用户名: 密码: 验证码:
基于视频图像的高大空间建筑火灾探测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于视频图像的探测方法具有探测范围广、响应时间短、成本低等优势,是解决高大空间建筑火灾探测问题的有效方法。基于视频图像的探测由三个环节组成:目标提取、目标跟踪和目标识别。由于高大空间中图像信息的复杂性,如光照变化、物件移动、目标数量多、运动模型多变、目标遮挡、镜头遮挡、小样本等,使得火灾探测的准确性、实时性和鲁棒性难以同时满足。本文改进和提出了关于目标提取、跟踪和识别的系列算法,并开发了针对高大空间建筑火灾探测的软件系统。本文的研究成果主要有以下几个方面:
     (1)目标提取:主要解决高大空间中由于光照变化、物件移动等而造成的不能准确、及时提取火灾目标(火焰、烟雾)问题。分析了当前主要目标提取方法的特点及实际效果;针对背景差分法中的背景更新问题,提出了一种基于跟踪和识别信息的时空自适应背景更新法:把目标跟踪、识别的结果信息进行反馈,用以指导背景更新,以考虑目标类型、位置和频率特征等差异。
     (2)目标跟踪:主要解决多目标跟踪的模型多变和遮挡问题。构建了用于多目标提取、跟踪和识别的数据存储结构;针对状态向量是测量向量扩展形式的平方根无迹卡尔曼滤波(square root unscented kalman filter, SR-UKF),提出了一种新的精简算法;针对高大空间中运动模型多变、目标遮挡和镜头遮挡等问题,把多模型、数据延迟和模糊自适应融入到多目标跟踪体系中,提出了一种新的多目标跟踪方法——基于多模型和数据延迟的模糊自适应多目标跟踪。
     (3)目标识别:针对高大空间条件下火灾识别的小样本问题,利用基于遗传算法的最小二乘支持向量机(genetic algorithm based least square support vector machine, GALSSVM)中GA样本训练的结果信息构建了模糊隶属度函数,形成了基于模糊隶属度和遗传算法的最小二乘支持向量机(fuzzy membership and genetic algorithm based least square support vector machine, FGALSSVM);针对单一、瞬态识别算法的准确性和鲁棒性不足问题,把瞬态融合和历史信息融合的概念引入到目标识别中,建立了基于算法融合的目标识别框架。
     除了改进算法本身,本文开发了各主要算法的源代码以及软件系统,并基于火灾实验的视频文件,对改进算法的实际效果进行了实验验证。
Video-image fire detection performs well in detection range, response time and cost. So it is more efficient than traditional methods in fire detection for large space structures. In essence, video-image fire detection is composed of three parts: object extraction, tracking and recognition. Due to the complexity of the visual environment in the large space structures, such as change of illumination, moving of objects, large number of objects, variation of motion model, object shading, lens shading and the problem of the small sample size, it is hard to realize accurate, real-time and robust detection of fire at the same time. In this research, a series of algorithms about object extraction, tracking and recognition are improved and proposed. A prototype software system is developed to detect fire for large space structures. The main contents are as follows:
     (1) Object extraction. Due to the changing of lighting and moving of objects, it is difficult to achieve accurate and real-time object extraction. First, the feature and performance of main extraction algorithms are analyzed. Then a new space-time adaptive algorithm for background updating is proposed for the background subtraction. The advance is that the information about object tracking and recognition can be applied to guide the object extraction. So the type, position and frequency of the object can be gained and considered.
     (2) Object tracking. The key problem is the variation motion model and shading in multi-object tracking. First, a data structure is established for multi-object extraction, tracking and recognition. Then a new concised SR-UKF(square root unscented kalman filter) is proposed when the measuring vector is a subset of the state vector. At last, multiple motion model, data delay and fuzzy adaption are introduced into the multi-object tracking system to improve the tracking performance. So a new multi-object tracking algorithm is proposed. That is, fuzzy adaptive multi-object tracking algorithm based on multiple model and data delay.
     (3) Object recognition. In order to conquer the problem of the small sample size in fire detection for large space structures, functions of membership degree are constituted based on the final training result of the GA(genetic algorithm) in GALSSVM(genetic algorithm based least square support vector machine). So a new SVM is proposed with the name FGALSSVM(fuzzy membership and genetic algorithm based least square support vector machine). To improve the accuracy and robustness of single and transient recognition algorithms, the concept of transient data fusion and historical data fusion are introduced into the system of recognition. So a new type of recognition frame is established.
     Except for improving the algorithms, the source codes for main algorithms and the prototype detecting software are developed. A series of tests are conducted to verify the performance of the improved algorithms.
引文
[1]公安部消防局编.中国火灾统计年鉴.北京:警官教育出版社.
    [2]袁宏永,赵建华,苏国锋.图像型大空间建筑早期火灾智能探测报警技术.消防技术与产品信息, 2001, 2:30-32.
    [3]中华人民共和国国家技术监督局. GB50116-2008.火灾自动报警系统设计规范.北京:中国华侨出版社, 2008.
