用户名: 密码: 验证码:
含DOPO磷硅杂化阻燃剂的设计及其阻燃环氧与聚脲树脂性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子材料被广泛应用于人们生活的各个领域,如塑料、橡胶、纤维、涂料和胶粘剂等高分子材料在世界各地需求量很大。尽管高分子材料相对于传统材料有很多优势,但其易燃性使其在某些特殊领域的应用受到限制。因此对高分子材料进行阻燃处理是扩展其应用的必然途径。含磷硅的阻燃剂是一种有广泛应用前景的有机无机杂化阻燃剂,但有机无机杂化阻燃剂的阻燃效率是其广泛应用的障碍。本文通过分子设计制备了一种含磷和硅的杂化阻燃剂。通过溶胶凝胶法将这种有机无机杂化阻燃剂以原位聚合的方式添加到高分子中以提升高分子基体的阻燃性能,对材料的阻燃机理进行了探讨。膨胀型阻燃技术、纳米复合技术和溶胶凝胶技术被用来进一步提升这种含磷和硅的有机无机杂化阻燃剂的阻燃效率。主要研究内容如下:
     1.通过分子设计制备了一种含磷和硅的液态硅烷阻燃剂(DOPO-VTS),通过溶胶凝胶法将其添加到环氧树脂和环氧丙烯酸树脂中以制备阻燃复合材料。对阻燃环氧树脂和环氧丙烯酸树脂的阻燃性能和阻燃机理进行了探讨。极限氧指数和热释放表明高的磷和硅添加量对环氧树脂和环氧丙烯酸树脂具有很好的阻燃作用。相对于环氧丙烯酸树脂复合材料,环氧树脂复合材料在低杂化阻燃剂的添加量的情况下展现出较高的阻燃效率:15wt%添加量可使材料达到UL-94V0级。通过直接裂解-质谱分析可知,有机无机杂化阻燃剂在环氧丙烯酸树脂中的热降解主要集中在低温阶段,而在环氧树脂中的热降解伴随着整个复合材料的热降解过程。因此这种有机无机杂化阻燃剂对环氧树脂具有较高的阻燃效率,值得深入研究。
     2.通过溶胶凝胶法制备了一种含磷氮硅三种阻燃元素的有机无机杂化阻燃剂,通过原位聚合法将其添加到环氧树脂中以制备膨胀型阻燃复合材料。对阻燃剂的耐水性及其对环氧树脂的阻燃性进行了研究。这种有机无机杂化阻燃剂相比于传统阻燃剂APP具有较高的耐水性。此外,由于磷氮的防同阻燃作用,这种膨胀型阻燃体系在一定的磷氮比例情况下具有较高的阻燃效率。微型燃烧量热仪(MCC)结果表明这种有机无机杂化阻燃剂的添加能够明显降低材料燃烧过程中的热释放峰值(pHRR)和总热释放量(THR)。此外极限氧指数、垂直燃烧试验和热重分析验证了总热释放量的结果。SEM、FTIR、XPS和TGA-FTIR结果表明这种含磷氮硅的有机无机杂化阻燃剂在阻燃过程中能够同时起到气相阻燃和和凝聚相阻燃的作同。
     3.一种含层离石墨烯的有机无机杂化阻燃剂的制备方法(阻.燃剂母粒法)被提出并制备出含层离石墨烯的有机无机杂化阻燃剂(FRs-rGO)。通过原位聚合法将所合成的杂化阻燃剂添加到环氧树脂中。复合材料FRs-rGO/EP的阻燃性能及力学性能用热重(TGA)、垂直燃烧测试(UL-94)、极限氧指数测试(LOI)、热释放测试(HRR)和动态力学性能测试(DMA)来研究。FRs-rGO的添加能够显著提升复合材料的高温残炭量。由于石墨烯的炭层增强作用和片层阻隔作用,FRs-rGO/EP在阻燃剂添加量为5wt.%时能够达到UL-94V0级,展现出较高的阻燃效率。
     4.通过分子设计制备了一种含基于DOPO-VTS的有机无机杂化阻燃粒子(FRs-nanoparticles)并通过原位聚合法将这种杂化阻燃粒子添加到聚脲弹性体中。研究了材料的阻燃性能并对其阻燃机理进行了探讨。热重分析(TGA)表明FRs-nanoparticles能够显著提升复合材料的热稳定性,燃烧性能(MCC)表明复合材料的热释放峰值(pHRR)由于FRs-nanoparticles的添加而得到显著降低。实时红外分析(RTIR)表明FRs-nanoparticles能够促进复合材料生成苯环结构或者能够提高苯环结构的热稳定性,而苯环结构有助于材料燃烧过程中的成炭。复合材料的力学结果表明FRs-nanoparticles不仅能够提升材料的阻燃性能也能够提升材料的力学性能。
     5.通过溶胶凝胶法用DOPO-VTS来修饰石墨烯从而形成有机无机杂化粒子修饰的石墨烯(nanoparticles-rGO),通过改变DOPO-VTS的添加量实现了对nanoparticles-rGO厚度的控制。nanoparticles-rGO以不同的比例添加到聚脲弹性体中并研究了复合材料的热稳定性和火安全性。结果表明rGO的良好分散和rGO上功能基团对复合材料阻燃性能和热稳定性的提升起着决定性作用。热释放结果表明0.5wt.%的nanoparticles-rGO添加量与5wt.%的FRs-nanoparticles添加量的热释放峰值降低效果相同,这说明了层状材料和有机无机杂化材料的结合的对材料阻燃的高效性。
The polymeric materials are widely used in our life and the quantity demanded of polymer commodity polymer such as plastic, rubbers, fiber, coating and adhesive are large all over the world.Despite having a number of benefits in applications, those polymeric materials also have drawbacks; the main drawback is due to their flammability, which hinders their applications in some areas, especially for the places require the fire safety. In this dissertation, a novel organic-inorganic hybrid flame retardant containing phosphorus and silicon were synthesized by the way of molecular design. Meanwhile, the novel organic-inorganic flame retardant was incorporated into polymeric matrix through the sol-gel and thermal curing processes to improve the flame retardancy of polymeric materials. Novel technologies such as sol-gel technology and "nano" technology are adopted, with the aim of further improving the flame retardant efficiency of the polymeric materials. The research work of this dissertation is composed of the following parts:
     1. A novel liquid monomer containing phosphorus and silicon was synthesized by the way of molecular design. The sol-gel, UV-curing and thermo-curing technologies are employed to incorporate the flame retardants into the structures of epoxy acrylates and epoxy resins, resulting in the formation of organic-inorganic hybrid materials. The flame retardant performances of the organic-inorganic FRs/EP and organic-inorganic FRs/EA are compared and the flame retardant mechanisms are also discussed. The high content of phosphorus and silicon contribute a good flame retardancy to epoxy acrylates and epoxy resinswhich can be confirmed by the LOI and heat release results. The FRs/EP composites exhibit high flame retardant efficiency compared with EA/FRs composites:the FRs/EP can reach the UL-94VO ratio at the loading of15wt.%and has higher char residues at high temperature. From the DP-MS analysis, it can be found that the degradation of FRs in the FRs/EA matrix only occurs at low temperature. However, as for the FRs/EP composites. DOPO and its derivates are released at low temperature as well as high temperature. As a result, it can be concluded that the organic-inorganic FRs can play its flame retardant roles during the thermal degradation process of EP. Thus, the organic-inorganic flame retardants could impart great flame retardant efficiency to EP. which is worth depthly study.
