lamb myofibrillarproteins (P <0.05). The highest water-holding capacity and hardness of the lamb myofibrillarproteins were both appeared at pH7.5, with a compact and ordered microstructure (P <0.05).Hydrophobic interactions were the main forces during the lamb myofibrillar proteins heat-inducedgel formation, but disulfide bonds had participated in the formation of gel at low pH. Hydrogenbonds and electrostatic interactions were affected by the pH of the systems.
     (2) pH had a significantly impact on the heat-induced gel properties of lamb plasma proteins (P<0.05). The highest water-holding capacity and hardness of the lamb plasma protein were bothappeared at pH8.6(P <0.05), and the gel was a typically fine-stranded gel with a compact andordered microstructure. The maximum denaturation temperature of the lamb plasma protein was71.5°C at pH5.0, and80.9°C at pH8.6, respectively. Both of the temperatures were the same to thetemperature of storage modulus transition. The fraction of-helix structure declined, and the randomcoil fraction tended to increase during the heat-induced process. The globins and albumin aggregationwere the main proteins to form the gel through disulfide bonds cross-linking. Some of the51kDaglobins aggregated through dimer firstly and then polymer at pH5.0.
     (3) Increasing the lamb plasma protein concentration, the gel hardness, water holding capacityof the myofibrillar proteins/plasma proteins composite protein gel would be increased significantly atpH6.2(P <0.05). The highest storage modulus was obtained when10%plasma protein added to thelamb myofibrillar proteins (P <0.05), but the highest hardness of the composite gel was appearedwhen50%plasma protein added (P <0.05). On the contrary, the gel hardness, water-holding capacity,storage modulus was decreased at pH7.5(P <0.05). Composite protein gels with high hardness andwater-holding capacity had a compact and ordered microstructure of three-dimensional network at pH6.2.
     (4) Hydrophobic interactions and disulfide bonds were the main molecular forces for theformation of the composite gel in the system. Changes of hydrogen bonds and electrostaticinteractions had the main effects on the gel properties of the system with high concentrationmyofibrillar of90%. Electrostatic interactions induced by pH changes was the main factors, whichresulted in the difference gel properties of the composite systems with50%myofribillar and50%plasma.
     (5) Myosin replaced by50%albumin can be improved the gel properties at pH6.2, butdecreased at pH7.0. Electrostatic interactions induced by pH changes was the main factor, whichresulted in the difference gel properties of the composite systems with50%myosin and50%albumin.The crosslinking reaction between myosin and albumin were involved in all the subfragment of MHCexcept the MLC, since MLC was unable to provide enough sulfydryl to form the disulfide bonds.
     (6) The lamb sausages containing2%~4%lamb plasma proteins had improved the cooking andtextural properties, and sensory characteristics of the emulsified reduced-sodium lamb sausages. Theaddition of4%lamb plasma proteins achieved a highest score of overall acceptability. The lambplasma proteins could be used in the production of emulsified reduced-sodium lamb sausages,without any detrimental effects on the quality of product.
引文
1.陈海华,薛长湖.淀粉对竹荚鱼鱼糜流变性质和凝胶特性的影响.农业工程学报,2009,25(5):293-298.
    2.蔡克周,张立娟,孔保华,等.猪血浆蛋白与大豆蛋白在乳化肠中的应用.食品研究与开发,2010,31(11):44-47.
    3.陈立德.肌原纤维蛋白凝胶作用力影响因素的研究[硕士学位论文].重庆:西南大学,2010.
    4.董秋颖,杨玉玲,许婷.从质构学角度研究肌原纤维蛋白凝胶形成的作用力.食品与发酵工业,2009,35(5):45-49.
    5.董秋颖.鸡肉肌原纤维蛋白与食品胶混合凝胶特性及其形成作用力研究[硕士学位论文].南京:南京财经大学,2010.
    6.方梦琳,张德权,张柏林,等.我国羊肉加工业的现状及发展趋势.肉类研究,2008,109(3):3-7.
    7.费英,韩敏义,杨凌寒,等. pH对肌原纤维蛋白二级结构及其热诱导凝胶特性的影响.中国农业科学,2010,43(1):164-170.
    8.冯云,张伟清,彭增起,等.牛血浆蛋白对猪肉盐溶蛋白质凝胶特性的影响.食品科学,2011,13:28-31.
    9.郭世良,赵改名,王玉芬,等.离子强度和pH对肌原纤维蛋白热诱导凝胶特性的影响.食品科技,2008,33(1):84-87.
    10.韩敏义.肌原纤维蛋白结构与热诱导凝胶功能特性关系研究——低场NMR和拉曼光谱法[博士学位论文].南京:南京农业大学,2009.
    11.胡飞华.梅鱼鱼糜超高压凝胶化工艺及凝胶机理的研究[硕士学位论文].杭州:浙江工商大学,2010.
    12.简华君,熊幼翎,唐学燕,等.大豆分离蛋白热变性程度对肌纤维蛋白凝胶性质的影响.食品与机械,2009,25(6):2-14.
    13.蒋士龙.加工条件对再制干酪蛋白质二级结构的影响.上海交通大学学报(农业科学版),2009,27(3):297-299,309.