    [4]冉鹏,李宏文.吸气式感烟探测报警系统在高大空间中的应用.消防技术与产品信息, 2002, 7:13-16.
    [5] Su G F, Xie Q Y, Wang J J, Yuan H Y, et al. Experimental study on false alarms of smoke detectors caused by steam. Fire Safety Science, 2005, 14(1):29-34.
    [6]袁非牛,廖光煊,张永明,等.计算机视觉火灾探测中的特征提取.中国科学技术大学学报, 2006, 36(1):39-43.
    [7] Video smoke detection white paper. Technical Report from Notifier Company. http://www.hici.com/files/Video_Smoke_Detection_whitepaper.pdf.
    [8]宋卫国,范维澄,吴龙标.基于人工神经网络的火灾图像探测方法.火灾科学, 1999,8(3):49-56.
    [9] Cheng X F, Wu J H, Yuan X, et al. Principles of a video fire detection system. Fire Safety Journal, 1999, 33:57-69.
    [10]董华,程晓舫,范维澄.基于图像探测的早期火灾烟气模式研究.光学技术, 1999, 1:58-60.
    [11]徐琼,詹福如,苏国锋,等.火灾烟雾探测技术的发展与探讨.火灾科学, 2002, 11(2): 114-118.
    [12]袁宏永,苏国锋,李英.高大空间火灾探测及灭火新技术.消防技术与产品信息, 2003, 10:71-72.
    [13] Fang J, Ji J, Yuan H Y, Zhang Y M. Early fire smoke movements and detection in high large volume spaces. Building and Environment, 2006, 41(11):1482-1493.
    [14] Fang J, Yuan H Y. Experimental measurements, integral modeling and smoke detection of early fire in thermally stratified environments. Fire Safety Journal, 2007, 42(1):11-24.
    [15]袁非牛,张永明,刘士兴,等.基于累积量和主运动方向的视频烟雾检测方法.中国图象图形学报, 2008, 13(4):808-813.
    [16] Yuan W, Yu C Y, Zhang Y M. Based on wavelet transformation fire smoke detection method. In. Proc. of the Ninth International Conference on Electronic Measurement &Instruments (ICEMI), 2009, 2:872-875.
    [17] Yu C Y, Fang J, Wang J J, Zhang Y M. Video fire smoke detection using motion and color features. Fire Technology, 2009, 42(1):11-24.
    [18]米锐.火灾图像自动监测技术的研究与开发[硕士学位论文].成都:四川大学计算机学院, 2003.10.
    [19]金华彪,夏雨人,张振伟.数字图像处理在火灾探测技术领域的应用.微型电脑应用, 2003,19(5):25-27.
    [20]陈莹.基于图像处理的火灾监测系统软件设计.低压电器, 2006, 1:32-35.
    [21]李虎胜.基于提升小波的图像型火灾检测技术[硕士学位论文].西安:西安建筑科技大学信息与控制工程学院, 2008.
    [22]冉海潮.火灾图像的模糊识别探测方法.模糊系统与数学, 2001, 15(3):102-104.
    [23]姜东海,王殊.分形编码技术在图像型火灾烟雾探测中的应用研究.长沙通信职业技术学院学报, 2005, 4(4):16-20.
    [24]吴爱国,杜春燕,李明.基于混合高斯模型与小波变换的火灾烟雾探测.仪器仪表学报, 2008, 29(8):1622-1626.
    [25]焦珂.基于图像的火灾烟雾识别算法研究[硕士学位论文].成都:西华大学数学与计算机学院, 2008.
    [26]王欣刚,魏峥,刘东昌,等.基于烟雾动态特征分析的实时火灾检测.计算机技术与发展, 2008, 18(11):9-12.
    [27]田晓冬,赵海啸,孙运.基于视觉的目标提取方法综述.电脑知识与技术(学术交流), 2007, 2:361-364.
    [28] Gomez-Rodriguez F, Arrue B C, Ollero A. Smoke monitoring and measurement using image processing. Application to forest fires. In. Proc. of SPIE, Automatic Target Recognition XIII, 2003, 5094:404-411.
    [29] Toreyin B U, Dedeoglu Y, Cetin A E. Wavelet based real-time smoke detection in video. In. Proc. of 13th European Signal Processing Conf., EUSIPCO, 2005:4-8.
    [30] Toreyin B U, Dedeoglu Y, Cetin A E. Contour-based smoke detection in video using wavelets. In. Proc. of 14th European Signal Processing Conf., EUSIPCO, 2006.
    [31] Fujiwara N, Terada K. Extraction of a smoke region using fractal coding. In. Proc. of International Symposium on Communications and Information Technologies, Sapporo, Japan, 2004:659-662.
    [32] Haritaoglu I, Harwood D, Davis L S. W4: real-time surveillance of people and their activities. IEEE Trans. On PAMI, 2000, 22(8):809-830.