     2. A novel organic-inorganic FRs containing phosphorus, nitrogen and silicon was prepared through the sol-gel process and incorporated the flame retardants into epoxy resins. The organic-inorganic networks were formed and the organic-inorganic FRs has good water resistance. The flame retardant properties of the composites are investigated. The heat release results showed that the inclusion of EP-N1can significantly decrease the pHRR and THR ofEP compared with other composites, exhibiting the synergistic effect between phosphorus and nitrogen. Interestingly, at the same addition level. EP-N1exhibited much better flame retardancy (LOI and UL-94) and thermal stability (TGA, air). The SEM. FTIR. XPS and the TGA-FTIR results indicates that the strategy of organic-inorganic FRs combines condensed phase and gases phase flame retardant strategies.
     3. A novel flame retardant (FRs-rGO) containing exfoliated graphene via in suit sol-gel process and incorporated the flame retardants into epoxy resins. With the incorporation of FRs-rGO into EP. a significant improvement in thermal stability is achieved in both air atmosphere and nitrogen atmosphere. The results indicate that the FRs-rGO could significantly improve the char residues at high temperature. Thus, satisfactory flame retardant grade was obtained when5wt.%of FRs-rGO was incorporated into the epoxy resins, indicating the great improvement.
     4. The organic-inorganic nanoparticles (FRs-nanoparticles) containing organophosphorus and silicon were synthesized through the sol-gel process by the way of molecular design. Then FRs-nanoparticles were incorporated into the polyurea in different ratio via in situ polymerizationand the flame retardant properties and the mechanism are investigated. The TGA results indicated that FRs-nanoparticles could significantly postpone the initial decomposition temperature of the nanocomposites in air atmosphere. The peakheat release rate (pHRR) of the materials was significantly reduced due to the incorporation of FRs-nanoparticles. The RTIR results indicated that FRs-nanoparticles could catalyze the formation of benzene and its derived structure or improve thermal stability of benzene in the polyurea matrix. Furthermore, the tensile testing demonstrated that FRs-nanoparticles could also enhance the mechanical properties of polyurea.
     5. The rGO was decorated with organic-inorganic nanoparticles (DOPO-VTS) through sol-gel process and the thickness of the nanoparticles-rGO can be varied by changing the additive amount of DOPO-VTS. Then, the nanoparticles-rGO was incorporated into polyurea in different rations via in situ polymerization. The thermal stability and the fire safety of the composites are investigated. Compared with the untreated rGO. the nanoparticles-rGO could significantly improve the thermal stability of polyurea and combustion properties, implying that the good dispersion of nanoparticles-rGO and thefunctional groups on the surface of rGO had the significant effect on the thermal stability of polyurea in air atmosphere. Moreover, the tensile and dynamic mechanical properties showed that the tensile strength and storage modulus of the nanocomposites could be obviously improved by incorporation of nanoparticles-rGO at low contents. The heart release results indicate that the0.5wt.%loading of nanoparticles-rGO has the same effect with the5wt.%loading of nanoparticles. indicating the advancement of layered nanotechnology.
引文
11] http://ww-w.sc119.gov.cn/Get/pzh/panzhihuahqtb/100339705.htm
    [2]S.-Y. Lu, I. Hamerton, Recent developments in the chemistry of halogen-free flame retardant polymers. Progress in Polymer Science,27 (2002) 1661-1712.
    [3]M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials, Materials Science and Engineering:R: Reports,28 (2000) 1-63.
    [4]A. American Psychiatric Association, A.P. Association. Diagnostic and statistical manual of mental disorders, (1994).
    [5]P.O. Darnerud, Toxic effects of brominated flame retardants in man and in wildlife. Environment International,29 (2003) 841-853.
    [6]M. Ema, S. Fujii, M. Hirata-Koizumi. M. Matsumoto, Two-generation reproductive toxicity study of the flame retardant hexabromocyclododecane in rats. Reproductive Toxicology.25 (2008) 335-351.
    [7]S.V. Levchik. E.D. Weil, Overview of the recent literature on flame retardancy and smoke suppression in PVC, Polymers for advanced technologies.16 (2005) 707-716.
    [8]M. Cross, P. Cusack, P. Hornsby. Effects of tin additives on the flammability and smoke emission characteristics of halogen-free ethylene-vinyl acetate copolymer. Polymer Degradation and Stability.79 (2003) 309-318.
    [9]C. Cullis, M. Hirschler. Q. Tao, The effect of red phosphorus on the flammability and smoke-producing tendency of poly (vinyl chloride) and polystyrene. European Polymer Journal.22 (1986) 161-167.
    [10]J. Zhu, A.B. Morgan, F.J. Lamelas. C.A. Wilkie, Fire properties of polystyrene-clay nanocomposites. Chemistry of Materials.13 (2001) 3774-3780.
    [11]C. Reti. M. Casetta. S. Duquesne. S. Bourbigot. R. Delobel. Flammability properties of intumescent PLA including starch and lignin. Polymers for advanced technologies.19 (2008) 628-635.
    [12]T. Kashiwagi. M. Mu. K. Winey. B. Cipriano. S. Raghavan. S. Pack. M. Rafailovich. Y. Yang. E. Grulke. J. Shields. Relation between the viscoelastic and flammability properties of polymer nanocomposites. Polymer.49 (2008) 4358-4368.
    [13]J.W. Gilman. T. Kashiwagi. J.D. Lichtenhan. Nanocomposites:a revolutionary new flame retardant approach. Sampe Journal.33 (1997) 40-46.
    [14]S. Levchik. G. Camino. L. Costa. G. Levchik. Mechanism of action of phosphorus-based flame retardants in nylon 6. I. Ammonium polyphosphate, Fire and materials.19 (1995) 1-10.
    [15]C. Park. J. Yoon. E.L. Thomas. Enabling nanotechnology with self assembled block copolymer patterns. Polymer.44 (2003) 6725-6760.
    [16]D. Paul. L. Robeson. Polymer nanotechnology:nanocomposites. Polymer.49 (2008)3187-3204.