    14.靳红果,王蓉蓉,张伟清,等.添加牛血浆蛋白MTG酶对乳化肠凝胶特性的影响.食品工业科技,2011,11:364-367.
    15.阚建全.食品化学.北京:中国农业出版社,2008:55.
    16.李芙琴,马黎明.浅谈家畜血液资源的开发利用.养殖与饲料,2010,6:73-75.
    17.李辉尚,李里特,陈明海,等.大豆蛋自质含量对北豆腐得率和品质的影响.粮油食品科技,2005,13(3):16-18.
    18.李继红.不同种类肉盐溶蛋白凝胶特性的研究[硕士学位论文].秦皇岛:河北农业大学,2004.
    19.刘海静,孙素琴,李安,等.基于红外光谱三级鉴别技术的螺旋藻产品品质分析.中国农业科学,2012,45(22):4738-4748.
    20.刘海梅,熊善柏,谢笔钧,等.鲢鱼糜凝胶形成过程中化学作用力及蛋白质构象的变化.中国水产科学,2008,15(3):469-475.
    21.刘海梅.鲢鱼糜凝胶及形成机理的研究[博士学位论文].武汉:华中农业大学,2007.
    22.刘琴,包海蓉,奚春蕊,等.金枪鱼肌原纤维蛋白热凝及流变特性的研究.食品工业科技,2013,4:148-152.
    23.林丽军.肌球蛋白的ATPase活性及热凝胶特性研究[硕士学位论文].南京:南京农业大学,2004.
    24.路秀玲,苏志国.人血清白蛋白纯化技术研究进展.生物工程学报,2002,18(6):761-765.
    25.孟晓霞,彭增起,靳红果,等.牛血浆蛋白凝胶特性研究.食品研究与开发,2012,33(5):157-160.
    26.孟晓霞.牛血浆蛋白加工特性及应用研究[硕士学位论文].南京:南京农业大学,2011.
    27.缪进,邹玉峰,王鹏,等.水洗结合pH调整对鸡肉糜低盐热凝胶特性的影响.农业工程学报,2012,28(24):287-291.
    28.倪晨,石彦国.血清蛋白质加热凝胶的形成.中国食品学报,2004,4(2):58-61.
    29.潘君慧.冻藏方式、猪肉蛋白氧化及猪肉品质关系的研究[硕士学位论文].无锡:江南大学,2011.
    30.尚永彪,夏杨毅,张彩霞,等.磷酸盐对PSE猪肉肌原纤维蛋白溶胶及凝胶性质的影响.食品科学,2010,31(1):38-42.
    31.唐建凤.加热方式对血浆流变学及质构性质的影响.食品研究与开发,2012,33(12):104-107.
    32.田悦,杜军保.二硫键和巯基在蛋白质结构功能中的作用及分析方法.实用儿科临床杂志,2007,22(19):1499-1501.
    33.王琳琛.不同品种羊肉制肠适宜性研究[硕士学位论文].北京:中国农业科学院,2013.
    34.王鹏.血液蛋白的凝胶性质及其对肌原纤维蛋白凝胶的影响[博士学位论文].南京:南京农业大学,2010.
    35.王宇.不同温度处理及添加物对猪肉肌原纤维蛋白功能性的影响[硕士学位论文].哈尔滨:东北农业大学,2010.
    36.王征南,范润梅.我国动物血深加工产业发展状况及对策.饲料与畜牧,2011,1:60-68.
    37.吴满刚,熊幼翎,陈洁.不同淀粉对肌纤维蛋白流变学性质和凝胶持水性的影响.食品工业科技,2010,10:92-94.
    38.吴烨,许柯,徐幸莲,等.低场核磁共振研究pH对兔肌球蛋白热凝胶特性的影响.食品科学,2010,31(9):6-11.
    39.吴烨.兔肌球蛋白热诱导凝胶化学作用力与凝胶结构功能关系的研究[硕士学位论文].南京:南京农业大学,2010.
    40.夏秀芳,孔保华,张宏伟.肌原纤维蛋白凝胶形成机理及影响因素的研究进展.食品科学,2009,30(9):264-268.
    41.徐幸莲,周光宏,黄鸿兵,等.蛋白质浓度、pH、离子强度对兔骨骼肌肌球蛋白热凝胶特性的影响.江苏农业学报,2004,20(3):159-163.
    42.徐幸莲.兔骨骼肌肌球蛋自热诱导凝胶特性及成胶机制研究[博士学位论文].南京:南京农业大学,2003.
    43.许柯,吴烨,徐幸莲.不同条件下兔骨骼肌肌球蛋白流变特性的研究.食品科学,2010,31(21):10-14.
    44.杨龙江,南庆贤.肌肉蛋白质的热诱导凝胶特性及其影响因素.肉类工业,2001(10):39-42.
    45.杨速攀,彭增起.肌原纤维蛋白凝胶研究进展.河北农业大学学报,2003,26(zl):160-162.
    46.野内俊伸,沟上宽,田嶋义高,等.人血清白蛋白多聚体的单体化方法.中国专利:CN01805647.4,2003年3月26日.
    47.于福满,喻洪湛,姜无边,等.猪血深加工制品在肉制品中的应用研究进展.肉类研究,2011,7:37-40.