    [33] Matsuyama T, Ohya T, Hable H. Background subtraction for non-stationary scenes. Technical Report from Department of Electronics and Communications, Graduate Schoolof Engineering, Kyoto University: Sakyo, Kyoto, Japan, 1999.
    [34] Oliver N, Rosario B, Pentland A. A bayesian computer vision system for modeling human interactions. In. Proc. of the International Conf. on Vision Systems, Spain, 1999.
    [35] Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-Filtering. In. Proc. of the International Conf. on Recent Advances in Mechatronics, ICRAM’95, Istanbul, TURKEY, 1995:193-199.
    [36] Wren C R, Azarbayejani A, Darrell T, et al. Pfinder: real-time tracking of the human body. IEEE Trans. On PAMI, 1997, 19(7):780-785.
    [37] Koller D, Weber J W, Malik J. Robust multiple car tracking with occlusion reasoning. In. Proc. of the European Conf. on Compter Vision, 1994.
    [38] Stauffer C, Grimson W E L. Learning patterns of activity using real-time tracking. IEEE Trans. on PAMI, 2000, 22(8):747-757.
    [39] Pavlidis I, Morellas V, Tsiamyrtzis P, et al. Urban surveillance systems: from the laboratory to the commercial world. Proceedings of the IEEE, 2001, 89(10):1478-1497.
    [40] Toyama K, Krumm J, Brumitt B, et al. Wallflower: principles and practice of background maintenance. In. Proc. of the Inter. Conf. on Computer Vision, Corfu, Greece, 1999:255-261.
    [41]贾云得.机器视觉.北京:科学出版社, 2000.
    [42]岑峰.视频监控系统中面向人的目标跟踪技术的研究[博士学位论文].上海:上海交通大学计算机科学与工程系, 2002.
    [43]邵文坤,黄爱民,韦庆.目标跟踪方法综述.影像技术, 2006, 1:17-20.
    [44] Ahmed N U and Radaideh S M. Modified extended Kalman filtering. IEEE Trans. on Automatic Control, 1994, 39(6):1322-1326.
    [45] Adaptive extended Kalman filter (AEKF)-based mobile robot localization using sonar. Robotica, 2000, 18:459-473.
    [46] Julier S J, Uhlmann J K. A new approach for filtering nonlinear systems. In. Proc. of the Proceedings of the American Control Conference. USA: IEEE Press, 1995:1628-1632.
    [47] Julier S J, Uhlmann J K. A new extension of the Kalman Filter to nonlinear systems. In. Proc. of SPIE, 1997, 3068:182-193.
    [48] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. In. Proc. of the Proceedings of IEEE (S0018-9219), 2004, 92(3):401-422.
    [49] Merwe R V D, Freitas N D, Doucet A, Wan E. The Unscented Particle Filter. Technical Report CUED/F-INFENG/TR 380, Eng. Dept., Cambridge Univ., 2000.
    [50]汲清波,冯驰,吕晓凤. UKF、PF与UPF跟踪性能的比较.计算机工程与应用, 2008, 44(32):60-63.
    [51]薛陈,朱明,刘春香.遮挡情况下目标跟踪算法综述.中国光学与应用光学, 2009, 2(5): 388-394.
    [52]江泽涛,赵榕春,黎明.一种基于相关的分层匹配与目标跟踪算法.航空学报, 2006, 27(4):670-675.
    [53]王明波,周亚凡,刘颖.遮挡情况下目标跟踪算法研究.现代雷达, 2008, 30(7):52-55.
    [54] Maggio E, Cavallaro A. Multi-part target representation for color tracking. In. Proc. of the ICIP 2005, IEEE Int. Conf. on Image Proc., 2005, 1:729-732.
    [55] Wang F L, Yu S Y, Yang J. A novel fragments-based tracking algorithm using Mean Shift. In. Proc. of the 10th Intl. Conf. on Control, Automation, Robotics and Vision, Hanoi,Vietnam, 2008:694-698.
    [56] Caulfield D, Dawson-Howe K. Evaluation of multi-part models for Mean-Shift tracking. In. Proc. of the Int. Machine Vision and Image Proc. Conf., 2008:77-82.
    [57] Zhang Z, Gunes H, Piccardi M. Tracking people in crowds by a part matching approach. In. Proc. of the IEEE 5th Int. Conf. on Advanced Video and Signal Based Surveillance, 2008:88-93.
    [58] Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracing using integral histogram. In. Proc. of the IEEE Society Conf. on Comput. Vis. and Pattern Recognition, 2006:798-805.
    [59] Isard M, Blake A. CONDENSATION-Conditional density propagation for visual tracking. International Journal of Computer Vision, 1998, 29(1):5-28.
    [60] Magill D T. Optimal adaptive estimation of sampled stochastic processes. IEEE Trans. on Automatic Control, 1965, 10(4):434-439.
    [61] Maybeck P S, Stevens R D. Reconfigurable flight control via mutiple model adaptive control methods. IEEE Trans. Aerospace and Electronic System, 1991, 27(3):470-479.