    [17]T. Lan, T.J. Pinnavaia, Clay-reinforced epoxy nanocomposites. Chemistry of Materials,6 (1994) 2216-2219.
    [18]A.U.I.-N.H.-M. Kato, A. Usik, Polymer-clay nanocomposites. Inorganic Polymeric Nanocomposites and Membranes,179 (2005) 135-195.
    [19]B. Wetzel. F. Haupert, M. Qiu Zhang. Epoxy nanocomposites with high mechanical and tribological performance. Composites Science and Technology,63 (2003)2055-2067.
    [20]H. Kim, Y. Miura, C.W. Macosko. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chemistry of Materials,22 (2010) 3441-3450.
    [21]F.E. Kruis. H. Fissan, A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications-a review. Journal of Aerosol Science, 29(1998)511-535.
    [22]K.J. Shea. D.A. Loy. Bridged polysilsesquioxanes. Molecular-engineered hybrid organic-inorganic materials. Chemistry of Materials,13 (2001) 3306-3319.
    [23]G. Brusatin, G. Della Giustina. Hybrid organic-inorganic sol-gel materials for micro and nanofabrication, Journal of sol-gel science and technology.60 (2011) 299-314.
    [24]M. Xiong, B. You. S. Zhou. L. Wu. Study on acrylic resin/titania organic-inorganic hybrid materials prepared by the sol-gel process. Polymer.45 (2004) 2967-2976.
    [25]K. D'silva. A. Fernandes. M. Rose. Brominated organic micropollutants-igniting the flame retardant issue. Critical Reviews in Environmental Science and Technology.34 (2004) 141-207.
    [26]S.V. Levchik. E.D. Weil. Thermal decomposition, combustion and flame retardancy of epoxy resins-a review of the recent literature. Polymer international. 53(2004) 1901-1929.
    [27]J. Ward. S.P. Mohapatra. A. Mitchell, An overview of policies for managing polybrominated diphenyl ethers (PBDEs) in the Great Lakes basin. Environment International,34 (2008) 1148-1156.
    [28]A. Papachlimitzou, J.L. Barber. S. Losada. P. Bersuder. R.J. Law. A review of the analysis of novel brominated flame retardants. Journal of Chromatography A.1219 (2012) 15-28.
    [29]J.H. Troitzsch, Overview of flame retardants, Chemistry today,16 (1998).
    [30]S.-i. Sakai, J. Watanabe, Y. Honda, H. Takatsuki, I. Aoki, M. Futamatsu. K. Shiozaki, Combustion of brominated flame retardants and behavior of its byproducts, Chemosphere,42 (2001) 519-531.
    [31]R.F. Canton. J.T. Sanderson, S. Nijmeijer, A. Bergman, R.J. Letcher, M. van den Berg. In vitro effects of brominated flame retardants and metabolites on CYP17 catalytic activity:a novel mechanism of action?. Toxicology and applied pharmacology,216 (2006) 274-281.
    [32]M.A. Siddiqi, R.H. Laessig, K.D. Reed, Polybrominated diphenyl ethers (PBDEs):new pollutants-old diseases. Clinical Medicine & Research,1 (2003) 281-290.
    [33]R.J. Law, D. Herzke, S. Harrad. S. Morris. P. Bersuder. C.R. Allchin. Levels and trends of HBCD and BDEs in the European and Asian environments, with some information for other BFRs. Chemosphere.73 (2008) 223-241.
    [34]A. Covaci. S. Voorspoels. M.A.-E. Abdallah. T. Geens. S. Harrad, R.J. Law. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. Journal of Chromatography A.1216 (2009) 346-363.
    [35]J. Klein. S. Dorge. G. Trouve. D. Venditti. S. Durecu. Behaviour of antimony during thermal treatment of Sb-rich halogenated waste. Journal of hazardous materials. 166(2009)585-593.
    [36]L.S. Birnbaum. D.F. Staskal. Brominated flame retardants:cause for concern? Environmental health perspectives.112 (2004) 9.
    [37]D. Chattopadhyay. D.C. Webster. Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science.34 (2009) 1068-1133.
    [38]Q. Wu, J. L(u|"). B. Qu. Preparation and characterization of microcapsulated red phosphorus and its flame-retardant mechanism in halogen-free flame retardant polyolefins. Polymer international.52 (2003) 1326-1331.
    [39]Y.-L. Liu. G.-H. Hsiue. C.-W. Lan. Y.-S. Chiu. Phosphorus-containing epoxy for flame retardance:IV. Kinetics and mechanism of thermal degradation. Polymer Degradation and Stability,56 (1997) 291-299.
    [40]U. Braun. A.I. Balabanovich. B. Schartel. U. Knoll. J. Artner. M. Ciesielski. M. D(o|")ring. R. Perez. J.K. Sandler. V. Altstadt. Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer.47 (2006) 8495-8508.
    [41]A. Granzow. Flame retardation by phosphorus compounds. Accounts of Chemical Research.11 (1978) 177-183.
    [42]B. Perret. B. Schartel, K. St(o|")β. M. Ciesielski. J. Diederichs, M. Doring, J. Kramer, V. Altst(a|")dt, Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation, European Polymer Journal,47 (2011) 1081-1089.
    [43]S. Brehme. B. Schartel, J. Goebbels, O. Fischer, D. Pospiech, Y. Bykov, M. D(o|")ring, Phosphorus polyester versus aluminium phosphinate in poly (butylene terephthalate)(PBT):flame retardancy performance and mechanisms. Polymer Degradation and Stability,96 (2011) 875-884.
    [44]W. Zhang, X. Li, H. Fan, R. Yang. Study on mechanism of phosphorus-silicon synergistic flame retardancy on epoxy resins. Polymer Degradation and Stability.97 (2012)2241-2248.
    [45]R. Perez. J.K. Sandler, V. Altstadt. T. Hoffmann. D. Pospiech. M. Ciesielski. M. D(o|")ring. U. Braun. U. Knoll. B. Schartel. Effective halogen-free flame retardants for carbon fibre-reinforced epoxy composites. Journal of materials science.41 (2006) 4981-4984.
    [46]S.V. Levchik. E.D. Weil. Flame retardancy of thermoplastic polyesters-a review of the recent literature. Polymer international.54 (2005) 11-35.
    [47]C.S. Wu. Y.L. Liu. Y.C. Chiu. Y.S. Chiu, Thermal stability of epoxy resins containing flame retardant components:an evaluation with thermogravimetric analysis. Polymer Degradation and Stability.78 (2002) 41-48.
    [48]Y.L. Chang. Y.Z. Wang. D.M. Ban. B. Yang. G.M. Zhao. A Novel Phosphorus-Containing Polymer as a Highly Effective Flame Retardant. Macromolecular Materials and Engineering.289 (2004) 703-707.