    48.于克锋,袁春红,陈舜胜,等.应用胰凝乳蛋白酶消化法比较冬季和夏季鲢鱼肉肌球蛋白的构造特性.水产学报,2011,35(6):940-946.
    49.于巍,周坚.鱼类肌原纤维蛋白热凝及流变特性研究进展.2007,32(11):14-16.
    50.余霞,常瑞红,李燕,等.血浆蛋白粉与海藻酸钠对猪肉火腿肠品质的影响.肉类研究,2011,25(4):1-6.
    51.张雅玮,郭秀云,彭增起.食盐替代物研究进展.肉类研究,2011,25(2):36-38.
    52.中国国家统计局.2013年国民经济和社会发展统计公报.http://www.stats.gov.cn/tjsj/zxfb/201402/t20140224_514970.html,2014-02-24.
    53. An H., Peters M. Y., Seymour T. A. Roles of endogenous enzymes in surimi gelation. Trendsin Food Science and Technology,1996,7(10):321-327.
    54. Autio K., Mietsch F. Heat-induced gelation of myofibrillar proteins and sausages: effect ofblood plasma and globin. Journal of Food Science,1990,55:1494-1496.
    55. Barrios-Peralta P., Pérez-Won M., Tabilo-Munizaga G. Effect of high pressure on theinteractions of myofbrillar proteins from abalone (Haliotis rufencens) containing several foodadditives. LWT-Food Science and Technology,2012,49:28-33.
    56. Baxter S. R., Skonberg D. I. Gelation properties of previously cooked minced meat fromJonah crab (Cancer borealis) as affected by washing treatment and salt concentration. FoodChemistry,2008,109:332-339.
    57. Benjakul S., Visessanguan W. Pig plasma proteins: potential use as proteinase inhibitor forsurimi manufacture; inhibitory activity and the active components. Journal of the Science ofFood Agriculture,2000,9:1351-1356.
    58. Benjakul S., Visessanguan W. Transglutaminase-mediated setting in bigeye snapper Surimi.Food Research International,2003,36(3):253-266.
    59. Benjakul S., Visessanguan W., Tueksuban J., et al. Effect of some protein additives onproteolysis and gel-forming ability of lizardfish (Saurida tumbil) Food Hydrocolloids,2004a,18:395-401.
    60. Benjakul S., Visessanguanb W., Chantarasuwan C. Effect of porcine plasma proteins andsetting on gel properties of surimi produced from fsh caught in Thailand. LWT-FoodScience and Technology,2004b,37(2):177-185.
    61. Benjakul S., Visessanguan W., Srivilai C. Porcine plasma proteins as proteinase inhibitor inbigeye sannpper (Priacanthus tayenus) muscle and surimi. Journal of the Science of Food andAgriculture,2001,81:1039-1046.
    62. Bergara-Almeida S., Aparecida M., da Silva A. P. Hedonic scale with reference: Performancein obtaining predictive models. Food Quality and Preference,2002,13:57-64.
    63. Bourne M. C. Texture profile analysis. Food Technology,1978,33:62-66.
    64. Boye J. I., Kalab M., Alli I., et al. Microstructural properties of heat-set whey protein gels:effect of pH. Lebensmittel Wissenschaft und Technologie,2000,33(3):165-172.
    65. Boyer C., Joandel S., Roussilhes V., et al. Heat-induced gelation of myofibrillar proteins andmyosin from fast-and slow-twitch rabbit muscles. Journal of food science,1996,61(6):1138-1143.
    66. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIRspectra. Biopolymer,1986,25:469-487.
    67. Carballo J., Mota N., Barreto G., et al. Binding properties and color of Bologna sausage madewith varying fat levels, protein levels and cooking temperatures. Meat Science,1995,41:301-313.
    68. Chan J. K., Gill T. A., Paulson A. T.Thermal aggregation of myosin subfragments from codand herring. Journal ofFood Science,1993,58:1057-1061.
    69. Chantrapornchai W., McClements D. J. Influence of NaCl on optical properties, large-strainrheology and water holding capacity of heat-induced whey protein iso-late gels.2002, FoodHydrocolloids,16:467-476
    70. Chin K. B., Go M. Y., Xiong Y. L. Konjac flour improved textural and water retentionproperties of transglutaminase-mediated, heat-induced porcine myofibrillar proteins gel:Effect of salt level and transglutaminase incubation. Meat Science,2009,81(3):565-572.
    71. Cofrades S., Guerra M. A., Carballo J., et al. Plasma proteins and soy fiber content effect onbologna sausage properties as influenced by fat level. Journal of Food Science,2000,65:281-287.
    72. Creighton, T. E. Protein structure and molecular properties (2nd ed.). New York, USA: W.H.Freeman&Co.(1993).
    73. Dàvila E., Parés D. Structure of heat-induced plasma proteins gels studied by fractal andlacunarity analysis. Food Hydrocolloids,2007b,2:147-153.
    74. Dàvila E., Parés D., Cuvelier G., et al. Heat-induced gelation of porcine blood plasma proteinsas afected by pH. Meat Science,2007a,76:216-225.
    75. Dàvila E., Parés D., Howell N. K. Studies on plasma proteins interactions in heat-induced gelsby differential scanning calorimetry and FT-Raman spectroscopy. Food Hydrocolloids,2007c,7:1144-1152.