    [62] Watanabe K, et al. A hierarchical multiple model adaptive control of discrete-time stochastic systems for sensor and actuator uncertainties. Automatica, 1990, 26(5):875-886.
    [63]任光,朱利民,于成,等.多模型卡尔曼滤波器的研究.大连海事大学学报, 1999, 25(4):1-5.
    [64] Munir A, Atherton D P. Adaptive interacting multiple model algorithm for tracking a manoeuvring target. IEE Proc Radar, Sonar Navig, 1995, 142(1):11-17.
    [65] Rong L X. Design of an interacting multiple model algorithm for air traffic control tracking. IEEE Transactions on Control Systems Technology, 1993, 1(3):186-194.
    [66] Averbuch A, Itzikowitz S, Kapon T. Radar target tracking-Viterbi versus IMM. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(3):550-563.
    [67] Jilkov V P, Angelova D S, Semerdjiev T Z A. Design and comparison of mode-set adaptiveIMM algorithm for maneuvering target tracking. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1):343-350.
    [68]左东广,韩崇昭,郑林,等.机动目标的模糊多模型跟踪算法.西安交通大学学报, 2002(12):1240-1244.
    [69]陈谋,姜长生.自适应模糊逻辑的多模型跟踪.光学精密工程, 2009, 17(4):867-873.
    [70] Carlson N A. Federated filter for fault-tolerant integrated navigation systems. In. Proc. of the Position Location and Navigation System.Oralando: IEEE, 1988:110-119.
    [71] Carlson N A. Federated square root filter for decentralized parallel processes. IEEE AES, 1990, 26(3):517-525.
    [72] Carlson N A. Federated filter for computer-efficient, near-optimal GPS integration. In. Proc. of the IEEE. Trans. on Aerospace and Electronic Systems, 1996:306-314.
    [73]顾启泰,王颂.联邦滤波器理论研究.中国惯性技术学报, 2002, 10 (6):34-40.
    [74]熊武一,周家法总编,等主编.军事大辞海·上.北京:长城出版社, 2000.
    [75]梁路江,付全喜,陶建峰,等.一种基于冲击响应的目标识别反卷积算法.探测与控制学报, 1999, 21(2):23-26.
    [76]余静,游志胜.自动目标识别与跟踪技术研究综述.计算机应用研究, 2005, 1:12-15.
    [77] Chen C H. Statistical Pattern Recognition. Hayden(Sparton Books), New York, 1973.
    [78]王碧泉,陈祖荫.模式识别理论、方法和应用.北京:地震出版社, 1989.
    [79]边肇祺,张学工,等.模式识别(第二版).北京:清华大学出版社, 2000.
    [80] Kleer J D, Williams B C. Diagnosis with behavioral modes. Readings in model-based diagnosis, Morgan Kaufmann Publishers Inc, San Francisco, CA, USA, 1992:124-130.
    [81]代树武,孙辉先.基于模型的飞行器电源故障诊断与故障模式识别.振动与冲击, 2005, 24(3):55-58.
    [82] Hall D L, Llinas J. An introduction to multisensor data fusion. In. Proc. of the IEEE, 1997, 85(1):6-83.
    [83] Varshney P K. Scanning the special issue on data fusion. In. Proc. of the IEEE, 1997, 85:3-5.
    [84]余小游,卢焕章,常青.多传感器目标识别系统中的数据融合方法与系统结构的研究.国防科技参考, 1998, 19(1):11-16.
    [85]王会清,韩艳玲.计算机与现代化.基于多传感器与数据融合技术的研究, 2002, 9:64-67.
    [86] Benmokhtar R, Huet B. Neural network combining classifier based on Dempster-Shafer theory for semantic indexing in video content. In: Lecture Notes in Computer Science. 2006, Springer, Berlin Heidelberg, 196-205.
    [87] Beynon M, Curry B, Morgan P. The Dempster–Shafer theory of evidence: an alternativeapproach to multicriteria decision modeling. Omega: the international journal of management, 2000, 28:37-50.
    [88] Zadeh L A. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. Artificial Intelligence, 1986, 7(2):85-90.
    [89] Zadeh L. Fuzzy sets. Information and Control, 1965, 8:338-353.
    [90] Kaehler S D. Fuzzy logic tutorial. http://www.seattlerobotics.org/Encoder/mar98/fuz/flindex.html.
    [91] Yamanu M S, Farag A A, Hsu S Y. A fuzzy hyperspectral classifier for Automatic Target Recognition (ATR) systems. Pattern Recognition Letters, 1999, 20:1431-1438.
    [92] Augustyn A K. A new approach to Automatic Target Recognition. IEEE Trans. on Aerospace and Electronic Systems, 1992, 28(1):105-114.
    [93] Ratches A J, Walters C P, Buser G. Aided and Automatic Target Recognition based upon sensory inputs from image forming systems. IEEE Trans. on PAMI, 1997, 19 (9):1004-1019.
    [94] Burges C J C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2):121-167.
    [95] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3):293-300.