    [49]P. Anna. G. Marosi. S. Bourbigot. M. Le Bras. R. Delobel. Intumescent flame retardant systems of modified rheology. Polymer Degradation and Stability.77 (2002) 243-247.
    [50]F. Xie. Y.Z. Wang. B. Yang. Y. Liu. A Novel Intumescent Flame-Retardant Polyethylene System, Macromolecular Materials and Engineering.291 (2006) 247-253.
    [51]S. Bourbigot. M. Le Bras. R. Delobel. Fire degradation of an intumescent flame retardant polypropylene using the cone calorimeter. Journal of Fire Sciences.13 (1995) 3-22.
    [52]K. Wu. Y. Hu. L. Song. H. Lu, Z. Wang. Flame retardancy and thermal degradation of intumescent flame retardant starch-based biodegradable composites. Industrial & Engineering Chemistry Research,48 (2009) 3150-3157.
    [53]H. Horacek, R. Grabner, Advantages of flame retardants based on nitrogen compounds. Polymer Degradation and Stability,54 (1996) 205-215.
    [54]E.D. Weil. V. Choudhary, Flame-retarding plastics and elastomers with melamine, Journal of Fire Sciences,13 (1995) 104-126.
    [55]S. Levchik, A. Balabanovich, G. Levchik, L. Costa, Effect of melamine and its salts on combustion and thermal decomposition of polyamide 6, Fire and materials.21 (1997)75-83.
    [56]G.F. Levchik, Y.V. Grigoriev, A.I. Balabanovich. S.V. Levchik. M. Klatt, Phosphorus-nitrogen containing fire retardants for poly (butylene terephthalate). Polymer international,49 (2000) 1095-1100.
    [57]S.V. Levchik. G.F. Levchik. A.I. Balabanovich. E.D. Weil. M. Klatt. Phosphorus oxynitride:a thermally stable fire retardant additive for polyamide 6 and poly (butylene terephthalate). Die Angewandte Makromolekulare Chemie.264 (1999) 48-55.
    [58]S. Bourbigot. M. Le Bras. R. Delobel. P. Breant. J.-m. Tremillon. Carbonization mechanisms resulting from intumescence-part Ⅱ. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon.33(1995)283-294.
    [59]G. Camino. N. Grassie. I. McNeill. Influence of the fire retardant. ammonium polyphosphate. on the thermal degradation of poly (methyl methacrylate). Journal of Polymer Science:Polymer Chemistry Edition.16 (1978) 95-106.
    [60]S. Duquesne. M. Le Bras. S. Bourbigot. R. Delobel. G. Camino. B. Eling. C Lindsay. T. Roels. H. Vezin. Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate. Journal of applied polymer science.82 (2001) 3262-3274.
    [61]Z. Wang. K. Wu. Y. Hu. Study on flame retardance of co-microencapsulated ammonium polyphosphate and dipentaerythritol in polypropylene. Polymer Engineering & Science,48 (2008) 2426-2431.
    [62]B. Schartel, U. Braun, U. Schwarz, S. Reinemann, Fire retardancy of polypropylene/flax blends, Polymer,44 (2003) 6241-6250.
    [63]Y. Liu, Z. Feng, Q. Wang, The investigation of intumescent flame-retardant polypropylene using a new macromolecular charring agent polyamide 11, Polymer Composites,30 (2009) 221-225.
    [64]H. Lu, C.A. Wilkie, Study on intumescent flame retarded polystyrene composites with improved flame retardancy, Polymer Degradation and Stability,95 (2010) 2388-2395.
    [65]M.L. Bras, M. Bugajny, J.M. Lefebvre, S. Bourbigot, Use of polyurethanes as char-forming agents in polypropylene intumescent formulations, Polymer international,49 (2000) 1115-1124.
    [66]X.P. Hu, Y.L. Li, Y.Z. Wang, Synergistic effect of the charring agent on the thermal and flame retardant properties of polyethylene, Macromolecular Materials and Engineering,289 (2004) 208-212.
    [67]B. Li, M. Xu, Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene, Polymer Degradation and Stability,91 (2006) 1380-1386.
    [68]W. Jun, L. Yi, X. Cai, Effect of a novel charring agent on thermal degradation and flame retardancy of acrylonitrile-butadiene-styrene, Journal of thermal analysis and calorimetry,103 (2011) 767-772.
    [69]Y. Liu, D.Y. Wang, J.S. Wang, Y.P. Song, Y.Z. Wang, A novel intumescent flame-retardant LDPE system and,its thermo-oxidative degradation and flame retardant mechanisms, Polymers for advanced technologies,19 (2008) 1566-1575.
    [70]J. Mecham, Synthesis and characterization of cycloaliphatic and aromatic polyester/poly (dimethylsiloxane) segmented copolymers, in, Virginia Polytechnic Institute and State University,1997.
    [71]I. Yilgor, J.E. McGrath, Polysiloxane containing copolymers:a survey of recent developments, in:Polysiloxane Copolymers/Anionic Polymerization, Springer, 1988, pp.1-86.
    [72]W. Zhou, H. Yang, Flame retarding mechanism of polycarbonate containing methylphenyl-silicone, Thermochimica acta,452 (2007) 43-48.
    [73]A. Hermansson, T. Hjertberg. B.A. Sultan, The flame retardant mechanism of polyolefins modified with chalk and silicone elastomer, Fire and materials,27 (2003) 51-70.
    [74]C.S. Wu. Y.L. Liu, Y.S. Chiu. Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents. Polymer.43 (2002) 4277-4284.
    [75]J. Wang. J. Du, J. Zhu, C.A. Wilkie, An XPS study of the thermal degradation and flame retardant mechanism of polystyrene-clay nanocomposites. Polymer Degradation and Stability,77 (2002) 249-252.
    [76]Y.-L. Liu, C.-Y. Hsu, K.-Y. Hsu, Poly (methylmethacrylate)-silica nanocomposites films from surface-functionalized silica nanoparticles, Polymer,46 (2005) 1851-1856.
    [77]R. Sengupta, A. Bandyopadhyay, S. Sabharwal, T.K. Chaki, A.K. Bhowmick, Polyamide-6,6/in situ silica hybrid nanocomposites by sol-gel technique:synthesis, characterization and properties, Polymer,46 (2005) 3343-3354.
    [78]W.J. Rieter, K.M. Taylor, W. Lin, Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. Journal of the American Chemical Society.129 (2007) 9852-9853.
    [79]LA. Rahman, V. Padavettan, Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites-a review. Journal of Nanomaterials.2012 (2012) 8.
    [80]G. Li. L. Wang. H. Ni. C.U. Pittman Jr, Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers:a review. Journal of Inorganic and Organometallic Polymers,11 (2001) 123-154.