    76. Deng Y., Rosenvold K., Karlsson A. H., et al. Relationship between thermal denaturation ofporcine muscle proteins and water holding capacity. Journal of Food Science,2002,67(5):1642-1647.
    77. Desmond E. Reducing salt: A challenge for the meat industry. Meat Science,2006,74:188-196.
    78. Doerscher D. R., Briggs J. L., Lonergan S. M. Effects of pork collagen on thermal andviscoelastic properties of purified porcine myofbrillar protein gels. Meat Science,2003,66(1):181-188.
    79. Doyle M. E., Glass K. A. Sodium reduction and its effect on food safety, food quality, andhuman health. Comprehensive Reviews in Food Science and Food Safety,2010,9:44-56.
    80. Duangmal K., Taluengphol A. Effect of protein additives, sodium ascorbate, and microbialtransglutaminase on the texture and colour of red tilapia surimi gel. International Journal ofFood Science and Technology,2010,45:48-55.
    81. Durack E., Alonso-Gomez M., Wilkinson M. G. Salt: A review of its role in food science andpublic health. Current Nutrition&Food Science,2008,4:290-297.
    82. Eakpetch P., Benjakul S., Visessanguan W., et al. Autolysis of Pacifc White Shrimp(Litopenaeus vannamei) Meat: Characterization and the Effects of Protein Additives. Journalof Food Science,2008,73(2): S95-S103.
    83. Ferry J. D. Protein gels. Protein Chemistry,1948,4(1):1-2.
    84. Foegeding E A. Thermally induced changes in muscle proteins. Food Technology.1988,42:58-64.
    85. Foegeding E. A, Allen C. E. Dayton W. R. Effect of heating rate on thermally formed myosin,fibrinogen and albumin gels. Journal of Food Science,1986,51(1):104-108.
    86. Foegeding E. A., Lanier T. C. The contribution of non-muscle proteins to texture of gelledmuscle protein foods. Cereal Food World,1987,32:202-205
    87. Fort N., Carretero C., Pares D., et al. Combined treatment of porcine plasma with microbialtransglutaminase and cysteine: Effects on the heat-induced gel properties. Food Hydrocolloids,2007,21(3):463-471.
    88. Furlan L. T., Rinaldoni A. N., Padilla A. P., et al. Assessment of functional properties ofbovine plasma proteins compared with other protein concentrates application in a hamburgerformulation. American Journal of Food Technology,2011,6(9):717-729.
    89. Gornall A. G., Bardawill C. J., David M. M. Determination of serum proteins by means of thebiuret reaction. Journal of Biological Chemistry,1949,177(2):751-766.
    90. Grossi A., S ltoft-Jensen J., Knudsen J. C., et al. Reduction of salt in pork sausages by theaddition of carrot fibre or potato starch and high pressure treatment. Meat Science,2012,92:481-489.
    91. Han M. Y., Zhang Y. J., Fei Y., et al. Effect of microbial transglutaminase on NMRrelaxometry and microstructure of pork myofibrillar proteins gel. European Food Researchand Technology,2009,228(4):665-670.
    92. Hand L. W., Hollingswort C. A., Calkins C. R., et al. Effects of pre-blending reduced fat andsalt levels on frankfurter characteristics. Journal of Food Science,1987,52:1149-1151.
    93. Hayakawa T., Yoshida Y., Yasui M., et al. Heat-induced gelation of myosin in a low ionicstrength solution containing L-histidine. Meat Science,2012,90(1):77-80.
    94. Hemung B. O., Chin K. B. Effects of fsh sarcoplasmic proteins on the properties ofmyofbrillar protein gels mediated by microbial transglutaminase. LWT-Food Science andTechnology,2013,53:184-190.
    95. Hermansson A. Gel characteristics-structure as related to texture and water binding of bloodplasma gels. Journal of Food Science.1982,47(6):1965-1972.
    96. Herrero A. M., Hoz L., Ordó ez J. A., et al. Magnetic resonance imaging study of the cold-setgelation of meat systems containing plasma powder. Food Research International,2009,42(9):1362-1372.
    97. Hong G. P., Chin K. B. Evaluation of sodium alginate and glucono--lactone levels on thecold-set gelation of porcine myofbrillar proteins at different salt concentrations. Meat Science,2010,85:201-209.
    98. Hong G. P., Min S. G., Chin K. B. Emulsion properties of pork myofibrillar proteins incombination with microbial transglutaminase and calcium alginate under various pHconditions. Meat Science,2012a,90(1):185-193.
    99. Hong G. P., Xiong Y. L. Microbial transglutaminase-induced structural and rheologicalchanges of cationic and anionic myofibrillar proteins. Meat Scienceb,2012,91(1):36-42.
    100.Howell N. K., Lawrie R. A. Functional aspects of blood plasma proteins, II. Gelling properties.Journal of Food Techenology,1984,19:289-295.
    101.Hurtado S., Saguer E., Toldrà M., et al. Porcine plasma as polyphosphate and caseinatereplacer in frankfurters, Meat Science,2012,90:624-628.