    [96] Collins R T, Lipton A J, Kanade T. A system for video surveillance and monitoring. In. Proc. of American Nuclear Society 8th Int. Topical Meeting on Robotics and Remote Systems, Pittsburgh, PA, Apr.25-29, 1999.
    [97] Ko B C, Cheong K H, Nam J Y. Fire detection based on vision sensor and support vector machines. Fire Safety Journal, 2009, 44 (3):322-329.
    [98] James W. Davis, Aaron F. Bobick.The representation and recognition of human movement using temporal templates. In. Proc. of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'97), 1997:928-934.
    [99] Davis J W. Recognizing movement using motion histograms. Technical Report 487, MIT Media Lab, 1999.
    [100] Davis J W, Bobick A. The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(3):257-267.
    [101] Davis J W. Representing and recognizing human motion: from motion templates to movement categories. In. Proc. of the International Conference on Intelligent Robots and Systems, Maui, Hawaii, October 29, 2001.
    [102] Davis J W, Bradski G R. Motion segmentation and pose recognition with motion history gradients. Machine Vision and Applications, 2002, 13(3):174-184.
    [103] Ho C C, Kuo T H. Real-time video-based fire smoke detection system. In. Proc. of 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronic, Singapore, 2009:1845-1850.
    [104] Barron J L, Fleet D J, Beauchemin S S. Performance of optical flow techniques. International Journal of Computer Vision (IJCV), 1994, 12(1):43-77.
    [105] Beauchemin S S, Barron JL. The computation of optical flow. ACM Computing Surveys (ACMCS), 1995, 27(3):433-467.
    [106] Horn B, Schunck B . Determining optical flow. AI, 1981, 17(1):185-203.
    [107] Lucas B, Kanade T. An iterative image registration technique with an application to stereo vision. In. Proc. of DARPA IU Workshop, 1981, 17(1):121-130.
    [108] Nagel H H. On the estimation of optical flow: relations between different approaches and some new results. Artificial Intelligence, 1987, 33(3):298-324.
    [109] Yu C Y, Fang J, Wang J J, Zhang Y M. Video fire smoke detection using motion and color features. Fire Technology, 2009, 42(1):11-24.
    [110] Beauchemin S S, Barron J L. The compution of optical flow. ACM Computing Surveys (CSUR), 1995, 27(3):433-466.
    [111] Bernard P C. Discrete Wavelet analysis for fast optic flow computation. Applied and Computational Harmonic Analysis, 2001, 11(1):32-63.
    [112] Beauchemin S S, Barron J L. The compution of optical flow. ACM Computing Surveys (CSUR), 1995, 27(3):433-466.
    [113] Sweldens W. The lifting scheme: a construction of second generation wavelets. Technical Report of University of South Carolina, 1995:6:l-5.
    [114] Sweldens W. The lifting scheme: a new philosophy in biorthogonal wavelet constructions. In. Pro. of the SPIE, USA, 1995:68-79.
    [115] Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps. J Fourier Anal Appl, 1998, 4(3):247-269.
    [116] Sentenac T, Maoult Y L, Orteu J J, Boucourt G. Overheating, flame, smoke, and freight movement detection algorithms based on charge-coupled device camera for aircraft cargo hold surveillance. Optical Engineering, 2004, 43(12):2935-2953.
    [117] Fukunaga K, Hostetler L D. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory, 1975, 21(1): 32-40.
    [118]朱胜利. Meanshift及相关算法在视频跟踪中的研究[博士学位论文].杭州:浙江大学电气工程学院, 2006.
    [119]叶佳,张建秋.基于Meanshift算法的目标跟踪方法.传感技术学报, 2006, 19(6):2621-2624.
    [120] Silverman B W. Density estimation for statistics and data analysis. London: Chapman and Hall, 1986.
    [121] Kerm P V. Adaptive kernel density estimation. In. Proc. of the 9th UK Stata Users meeting, Royal Statistical Society, London, 2003:19-20.
    [122] Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995, 17(8):790-799.
    [123] Comaniciu D, Meer P. Mean shift analysis and applications. In. Proc. of the Seventh IEEE International Conference on Computer Vision, 1999, 2:1197-1203.
    [124] Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. In. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2000, 2:142-149.
    [125] Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transections on Pattern Analysis and Machine Intelligence, 2003, 25(5):564-577.
    [126] Comaniciu D, Ramesh V, Meer P. The variable bandwidth mean shift and data-driven scale selection. In. Proc. of the 8th Intl.Conf.on Computer Vision, 2001:438-445.
    [127] Li J, Chua C S, Ho Y K. Color based multiple people tracking. In. Proc. of the 7th International Conference on Control, Automation, Robotics and Vision (ICARCV’02), Singapore, 2002:309-314.
    [128] Gevers T, Smeulders A W M. Color-based object recognition. Pattern Recognition, 1999, 32(3):453-464.
    [129] Geusebroek J M, Boomgaard R V D, Smeulders A W M. Color invariance. IEEE Trans. Pattern Anal. Machine Intell, 2001, 23(12):1338-1350.