    [81]R.Y. Kannan. H.J. Salacinski. P.E. Butler, A.M. Seifalian. Polyhedral oligomeric silsesquioxane nanocomposites:the next generation material for biomedical applications. Accounts of Chemical Research.38 (2005) 879-884.
    [82]K. Tanaka, Y Chujo, Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). Journal of Materials Chemistry.22 (2012) 1733-1746.
    [83]S. Bourbigot. T. Turf. S. Bellayer. S. Duquesne. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polymer Degradation and Stability.94 (2009) 1230-1237.
    [84]K. Wu. L. Song. Y. Hu. H. Lu. B.K. Kandola. E. Kandare. Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin. Progress in Organic Coatings.65 (2009) 490-497.
    [85]X. Wang, Y. Hu, L. Song. W. Xing, H. Lu. Thermal degradation behaviors of epoxy resin/POSS hybrids and phosphorus-silicon synergism of flame retardancy, Journal of Polymer Science Part B:Polymer Physics.48 (2010) 693-705.
    [86]P. Kiliaris, C. Papaspyrides. Polymer/layered silicate (clay) nanocomposites:an overview of flame retardancy, Progress in Polymer Science,35 (2010) 902-958.
    [87]A.B. Morgan, C.A. Wilkie. Flame retardant polymer nanocomposites, (2007).
    [88]A. Fina, H.C. Abbenhuis. D. Tabuani, G. Camino, Metal functionalized POSS as fire retardants in polypropylene. Polymer Degradation and Stability,91 (2006) 2275-2281.
    [89]Z. Wang, E. Han, W. Ke, Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating. Progress in Organic Coatings.53 (2005) 29-37.
    [90]T. Kashiwagi. E. Grulke. J. Hilding, K. Groth. R. Harris, K. Butler, J. Shields, S. Kharchenko. J. Douglas. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites, Polymer,45 (2004) 4227-4239.
    [91]T. Kashiwagi, R.H. Harris Jr. X. Zhang. R. Briber. B.H. Cipriano, S.R. Raghavan, W.H. Awad, J.R. Shields. Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer,45 (2004) 881-891.
    [92]H. Qin. S. Zhang, C. Zhao, G. Hu. M. Yang. Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polymer,46 (2005) 8386-8395.
    [93]G. Huang. H. Liang, Y. Wang, X. Wang, J. Gao, Z. Fei, Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly (vinyl alcohol), Materials Chemistry and Physics.132 (2012) 520-528.
    [94]S.-H. Liao. P.-L. Liu. M.-C. Hsiao. C.-C. Teng. C.-A. Wang, M.-D. Ger. C.-L Chiang, One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite. Industrial & Engineering Chemistry Research.51 (2012) 4573-4581.
    [95]A.L. Higginbotham. J.R. Lomeda. A.B. Morgan. J.M. Tour. Graphite oxide flame-retardant polymer nanocomposites. ACS applied materials & interfaces.1 (2009)2256-2261.
    [96]K. Novoselov. A.K. Geim. S. Morozov. D. Jiang, M. Katsnelson. I. Grigorieva. S. Dubonos. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. nature.438(2005) 197-200.
    [97]A.K. Geim, K.S. Novoselov. The rise of graphene. Nature materials.6 (2007) 183-191.
    [98]M.J. Allen. V.C. Tung. R.B. Kaner. Honeycomb carbon:a review of graphene. Chemical reviews.110 (2009) 132-145.
    [99]Y. Zhang. T.-T. Tang, C. Girit. Z. Hao. M.C. Martin. A. Zettl. M.F. Crommie. Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene. nature,459 (2009) 820-823.
    [100]C. Gomez-Navarro, M. Burghard. K. Kern. Elastic properties of chemically derived single graphene sheets, Nano letters,8 (2008) 2045-2049.
    [101]G. Beyer, Filler blend of carbon nanotubes and organoclays with improved char as a new flame retardant system for polymers and cable applications. Fire and materials.29(2005)61-69.
    [102]L. Ye, Q. Wu, B. Qu, Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites. Polymer Degradation and Stability.94 (2009) 751-756.
    [103]Z. Li, B. Qu, Flammability characterization and synergistic effects of expandable graphite with magnesium hydroxide in halogen-free flame-retardant EVA blends. Polymer Degradation and Stability.81 (2003) 401-408.
    [104]F.M. Uhl, C.A. Wilkie. Preparation of nanocomposites from styrene and modified graphite oxides. Polymer Degradation and Stability.84 (2004) 215-226.
    [105]H.J. Salavagione, M.n.A. Gomez, G. Martinez, Polymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Macromolecules,42 (2009) 6331-6334.
    [106]H.J. Salavagione. G. Martinez. G. Ellis. Recent advances in the covalent modification of graphene with polymers, Macromolecular rapid communications.32 (2011)1771-1789.
    [107]K. Pramoda. H. Hussain. H. Koh. H. Tan. C. He. Covalent bonded polymer-graphene nanocomposites. Journal of Polymer Science Part A:Polymer Chemistry.48 (2010) 4262-4267.
    [108]C. Bao. Y. Guo. L. Song. Y. Kan. X. Qian. Y. Hu. In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. Journal of Materials Chemistry.21 (2011) 13290-13298.
    [109]X. Wang. L. Song. H. Yang. W. Xing. H. Lu. Y. Hu. Cobalt oxide/graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters. Journal of Materials Chemistry.22 (2012) 3426-3431.
    [110]N. Hong. L. Song. T.R. Hull. A.A. Stec. B. Wang. Y. Pan. Y. Hu, Facile preparation of graphene supported Co3O4 and NiO for reducing fire hazards of polyamide 6 composites, Materials Chemistry and Physics,142 (2013) 531-538.
    [111]J. Zhu. F.M. Uhl. A.B. Morgan, C.A. Wilkie. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chemistry of Materials,13 (2001)4649-4654.
    [112]Z. Wang, E. Han, W. Ke, Effect of acrylic polymer and nanocomposite with nano-SiO2on thermal degradation and fire resistance of APP-DPER-MEL coating. Polymer Degradation and Stability.91 (2006) 1937-1947.
    [113]T. Agag, T. Koga, T. Takeichi, Studies on thermal and mechanical properties of polyimide-clay nanocomposites, Polymer,42 (2001) 3399-3408.
    [114]J. Musil, Hard and superhard nanocomposite coatings. Surface and coatings technology.125 (2000) 322-330.
    [115]J. Wen, G.L. Wilkes, Organic/inorganic hybrid network materials by the sol-gel approach. Chemistry of Materials.8(1996) 1667-1681.
    [116]D. Chattopadhyay, S.S. Panda. K. Raju. Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings. Progress in Organic Coatings.54 (2005) 10-19.