    102.Ishioroshi M., Jima K. S., Yasui T. Heat-induced gelation of myosin: factors of pH and saltconcentrations. Journal of food science,1979,44(5):1280-1284.
    103.Jarmoluk A., Pietrasik Z. Response surface methodology study on the effects of blood plasma,microbial transglutaminase and κ–carrageenan on pork batter gel properties. Journal of FoodEngineering,2003,60:327-334.
    104.Jiang J, Xiong Y. L. Extreme pH treatments enhance the structure-reinforcement role of soyprotein isolate and its emulsions in pork myofbrillar protein gels in the presence of microbialtransglutaminase. Meat Science,2013,93:469-476.
    105.Karpati G.2010Disorders of voluntary muscle.8th ed. Cambridge. New York: CambridgeUniversity Press.
    106.Kato N., Suzuki Y., Kunimoto M., et al. Comparison of effects of plasma and albumenpowders on the physical property of heated gels formed from salt-ground of three species fshfrozen surimi. Journal of the Japanese Society for Food Science and Technology,2010,57:26-31.
    107.Ko W. C., Yu C. C., Hsu K. C. Changes in conformation and sulfhydryl groups of tilapiaactomyosin by thermal treatment. Food Science and Technology,2007,10:1-5.
    108.Kristinsson H. G., Hultin H. O. Role of pH and Ionic Strength on Water Relationships inWashed Minced Chicken-breast Muscle Gels. Journal of Food Science,2003,3:917-922.
    109.Kudre T. G., Benjakul S. Combining effect of microbial transglutaminase and bambaragroundnut protein isolate on gel properties of surimi from sardine (Sardinella albella). FoodBiophysics,2013a,8:240-249.
    110.Kudre T., Benjakul S., Kishimura H. Effects of protein isolates from black bean andmungbean on proteolysis and gel properties of surimi from sardine (Sardinella albella). LWT-Food Science and Technology,2013b,50:511-518.
    111.Kuraishi C., Sakamoto J., Yamazaki K., et al. Production of restructured meat using microbialtransglutaminase without salt or cooking. Journal of Food Science,1997,62:488-490,515.
    112.Langton M., Astr m A., Hermansson A. M. Textures as a reflection of microstructure. FoodQuality and Preference,1996,7:185-191.
    113.Langton M., Hermansson A. M. Fine-stranded and particulate gels of β-lactoglobulin andwhey protein at varying pH. Food Hydrocolloids,1992,5(6):523-539.
    114.Lanier T. C., Carvajal P., Yongsawatdigul J. Surimi gelation chemistry. In J.W. Park (Ed.),Surimi and surimi seafood (2nd ed., pp.451–470).2004. New York: Marcel Dekker.
    115.Lavelle C. L., Foegeding E. A. Gelation of turkey breast and thigh myofibrils: Effects of pH,salt and temperature. Journal of Food Science,1993,58(4):727-730.
    116.Law N, Frost C, Wald N. By how much does dietary salt reduction lower blood pressure.I-Analysis of data from trials of salt reduction. British Medical Journal,1991a,30:819-824
    117.Law N., Frost C., Wald N. By how much does dietary salt reduction lower blood pressure.I-Analysis of observational data among populations. British Medical Journal,1991b,30:811-815
    118.Lawrie R. A. Lawrie's Meat Science (7th ed.). Cambridge: Woodhead Publishing Limited,2006:50-51.
    119.Lawless H. T., Heymann H. Sensory evaluation of food, Principles and practices. Chapman&Hall, New York, USA,1998.
    120.Ledward D. A. Gelation of gelatin. Functional properties of food macromolecules, Elsevier,London,1986:171-201.
    121.Lee H. C., Chin K. B. Evaluation of mungbean protein isolates at various levels as a substratefor microbial transglutaminase and water binding agent in pork myofbrillar protein gels.International Journal of Food Science and Technology2013,48:1086-1092.
    122.Lennon A. M., McDonald K., Moon S. S., et al. Performance of cold-set binding agents inreformed beef steaks. Meat Science,2010,4:620-624.
    123.Lesiów T., Xiong Y. L. Chicken muscle homogenate gelation properties: effect of pH andmuscle fiber type. Meat Science,2003,64:399-403.
    124.Li Y., Kong B., Xia X. Structural changes of the myofibrillar proteins in common carp(Cyprinus carpio) muscle exposed to a hydroxyl radical-generating system. ProcessBiochemistry,2013,48(5-6):863-870.
    125.Lin S. B., Chen L. C., Chen H. H. The change of thermal gelation properties of horsemackerel mince led by protein denaturation occurring in frozen storage and consequential airfloatation wash. Food Research International,2005,38:19-27.
    126.Liu Q., Bao H. R., Xi C. R., et al. Rheological characterization of tuna myofbrillar protein inlinear and nonlinear viscoelastic regions. Journal of Food Engineering,2014,121:58-63.
    127.Liu R., Zhao S. M., Liu Y. M., et al. Effect of pH on the gel properties and secondary structureof fish myosin. Food Chemistry,2010,121(1):196-202.
    128.Liu R., Zhao S. M., Xie B. J., et al. Contribution of protein conformation and intermolecularbonds to fish and pork gelation properties. Food Hydrocolloids,2011,25(5):898-906.