    [130]常发亮,刘雪,王华杰.基于均值漂移与卡尔曼滤波的目标跟踪算法.计算机工程与应用, 2007, 43(12):50-52.
    [131]曾峦,谭久彬,宋胜利,等.一种改进的运动目标跟踪算法.红外与激光工程, 2008, 37(3):556-560.
    [132]魏坤,赵永强,潘泉,等.基于均值漂移和粒子滤波的红外目标跟踪.光电子·激光, 2008, 19(2):213-217.
    [133] Bradski G R, Clara S. Computer vision face tracking for use in a perceptual user interface. Intel Technology Journal, 1998, 2:1-15.
    [134] Nouar O D, Ali G, Raphael C. Improved object tracking with Camshift algorithm. In. Proc. of the 2006 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2006), 2:657-660.
    [135] Stolkin R, Florescu I, Kamberov G. An adaptive background model for camshift tracking with a moving camera. in Advances In Pattern Recognition, ser. Proceedings of the SixthInternational Conference, Indian Statistical Institute, Kolkata, India, 2007:147-151.
    [136] Stolkin R, Florescu I, Baron M, Harrier C, Kocherov B. Efficient visual servoing with the ABCshift tracking algorithm. In. Proc. of the IEEE International Conference on Robotics and Automation Pasadena, 2008:3219-3224.
    [137]薛媛,李媛媛.基于Mean-Shift与Camshift算法相结合的火焰视频图像跟踪设计.电子元器件应用, 2009, 11(5):33-36.
    [138]孙凯,刘世荣.多目标跟踪的改进Camshift/卡尔曼滤波组合算法.信息与控制, 2009 38(1):9-14.
    [139] Leephokhanon S, Wiangtong T. Object tracking and motion capturing in hardware -accelerated multi-camera system. In. Proc. of the ARC, 2009:324-329.
    [140] Xia J, Wu J, Zhai H T, Cui Z M. Moving vehicle tracking based on double difference and CAMShift. In. Proc. of the International Symposium on Information Processing (ISIP’09), 2009:29-32.
    [141] Allen J G, Xu R Y D, Jin J S. Object tracking using camshift algorithm and multiple quantized feature spaces. In. Proc. of the Pan-Sydney Area Workshop on Visual Information Processing VIP, 2003:3-7.
    [142] Kalman R E. A new approach to linear filtering and prediction problems. Transactions of the ASME Journal of Basic Engineering, 1960, 82 (D):35-45.
    [143] Parkum J, Poulsen N K, Holst J. Recursive forgetting algorithms. International Journal of Contro, 1992, 55(1):109-128.
    [144] Grewal M S, Andrews A P. Kalman Filtering: Theory and Practice Using MATLAB, Second Edition. John Wiley & Sons, 2001.
    [145]蒋恩松,李孟超,孙刘杰.一种基于神经网络的卡尔曼滤波改进方法.电子与信息学报, 2007, 29(9):2073-2076.
    [146]张洁颖,王生进,丁晓青.基于视频图像处理的交通流检测系统.电视技术, 2008, 32(6):68-70.
    [147] Schutter J D, Geeter J D, Lefebvre T, Bruyninckx H. Kalman filters: a tutorial. Journal A, 1999, 40(4):538-546.
    [148] Welch G, Bishop G. An introduction to the Kalman Filter. UNC-Chapel Hill, TR 95-041, 2006.
    [149] Safak E. Adaptive modeling, identification, and control of dynamic structural systems, I: theory. Journal of Engineering Mechanics, ASCE, 1989, 115(11):2386-2403.
    [150] Koh C G, See L M. Identification and uncertainty estimation of structural parameters. Journal of Engineering Mechanics, ASCE, 1994, 120(6):1219-1237.
    [151] Lin J W, Betti R, and Longman R W, et al. On-line identification of non-linear structural systems using a variable trace approach. Earthquake Engineering and Structural Dynamics,2001, 30(9):1279-1303.
    [152] Pnevmatikakis A, Polymenakos L. Kalman tracking with target feedback on adaptive background learning. Lecture Notes in Computer Science 4299. Berlin, Heidelberg: Springer, 2006.
    [153]沈晔青,龚华军,熊琰.自适应卡尔曼滤波在目标跟踪系统中的应用.计算机仿真, 2007, 24(11):210-213.
    [154] Liang Z W, Ma X D, Dai X V. Robust tracking of moving sound source using multiple model Kalman filter. Appl. Acoust. 2008, 69:1350-1355.
    [155] Terejanu G A. Unscented kalman filter tutorial. Technical Report from the Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260. http://www.acsu.buffalo.edu/~terejanu/files/tutorialUKF.pdf
    [156] Wan E A, Merwe R V D. The unscented kalman filter for nonlinear estimation. In. Proc. of IEEE Adaptive Systems for Signal Processing, Communications and Control Symposium (AS-SPCC), 2000:153-158.