    [117]M. Bajpai. V. Shukla, A. Kumar, Film performance and UV curing of epoxy acrylate resins. Progress in Organic Coatings.44 (2002) 271-278.
    [118]P. Kardar, M. Ebrahimi. S. Bastani, M. Jalili, Using mixture experimental design to study the effect of multifunctional acrylate monomers on UV cured epoxy acrylate resins. Progress in Organic Coatings,64 (2009) 74-80.
    [119]Y.L. Liu. Flame-retardant epoxy resins from novel phosphorus-containing novolac. Polymer.42 (2001) 3445-3454.
    [120]A. Schafer. S. Seibold. W. Lohstroh. O. Walter. M. D(o|")ring. Synthesis and properties of flame-retardant epoxy resins based on DOPO and one of its analog DPPO. Journal of applied polymer science.105 (2007) 685-696.
    [121]D.A. Loy. B.M. Baugher. C.R. Baugher. D.A. Schneider. K. Rahimian. Substituent effects on the sol-gel chemistry of organotrialkoxysilanes. Chemistry of Materials.12 (2000) 3624-3632.
    [122]M. Arkas. D. Tsiourvas. C.M. Paleos. Functional dendritic polymers for the development of hybrid materials for water purification. Macromolecular Materials and Engineering.295 (2010) 883-898.
    [123]C.-H. Lin. C.-S. Wang. Novel phosphorus-containing epoxy resins Part I. Synthesis and properties. Polymer.42 (2001) 1869-1878.
    [124]X. Wang. Y. Hu, L. Song, W. Xing. H. Lu. P. Lv, G. Jie, Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer,51 (2010) 2435-2445.
    [125]B. Schartel. U. Braun. A. Balabanovich, J. Artner, M. Ciesielski, M. D(o|")ring, R. Perez, J. Sandier, V. Altst(a|")dt. Pyrolysis and fire behaviour of epoxy systems containing a novel 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener, European Polymer Journal,44 (2008) 704-715.
    [126]Y. Shi, T. Kashiwagi, R.N. Walters, J.W. Gilman, R.E. Lyon, D.Y. Sogah, Ethylene vinyl acetate/layered silicate nanocomposites prepared by a surfactant-free method:Enhanced flame retardant and mechanical properties. Polymer,50 (2009) 3478-3487.
    [127]R.E. Lyon. R. Walters, S. Stoliarov, Screening flame retardants for plastics using microscale combustion calorimetry. Polymer Engineering & Science.47 (2007) 1501-1510.
    [128]D. Price. K. Pyrah. T.R. Hull. G.J. Milnes. J.R. Ebdon. B.J. Hunt. P. Joseph. Flame retardance of poly (methyl methacrylate) modified with phosphorus-containing compounds. Polymer Degradation and Stability,77 (2002) 227-233.
    [129]G.H. Hsiue. S.J. Shiao. H.F. Wei. W.J. Kuo. Y.A. Sha. Novel phosphorus-containing dicyclopentadiene-modified phenolic resins for flame-retardancy applications. Journal of applied polymer science.79 (2001) 342-349.
    [130]M. Bugajny, S. Bourbigot. M. Le Bras. R. Delobel. The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750. Polymer international.48 (1999) 264-270.
    [131]Z. Huang. W. Shi. Thermal behavior and degradation mechanism of poly (bisphenyl acryloxyethyl phosphate) as a UV curable flame-retardant oligomer. Polymer Degradation and Stability.91 (2006) 1674-1684.
    [132]S.V. Levchik. E.D. Weil. Overview of recent developments in the flame retardancy of polycarbonates. Polymer international.54 (2005) 981-998.
    [133]R.J. Corriu. J.J. Moreau. P. Thepot. M.W.C. Man. New mixed organic-inorganic polymers:hydrolysis and polycondensation of bis (trimethoxysilyl) organometallic precursors. Chemistry of Materials.4 (1992) 1217-1224.
    [134]Q. Li. P. Jiang, P. Wei, Studies on the properties of polypropylene with a new-silicon-containing intumescent flame retardant. Journal of Polymer Science Pail B: Polymer Physics.43 (2005) 2548-2556.
    [135]P.M. Hergenrother. C.M. Thompson. J.G. Smith Jr. J.W. Connell. J.A. Hinkley. R.E. Lyon, R. Moulton, Flame retardant aircraft epoxy resins containing phosphorus. Polymer,46 (2005) 5012-5024.
    [136]R. Perez, J. Sandler, V. Altst(a|")dt, T. Hoffmann. D. Pospiech. M. Ciesielski, M. Doring, U. Braun. A. Balabanovich. B. Schartel. Novel phosphorus-modified polysulfone as a combined flame retardant and toughness modifier for epoxy resins. Polymer,48 (2007) 778-790.
    [137]Y.L. Liu, C.S. Wu, Y.S. Chiu, W.H. Ho. Preparation, thermal properties, and flame retardance of epoxy-silica hybrid resins, Journal of Polymer Science Part A: Polymer Chemistry.41 (2003) 2354-2367.
    [138]L. Song, Q. He, Y. Hu, H. Chen, L. Liu. Study on thermal degradation and combustion behaviors of PC/POSS hybrids. Polymer Degradation and Stability,93 (2008) 627-639.
    [139]Y. Chen. J. Zhan. P. Zhang. S. Nie. H. Lu. L. Song. Y. Hu, Preparation of intumescent flame retardant poly (butylene succinate) using fumed silica as synergistic agent. Industrial & Engineering Chemistry Research.49 (2010) 8200-8208.
    [140]S. Bourbigot, M. Le Bras, S. Duquesne. M. Rochery, Recent advances for intumescent polymers. Macromolecular Materials and Engineering.289 (2004) 499-511.
    [141]G. Huang. A. Zhuo. L. Wang. X. Wang. Preparation and flammability properties of intumescent flame retardant-functionalized layered double hydroxides/polymethyl methacrylate nanocomposites. Materials Chemistry and Physics.130 (2011) 714-720.
    [142]X. Qian. L. Song. Y. Hu. R.K. Yuen. L. Chen. Y. Guo. N. Hong. S. Jiang. Combustion and thermal degradation mechanism of a novel intumescent flame retardant for epoxy acrylate containing phosphorus and nitrogen. Industrial & Engineering Chemistry Research.50 (2011) 1881-1892.
    [143]Y. Matsuura. K. Matsukawa. R. Kawabata. N. Higashi. M. Niwa. H. Inoue. Synthesis of polysilane-acrylamide copolymers by photopolymerization and their application to polysilane-silica hybrid thin films. Polymer.43 (2002) 1549-1553.
    [144]C. Maedler. H. Graaf. Local Charge Storage in Thin Silicon Oxide Films: Mechanisms and Possible Applications. The Journal of Physical Chemistry C.117 (2013)5358-5363.