    129.Liu R., Zhao S. M., Xiong S. B., et al. Role of secondary structure in the gelation of porcinemyosin at different pH values. Meat Science,2008a,80(3):632-639.
    130.Liu R., Zhao S. M., Xiong S. B., et al. Rheological properties of fish actomyosin and porkactomyosin solutions. Journal of Food Engineering,2008b,85:173-179.
    131.Luo L., Tashiro Y., Ogawa H. Relationship between the water molecules in fsh-meat gel andthe gel structure. Fisheries Science,2012,78(5):1137–1146.
    132.Matsudomi N., Oshita T., Kobayashi K. Synergistic interaction between b-lactoglobulin andbovine serum albumin in heat-induced gelation. Journal of Dairy Science,1994,77(6):1487-1493.
    133.Morita J. I., Yasui T. Involvement of hydrophobic residues in heat-induced gelation of myosintail subfragments from rabbit skeletal muscle. Agricultural Biological Chemistry.1991,55:597-599.
    134.Mulvihill D. M., Rector D., Ensella J. E. Effect of structuring and destructuring anionic ionson the rheological properties of thermally induced β-lactoglobulin gels. Food Hydrocolloids,1990,4:267-276.
    135.Nagano T., Tokita M. Viscoelastic properties and microstructures of11S globulin and soybeanprotein isolate gels: Magnesium chloride-induced gels. Food Hydrocolloids,2011,25:1647-1654.
    136.Nakamura T., Utsumi S., Mori T. Network structure formation in thermally-induced gelationof glycinin. Journal of Agricultural and Food Chemistry,1984,32(2):349-352.
    137.Ockerman H., Hansen C. Blood Utilization Animal by-product processing. New York: EllisHorwood,1988.
    138.Ogawa M., Kanamaru J. U. N., Miyashita H., et al. Alpha-helical structure of fish actomyosin:changes during setting. Journal of Food Science,1995,60(2):297-299.
    139.O'Riordan D. Kinsellaj E., Mulvihilld M. Gelation of plasm proteins. Food Chemistry,1989a,33(3):203-214.
    140.O'Riordan D., Morrissey P.A., Kinsella J. E., et al. The effects of salts on the rheologicalproperties of plasma proteins gels. Food Chemistry,1989b,34(4):249-259.
    141.Oshodi A. A., Ojokan E. Effects of salts on some of the functional properties of bovine plasmaproteins concentrate. Food Chemistry,1997,59(3):333-338.
    142.Otte J., Schumacher E., Ipsen R.et al. Protease induced gelation of unheated and heated wheyproteins: effects of pH, temperature and concentration of proteins, enzyme and salts.International Dairy Journal,1999,9:801-812.
    143.Parés D., Ledward D. A. Emulsifying and gelling properties of porcine blood plasma asinfluenced by high-pressure processing. Food Chemistry,2001,74:139-145.
    144.Parés D., Saguer E., Pap N. Low-salt porcine serum concentrate as functional ingredient infrankfurters. Meat Science,2012,92:151-156.
    145.Parés D., Saguer J., Su ol J., et al. Functional properties of heat induced gels from liquid andspray dried porcine blood plasma as influenced by pH. Journal of Food Science,1998,63:958-961.
    146.Pérez-Mateos M., Lourenco H., Montero P., Borderías A. J. Rheological and biochemicalcharacteristics of high-pressure-and heat-induced gels from blue whiting (Micromesistiuspoutassou) muscle proteins. Journal of Agricultural and Food Chemistry,1997,45(1):44-49.
    147.Pietrasik Z., Jarmoluk A., Shand P. J. Effect of non-meat proteins on hydration and texturalproperties of pork meat gels enhanced with microbial transglutaminase. LWT-Food Scienceand Technology,2007,40(5):915-920.
    148.Poligné I., Collignan A., Trystram G. Processing smoked pork belly by immersion in acomplex solution at high temperature. Journal of Food Engineering.2005,66:155-169.
    149.Puolanne E. J., Ruusunen M. H., Vainionp J. I. Combined effects of NaCl and raw meat pHon water-holding in cooked sausage with and without added phosphate. Meat Science,2001,58:1-7.
    150.Ramos-Clamont G., Fernández-Michel S., Carrillo-Vargas L., et al. Functional properties ofprotein fractions isolated from porcine blood. Journal of Food Science,2003,68(4):11961200.
    151.Rawdkuen S., Benjakul S., Visessanguan W. Effect of cysteine proteinase inhibitor containingfraction from chicken plasma on autolysis and gelation of Pacifc whiting surimi. FoodHydrocolloids,2007a,21:1209-1216.
    152.Rawdkuen S., Benjakul S., Visessanguan W., et al. Chicken plasma proteins affects gelation ofsurimi from bigeye snapper (Priacanthus tayenus). Food Hydrocolloids,2004,18(2):259-270.
    153.Rawdkuen S., Benjakul S., Visessanguan W., et al. Chicken plasma proteins: Proteinaseinhibitory activity and its effect on surimi gel properties. Food Research International,2004,2:156-165.
    154.Rawdkuen S., Benjakul S., Visessanguan W., et al. Combination effects of chicken plasmaproteins and setting phenomenon on gel properties and cross-linking of bigeye snapper muscleproteins. LWT-Food Science and Technology,2005,4:353-362.