    [157] Merwe R V D, Wan E A. The square-root unscented kalman filter for state and parameter estimation. In. Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, Salt Lake City, UT, USA, May 2001, 6:3461-3464.
    [158]杨静,郑南宁.一种基于SR-UKF的GPS/DR组合定位算法.系统仿真学报, 2009, 21(3):721-723.
    [159]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西安:西北工业大学出版社, 1998.
    [160]连倩,苏杰. D-S证据理论在火灾探测中的应用.中国仪器仪表, 2007, 6:65-67.
    [161]吴龙标,方俊,谢启源.火灾探测与信息处理.北京:化学工业出版社, 2006.
    [162] Chen T H, Wu P H, Chiou Y C. An early fire-detection method based on image processing. In. Proc. of the IEEE Int. Conf. Image Processing (ICIP), Singapore, 2004:1707-1710.
    [163]王振华.基于视频图像的火灾探测技术的研究[硕士学位论文].西安:西安建筑科技大学信息与控制工程学, 2008.
    [164] Chen T H, Yin Y H, Huang S F, Ye Y T. The smoke detection for early fire-alarming system base on video processing. In. Proc. of the 2006 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP'06), 2006:427-430.
    [165] Rabiner L R. A tutorial on Hidden Markov Models and selected applications in speech recognition. In Proceedings of the IEEE, 1989, 77(2):257-286.
    [166] Bunke H, Caelli T. HMMs Applications in Computer Vision. World Scientific, 2001.
    [167] Okayama Y. A primitive study of a fire detection method controlled by artificial neural net. Fire Safety Journal, 1991, 17(6):535-553.
    [168] Nakanishi S, et al. Intelligent fire warning system using fuzzy technology. Journal of Japan Society for Fuzzy Theory and Systems, 1993, 5(1):95-107.
    [169] Milke J A. Application of neural networks for discriminating fire detectors. In. Proc. of the International Conference on Automatic Fire Detection, 1995:213-222.
    [170]吴龙标,张本矿,连家锐.基于遗传算法的前馈神经网络火灾探测.火灾科学, 1998,7(2):21-26.
    [171] Zhang Q, Wang S. A fire detection system based on ART-2 neural-furry network. In. Proc. of the Fourth International Conference on Signal Processing, 1998, 2:1355-1358.
    [172]姚伟祥,吴龙标,卢结成,等.火灾探测的一种模糊神经网络方法.自然科学进展, 1999, 9(8):739-745.
    [173]冉海潮,刘力辉.基于神经网络的火灾探测系统.火灾科学, 2000, 9(1):34-38.
    [174] Foo S Y. A fuzzy logic approach to fire detection in aircraft dry bays and engine compartments. IEEE Trans. Industrial Electronics, 2000, 47(5):1161-1171.
    [175] Xiao J M, Wang X H. A fuzzy neural network approach to fire detection in ships. In: Proceedings of the 12th IEEE International Conference on Fuzzy Systems, 2003, 2:1459-1461.
    [176] Yu C Y, Zhang Y M, Fang J, et al. Texture analysis of smoke for real-time fire detection. In. Proc. of the Second International Workshop on Computer Science and Engineering, 2009, 2:511-515.
    [177] Pei Y A, Gan F C. Research on data fusion system of fire detection based on neural-network. In Proceedings of the 2009 Pacific-Asia Conference on Circuits, Communications and System, 2009:665-668.
    [178] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323:533-536.
    [179] Zainuddin Z, Mahat N, Hassan Y A. Improving the convergence of the backpropagation algorithm using local adaptive techniques. World Academy of Science, Engineering and Technology, 2005, 1:79-82.
    [180]朱大奇,史慧.人工神经网络原理及应用.北京:科学出版社, 2006.
    [181]陈涛,袁宏永,范维澄.火灾探测技术研究的展望.火灾科学, 2001,10(2):108-112.
    [182] Lee S C, Lee E T. Fuzzy sets and neural networks.Cybernetics and Systems, 1974, 4(2):83-103.
    [183] Lee S C, Lee E T. Fuzzy neural networks. Mathematical Biosciences, 1975, 23:151-177.
    [184] Takagi H. Fusion technology of fuzzy theory and neural networks—survey and future directions. In. Pro. of the Int . Conf. on Fuzzy Logic and Neural Networks. 1990:13-26.
    [185] Kosko B. Neural Networks and Fuzzy Systems: A Dyhamical Systems Approach toMachine Intelligence. NJ: Prentice Hall Inc, 1992.
    [186]张丽杰,陈抗生.基于改进遗传算法优化的模糊神经网络在火灾探测中的应用.装备制造技术, 2008, 4:42-44.
    [187]何建华,杨宗凯,王殊.基于神经网络和模糊逻辑的智能火灾探测.华中理工大学学报. 1997, 25(2):9-11.
    [188]凌智辉.基于模糊神经网络的火灾探测信息处理[硕士学位论文].成都:四川大学计算机学院, 2004.