    [145]A.Y. Fadeev. T.J. McCarthy. Trialkylsilane monolayers covalently attached to silicon surfaces:wettability studies indicating that molecular topography contributes to contact angle hysteresis, Langmuir,15 (1999) 3759-3766.
    [146]H. Demir, E. Arkis. D. Balk(o|")se. S. (U|")lk(u|"). Synergistic effect of natural zeolites on flame retardant additives. Polymer Degradation and Stability,89 (2005) 478-483.
    [147]X. Chen, Y. Ding, T. Tang, Synergistic effect of nickel formate on the thermal and flame-retardant properties of polypropylene. Polymer international,54 (2005) 904-908.
    [148]W. Yang, R.K. Yuen, Y. Hu, H. Lu, L. Song, Development and characterization of fire retarded glass-fiber reinforced poly (1,4-butylene terephthalate) composites based on a novel flame retardant system. Industrial & Engineering Chemistry Research,50 (2011) 11975-11981.
    [149]C.-L. Chiang, R.-C. Chang. Synthesis, characterization and properties of novel self-extinguishing organic-inorganic nanocomposites containing nitrogen, silicon and phosphorus via sol-gel method. Composites Science and Technology.68 (2008) 2849-2857.
    [150]S.V. Levchik. E.D. Weil. A review of recent progress in phosphorus-based flame retardants. Journal of Fire Sciences,24 (2006) 345-364.
    [151]J.-S. Wang. Y. Liu. H.-B. Zhao. J. Liu. D.-Y. Wang. Y.-P. Song. Y.-Z. Wang. Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polymer Degradation and Stability.94 (2009) 625-631.
    [152]Z. Wang. P. Lv. Y. Hu. K. Hu. Thermal degradation study of intumescent flame retardants by TG and FTIR:Melamine phosphate and its mixture with pentaerythritol. Journal of Analytical and Applied Pyrolysis.86 (2009) 207-214.
    [153]A.B. Morgan. R.H. Harris. T. Kashiwagi. L.J. Chyall. J.W. Gilman. Flammability of polystyrene layered silicate (clay) nanocomposites:carbonaceous char formation. Fire and materials.26 (2002) 247-253.
    [154]A. Sadezky. H. Muckenhuber. H. Grothe. R. Niessner. U. P(o|")schl. Raman microspectroscopy of soot and related carbonaceous materials:spectral analysis and structural information. Carbon.43 (2005) 1731-1742.
    [155]B.J. Landi. H.J. Ruf. C.M. Evans. C.D. Cress. R.P. Raffaelle. Purity assessment of single-wall carbon nanotubes. using optical absorption spectroscopy. The Journal of Physical Chemistry B.109 (2005) 9952-9965.
    [156]T.-H. Ko. Raman spectrum of modified PAN-based carbon fibers during graphitization, Journal of applied polymer science.59 (1996) 577-580.
    [157]T. Ramanathan, A. Abdala. S. Stankovich. D. Dikin, M. Herrera-Alonso. R. Piner. D. Adamson. H. Schniepp. X. Chen. R. Ruoff. Functionalized graphene sheets for polymer nanocomposites. Nature nanotechnology.3 (2008) 327-331.
    [158]J. Liang, Y. Wang. Y. Huang, Y. Ma, Z. Liu. J. Cai, C. Zhang. H. Gao. Y. Chen, Electromagnetic interference shielding of graphene/epoxy composites, Carbon,47 (2009) 922-925.
    [159]T. Kashiwagi, F. Du. J.F. Douglas, K.I. Winey, R.H. Harris. J.R. Shields. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature materials.4(2005)928-933.
    [160]H. Ma, L. Tong, Z. Xu, Z. Fang. Intumescent flame retardant-montmorillonite synergism in ABS nanocomposites, Applied Clay Science,42 (2008) 238-245.
    [161]M. Alexandre, G. Beyer, C. Henrist. R. Cloots. A. Rulmont, R. Jerome, P. Dubois, Preparation and properties of layered silicate nanocomposites based on ethylene vinyl acetate copolymers. Macromolecular rapid communications.22 (2001) 643-646.
    [162]C. Bao. Y. Guo. B. Yuan, Y. Hu. L. Song, Functionalized graphene oxide for fire safety applications of polymers:a combination of condensed phase flame retardant strategies, Journal of Materials Chemistry,22 (2012) 23057-23063.
    [163]Y. Dappe. M.A. Basanta. F. Flores, J. Ortega. Weak chemical interaction and van der Waals forces between graphene layers:A combined density functional and intermolecular perturbation theory approach. Physical Review B.74 (2006) 205434.
    [164]S. Stankovich. R.D. Piner. S.T. Nguyen. R.S. Ruoff. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon.44 (2006) 3342-3347.
    [165]K. Nawaz. U. Khan. N. Ul-Haq. P. May. A. O'Neill. J.N. Coleman. Observation of mechanical percolation in functionalized graphene oxide/elastomer composites Carbon.50 (2012) 4489-4494.
    [166]Y. Guo. C. Bao. L. Song. B. Yuan. Y. Hu. In situ polymerization of graphene. graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior. Industrial & Engineering Chemistry Research.50 (2011)7772-7783.
    [167]C. Bao, L. Song. W. Xing. B. Yuan. C.A. Wilkie. J. Huang, Y. Guo. Y. Hu. Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. Journal of Materials Chemistry.22 (2012) 6088-6096.
    [168]L.L. Hench, J.K. West. The sol-gel process. Chemical reviews,90 (1990) 33-72.
    [169]A. Stein, B.J. Melde, R.C. Schroden. Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age. Advanced Materials,12 (2000) 1403-1419.
    [170]X. Qian. H. Pan, W. Yi Xing. L. Song, R.K. Yuen, Y. Hu. Thermal properties of novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide-based organic/inorganic hybrid materials prepared by sol-gel and UV-curing processes, Industrial & Engineering Chemistry Research.51 (2011) 85-94.
    [171]H. Zhang, Y. Han. Y. Guo. C. Dong, Porphyrin functionalized graphene nanosheets-based electrochemical aptasensor for label-free ATP detection. J. Mater. Chem.,22 (2012) 23900-23905.
    [172]G. Yang. J. Cao. L. Li. R.K. Rana. J.-J. Zhu. Carboxymethyl chitosan-functionalized graphene for label-free electrochemical cytosensing. Carbon, 51 (2013) 124-133.
    [173]W.S. Hummers Jr. R.E. Offeman. Preparation of graphitic oxide. Journal of the American Chemical Society.80 (1958) 1339-1339.
    [174]S. Stankovich. D.A. Dikin. R.D. Piner. K.A. Kohlhaas, A. Kleinhammes. Y. Jia, Y. Wu. S.T. Nguyen. R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon.45 (2007) 1558-1565.