    155.Rawdkuen S., Benjakul S., Visessanguan W., et al. Cysteine proteinase inhibitor from chickenplasma: Fractionation, characterization and autolysis inhibition of fish myofibrillar proteins.Food Chemistry,2007b,101(4):1647-1657.
    156.Rawdkuen S., Benjakul S., Visessanguan W., et al.. Effect of chicken plasma proteins andsome protein additives on proteolysis and gel-forming ability of sardine (sardinella gibbosa)surimi. Journal of Food Processing and Preservation,2007c,31(4):492-516.
    157.Rengifo J., Ramírez L., Molina D., et al. Production and functional properties of hydratedbovine plasma in salami type sausages. Revista Colombiana de Ciencias Pecuarias,2010,23:199-206.
    158.Rüegg U. T., Rudinger J. Cleavage of disulfde bonds in proteins. Methods in Enzymology,1977,47:111-116.
    159.Saguer E., Alvarez P. A., Sedman J., et al. Study of the denaturation/aggregation behavior ofwhole porcine plasma and its protein fractions during heating under acidic pH byvariable-temperature FTIR spectroscopy. Food Hydrocolloids,2013,33(2):402-414.
    160.Saguer E., Alvarez P., Ismail A. A. Heat-induced denaturation/aggregation of porcine plasmaand its fractions studied by FTIR spectroscopy. Food Hydrocolloids,2012,27(1):208-219.
    161.Saguer E., Alvarez P., Sedman J., et al. Heat-induced gel formation of plasma proteins: Newinsights by FTIR2D correlation spectroscopy. Food Hydrocolloids,2009,23:874-879.
    162.Saguer E., Fort N., Alvarez P. A., et al. Structure-functionality relationships of porcine plasmaproteins probed by FTIR spectroscopy and texture analysis. Food Hydrocolloids,2008,3:459-467.
    163.Samejima K., Ishioroshi M., Yasui T. Relative roles of the head and tail portions of themolecule in heat-induced gelation of myosin. Journal of food science,1981,46(5):1412-1418.
    164.Sano T., Noguchi S. F., Matsumoto J. J, et al. Effect of ionic strength on dynamic viscoelasticbehavior of myosin during thermal gelation. Journal of Food Science,1990,55(1):51-54.
    165.Santé-Lhoutellier V., Engel E., Aubry L., et al. Effect of animal (lamb) diet and meat storageon myofbrillar protein oxidation and in vitro digestibility. Meat Science,2008,79:777-783.
    166.Seymour T.A., Peters M.Y., Morrissey M. T., et al. Surimi gel enhancement by bovine plasmaproteins. Journal of Agricultural and Food Chemistry,1997,45:2919-2923.
    167.Sharp A., Offer G. The mechanism of formation of gels from myosin molecules. Journal of thescience of food and agriculture,1992,58:63-73.
    168.Shimada K., Matsushita S. Thermal coagulation of egg albumin. Journal of Agriculture andFood Chemistry,1980,28:409-412.
    169.Siegel D. G., Schmidt G. R. Ionic, pH and temperature effects on the binding ability of myosin.Journal of Food Science,1979,44:1686.
    170.Silva J. G., Morais H. A., Oliveira et al. Addition effects of bovine blood globin and sodiumcaseinate on the characteristics of raw and cooked ham plate. Meat Science,2002,63:177-184.
    171.Smyth A. B., O'Neill E. Heat-induced gelation properties of surimi from mechanicallyseparated chicken. Food Science,1997,62(2):326-330.
    172.Smyth A. B., Smith D. M., O'neill E. Disulfide Bonds influence the heat-induced chickenbreast muscle myosin. Journal of Food Science,1998,63(4):584-587.
    173.Spink C. H. Differential scanning calorimetry. Methods in Cell Biology,2008,84:115-141.
    174.Sun J. G., Wu Z., Xu X. L., et al. Effect of peanut protein isolate on functional properties ofchicken salt-soluble proteins from breast and thigh muscles during heat-induced gelation.Meat Science,2012a,91(1):88-92.
    175.Sun X. D., Arntfield S. D. Gelation properties of chicken myofibrillar proteins induced bytransglutaminase crosslinking. Journal of Food Engineering,2011,107(2):226-233.
    176.Sun X. D., Arntfield S. D. Gelation properties of myofibrillar/pea protein mixtures induced bytransglutaminase crosslinking. Food Hydrocolloids,2012b,27:394-400.
    177.Sun X. D., Arntfield S. D. Gelation properties of salt-extracted pea protein isolate catalyzedby microbial transglutaminase cross-linking. Food Hydrocolloids,2011,25:25-31
    178.Sun X. D., Arntfield S. D. Molecular forces involved in heat-induced pea protein gelation:Effects of various reagents on the rheological properties of salt-extracted pea protein gels.Food Hydrocolloids,2012c,28(2):325-332.
    179.Tanford C. Protein denaturation. Advances in Protein Chemistry,1968,23:121-282.
    180.Tobin B. D., O'Sullivan M. G., Hamill R. M. The impact of salt and fat level variation on thephysiochemical properties and sensory quality of pork breakfast sausages. Meat Science,2013,93(2):145-152
    181.ToldráF., Aristoy M., Mora L., et al. Innovations in value-addition of edible meat by-products.Meat Science,2012,92:90-296.