    [175]D. Cai, M. Song. Recent advance in functionalized graphene/polymer nanocomposites. Journal of Materials Chemistry.20 (2010) 7906-7915.
    [176]J.R. Potts. D.R. Dreyer. C.W. Bielawski. R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer.52 (2011) 5-25.
    [177]D.W. Schaefer. R.S. Justice. How nano are nanocomposites?. Macromolecules. 40(2007)8501-8517.
    [178]W. Gianelli. G. Ferrara. G. Camino. G. Pellegatti. J. Rosenthal. R. Trombini. Effect of matrix features on polypropylene layered silicate nanocomposites. Polymer. 46 (2005) 7037-7046.
    [179]M. Yoonessi. Y. Shi. D.A. Scheiman. M. Lebron-Colon. D.M. Tigelaar. R. Weiss M.A. Meador. Graphene polyimide nanocomposites:thermal, mechanical, and high-temperature shape memory effects. ACS nano.6 (2012) 7644-7655.
    [180]Y.L. Liu. G.H. Hsiue, Y.S. Chiu. Synthesis, characterization, thermal, and flame retardant properties of phosphate-based epoxy resins. Journal of Polymer Science Part A:Polymer Chemistry.35 (1997) 565-574.
    [181]Y. Cao, J. Feng, P. Wu. Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly (lactic acid) composites. Carbon,48 (2010) 3834-3839.
    [182]A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano letters.8 (2008) 902-907.
    [183]W. Wang, L. Perng, G. Hsiue, F. Chang. Characterization and properties of new silicone-containing epoxy resin. Polymer,41 (2000) 6113-6122.
    [184]X. Wang, L. Song, H. Yang, W. Xing. B. Kandola. Y. Hu. Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites. Journal of Materials Chemistry,22 (2012) 22037-22043.
    [185]J.-Y. Shieh. C.-S. Wang, Synthesis of novel flame retardant epoxy hardeners and properties of cured products, Polymer,42 (2001) 7617-7625.
    [186]W. Liu, K.L. Koh, J. Lu. L. Yang. S. Phua. J. Kong. Z. Chen. X. Lu. Simultaneous catalyzing and reinforcing effects of imidazole-functionalized graphene in anhydride-cured epoxies. Journal of Materials Chemistry.22 (2012) 18395-18402.
    [187]L.-S. Teo. C.-Y. Chen, J.-F. Kuo. Fourier transform infrared spectroscopy study on effects of temperature on hydrogen bonding in amine-containing polyurethanes and poly (urethane-urea) s. Macromolecules.30 (1997) 1793-1799.
    [188]J. Mattia. P. Painter, A comparison of hydrogen bonding and order in a polyurethane and poly (urethane-urea) and their blends with poly (ethylene glycol). Macromolecules.40 (2007) 1546-1554.
    [189]G.H. Hsiue. Y.L. Liu. J. Tsiao. Phosphorus-containing epoxy resins for flame retardancy V:Synergistic effect of phosphorus-silicon on flame retardancy. Journal of applied polymer science.78 (2000) 1-7.
    [190]S. Kim. C.A. Wilkie. Transparent and flame retardant PMMA nanocomposites. Polymers for advanced technologies.19 (2008) 496-506.
    [191]Q. Tai. L. Song. Y. Hu. R.K. Yuen. H. Feng. Y. Tao. Novel styrene polymers functionalized with phosphorus-nitrogen containing molecules:Synthesis and properties. Materials Chemistry and Physics.134 (2012) 163-169.
    [192]H.P. Diogo. R.C. Santos. P.M. Nunes. M.E. Minas da Piedade. Ebulliometric apparatus for the measurement of enthalpies of vaporization. Thermochimica acta. 249(1995) 113-120.
    [193]A. Pattanayak, S.C. Jana. Properties of bulk-polymerized thermoplastic polyurethane nanocomposites, Polymer,46 (2005) 3394-3406.
    [194]Q. Tai, Y. Hu, R.K. Yuen, L. Song, H. Lu. Synthesis, structure-property relationships of polyphosphoramides with high char residues. Journal of Materials Chemistry,21 (2011)6621-6627.
    [195]V.C. Tung, M.J. Allen. Y. Yang, R.B. Kaner. High-throughput solution processing of large-scale graphene. Nature nanotechnology,4 (2009) 25-29.
    [196]X. Huang, Z. Yin. S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey. H. Zhang, Graphene-Based Materials:Synthesis, Characterization, Properties, and Applications. Small,7(2011) 1876-1902.
    [197]H. Liang, W. Shi, Thermal behaviour and degradation mechanism of phosphate di/triacrylate used for UV curable flame-retardant coatings. Polymer Degradation and Stability.84 (2004) 525-532.
    [198]V.H. Pham. T.V. Cuong. T.T. Dang. S.H. Hur. B.-S. Kong. E.J. Kim. E.W. Shin. J.S. Chung. Superior conductive polystyrene-chemically converted graphene nanocomposite. Journal of Materials Chemistry.21 (2011) 11312-11316.
    [199]H. Kim, A.A. Abdala. C.W. Macosko, Graphene/polymer nanocomposites, Macromolecules.43 (2010) 6515-6530.
    [200]S. Ganguli. A.K. Roy. D.P. Anderson. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon.46 (2008) 806-817.
    [201]G. Goncalves. P.A. Marques. A. Barros-Timmons. I. Bdkin. M.K. Singh, N. Emami.J. Gracio. Graphene oxide modified with PMMA via ATRP as a reinforcement filler. Journal of Materials Chemistry.20 (2010) 9927-9934.
    [202]L.M. Veca. M.J. Meziani. W. Wang. X. Wang. F. Lu. P. Zhang. Y. Lin. R. Fee. J.W. Connell. Y.P. Sun. Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Advanced Materials.21 (2009) 2088-2092.
    [203]T. Kashiwagi. E. Grulke. J. Hilding. R. Harris. W. Awad. J. Douglas. Thermal degradation and flammability properties of poly (propylene)/carbon nanotube composites, Macromolecular rapid communications.23 (2002) 761-765.
    [204]J. Liang. Y. Huang. L. Zhang. Y. Wang. Y. Ma. T. Guo. Y. Chen. Molecular-Level Dispersion of Graphene into Poly (vinyl alcohol) and Effective Reinforcement of their Nanocomposites. Advanced Functional Materials.19 (2009) 2297-2302.
    [205]R.J. Young, I.A. Kinloch. L. Gong. K.S. Novoselov. The mechanics of graphene nanocomposites:a review. Composites Science and Technology,72 (2012) 1459-1476.
    [206]H. Yang, F. Li, C. Shan. D. Han. Q. Zhang, L. Niu, A. Ivaska, Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. Journal of Materials Chemistry,19 (2009) 4632-4638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700