    182.Tornberg E. Efects of heat on meat proteins-Implications on structure and quality of meatproducts. Meat Science,2005,70(3):493-508.
    183.Tseng T. F., Liu D. C., Chen M. T. Evaluation of transglutaminase on the quality of low-saltchicken meat-balls. Meat Science,2000,55:427-431.
    184.Utsumi S., Damodaran S., Kinsella J. E. Heat-induced interactions between soybean proteins:preferential association of11S basic subunits and b subunits of7S. Journal of Agricultural andFood Chemistry,1984,32,1406-1412.
    185.Venugopal V., Doke S. N., Nair P. M. Gelation of shark myofibrillar proteins by weak organicacids. Food Chemistry,1994,50(2):185-190.
    186.Visessanguan W., Ogawa M., Nakai S., et al. Physicochemical changes and mechanism ofheat-induced gelation of Arrowtooth Flounder myosin. Journal of Agricultural and FoodChemistry,2000,48:1016-1023.
    187.Wagner J. R., Anon M. C. Denaturation kinetics of myofibrillar proteins in bovine muscle.Journal of Food Science,1985,50(6):1547-1550,1563.
    188.Wallqvist A., Covell D. G., Thirumalai D. Hydrophobic interactions in aqueous urea solutionswith implications for the mechanism of protein denaturation. Journal of American ChemistSociety,1998,120:427-428.
    189.Wang F. S., Lin C. W. Molecular forces involved in heat-induced porcine blood curd. Journalof Agricultural and Food Chemistry,1994,42(2):1085-1088.
    190.Wang H., Luo Y. K., Shen H. X. Effect of frozen storage on thermal stability of sarcoplasmicprotein and myofibrillar proteins from common carp (Cyprinus carpio) muscle. InternationalJournal of Food Science and Technology,2013a,48:1962-1969.
    191.Wang P., Xu X., Huang M., et al. Effect of pH on heat-induced gelation of duck blood plasmaproteins. Food Hydrocolloids,2013b,35:324-331.
    192.Weeds A. G., Pope B. Study on the chymotrypsin digestion of myosin-effect of divalentcations on proteolytic susceptility. Journal of Molecular Biology,1997,111:129-157.
    193.Westphalen A. D., Briggs J. L., Lonergan S. M. Influence of muscle type on rheologicalproperties of porcine myofibrillar proteins during heat-induced gelation. Meat Science,2006,72(4):697-703.
    194.Westphalen A. D., Briggs J. L., Lonergan S. M. Influence of pH on rheological properties ofporcine myofibrillar proteins during heat induced gelation. Meat Science,2005,70(2):293-299.
    195.World Health Organization. Cardiovascular diseases. Available from: http://www.who.int/mediacentre/factsheets/fs317/en/index.html;http://www.who.int/cardiovascular_diseases/priorities/en/index.html. Accessed Dec.4,2011.
    196.Wu M. G., Xiong Y. L., Chen J. Rheology and microstructure of myofbrillar protein-plantlipid composite gels: Effect of emulsion droplet size and membrane type. Journal of FoodEngineering,2011a,106(4):318-324.
    197.Wu M. Xiong Y. L., Chen J. Role of disulphide linkages between protein-coated lipid dropletsand the protein matrix in the rheological properties of porcine myofbrillar protein-peanut oilemulsion composite gels. Meat Science,2011b,88:384-390.
    198.Wu M. Xiong Y. L., Chen J., et al. Rheological and microstructural properties of porcinemyofibrillar proteins-lipid emulsion composite gels. Journal of food science,2009,74(4),207-217.
    199.Xiong Y. L. Muscle proteins: Cambridge, UK: Woodhead Publishing Ltd,2004.100-122
    200.Xiong Y. L., Decker E. A., Robe G. H., et al. Gelation of crude myofibrillar proteins isolatedfrom beef heart under antioxidative conditions. Journal of Food Science,1993,58(6):1241-1244.
    201.Xu X. L., Han M. Y., Fei Y., et al. Raman spectroscopic study of heat-induced gelation of porkmyofbrillar proteins and its relationship with textural characteristic. Meat Science,2011,87(3):159-164.
    202.Yoon W.B., Kim B.Y., Park J.W. Rheological characteristics of fibrinogen-thrombinsolutionand its effect on surimi gels. Journal of Food Science,1999,2:291-294.
    203.Youssef M. K., Barbut S. Effects of protein level and fat/oil on emulsion stability, texture,microstructure and color of meat batters. Meat Science,2009,82(2):228-233.
    204.Yu X., Chen C. G., Cai K. Z., et al. Combined Effects of Blood Plasma Powder, Agar, andMicrobial Transglutaminase on Physicochemical and Textural Properties of Pork Muscle Gels.Food Sciencen and Biotechnology,2012,21:941-950.
    205.Zayas J. F. Structural and water binding properties of meat emulsions prepared withemulsified and unemulsified fat. Journal of Food Science,1985,50:689-692.
    206.Ziegler G. R., Foegeding E. A. The gelation of proteins. Food and Nutrition Research,1990,34:203-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700