    [189] Van G T, Suykens J A K, Baestaens D E, et al. Financial time series prediction using least squares support vector machines within the evidence framework. IEEE Transactions on Neural Networks, 2001, 12(4):809-821.
    [190] Viaene S, Baesens B, Van G T, et al. Knowledge discovery in a direct marketing case using least squares support vector machines. International Journal of Intelligent Systems, 2001, 16(9):1023-1036.
    [191] Mohamed S S, Salama M M A, Kamel M, et al. Region of interest based prostate tissue characterization using least square support vector machine LS-SVM. Lecture Notes in Computer Science, 2004, 3212:51-58.
    [192] Liu Z X, Zhang D Y, Liao H C. Multi-scale combination prediction model with least square support vector machine for network traffic. Lecture Notes in Computer Science, 2005, 3498:385-390.
    [193]李同治,丁晓青,王生进.利用级联SVM的人体检测方法.中国图象图形学报, 2008, 13(3):566-570.
    [194]庄哲民,李卡麟,张新峰,等.基于二叉树的LS-WSVM早期火灾多类分类研究.测试技术学报, 2009, 23(6):482-486.
    [195] Bicego M, Martinez M D R, Murino V. A supervised data-driven approach for microarray spot quality classification. Pattern Analysis & Applications, 2005, 8(1-2):181-187.
    [196] Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc. Boston, USA, 1989.
    [197] Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in GA. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(4):656-667.
    [198]涂雪平,张文新,李铁克.基于遗传算法的热轧生产过程多目标优化.工业工程, 2009, 12(6):101-105.
    [199]刘自力,栗苹,张中英,等.基于遗传算法的目标声信号特征选优.计算机仿真, 2009, 26(2):204-207.
    [200] Terebes R , Borda M , Yuan B Z, et al . Adaptive filtering using morphological operators and genetic algorithms. In. Proc. of the ICSP’02, 2002:853-857.
    [201]唐世伟,何雷,何凯,等.基于遗传算法的多尺度小波阈值去噪方法.大庆石油学院学报, 2009, 33(6):98-100.
    [202] Richardson J M, Marsh K A. Fusion of multisensor data. The International Journal of Robotics Research, 1988, 7(6):78-96.
    [203] Bogler P L. Shafer-Dempster reasoning with applications to multisensor target identification systems. IEEE Trans. on SMC, 1987, 17(6):968-977.
    [204] Buede D M. Shafer-Dempster and Bayesian Reasoning: A Response to“Shafer-Dempster Reasoning with Applications to Multisensor Target Identification Systems”. IEEE Trans. on SMC, 1988, 18(6):1009-1011.
    [205] Luo R C, Kay M G. Multisensor integration and fusion in intelligent systems .IEEE Trans. on SMC, 1989, 19(5):901-931.
    [206] Lawrence A. Klein著,戴亚平,刘征,郁光辉译.多传感器数据融合理论及应用.北京:北京理工大学出版社, 2004.
    [207] Dempster A P. Upper and lower probabilities induced by multivalued mapping .Annals of Mathematical Statistics, 1967, 38 (2):325-339.
    [208] Shafer G. A Mathematical Theory of Evidence. Princeton University Press, Princeton, 1976.
    [209] Denceux T. An evidence-theoretic neural network classifier. IEEE Transactions on Systems, Man and Cybernetics. 1995, 25(3):712-714.
    [210] Sentz K, Ferson S. Combination of evidence in Dempster-Shafer theory. Dissertation, Binghamton University, 2002. http ://www.sandia.gov/epistemic/Reports/SAND2002-0835.pdf.
    [211]倪国强,梁好臣.基于Dempster-Shafer证据理论的数据融合技术研究.北京理工大学学报, 2001, 21(5):603-609.
    [212] Markov Chain Monte Carlo and Gibbs Sampling. Lecture Notes for EEB 581, 2004, Version 26. http://web.mit.edu/~wingated/www/introductions/mcmc-gibbs-intro.pdf.
    [213] Application to Markov Chains. http://aix1.uottawa.ca/~jkhoury/markov.htm.
    [214]张学林,孙志友,汪金辉,等.基于马尔可夫链的城市火灾预测.火灾科学, 2006, 15(3):168-171.
    [215]胡敏涛,杨豪,杨烨,等.城市火灾的马尔可夫链预测方法.工业安全与环保, 2009, 35(1):35-37.
    [216] Martell D L. A Markov Chain model of day to day changes in the Canadian forest. International Journal of Wildland Fire, 1999, 9(4):265-273.
    [217]冉海潮,孙丽华.基于烟气湍流效应的火灾判据.传感技术学报, 2001,14(1):72-74.
    [218]冉海潮,王书海,孙丽华.火灾烟气特征的实验研究.仪器仪表学报, 2002, 23 (3): 24-26.
    [219] Hou Q W, Zeng Z M, Sun J Z, Yang X Y. The optimization of PDA optical system. ChineseJournal of Lasers, 1995, 4 (6):530-536.
    [220] Guillemant P, Vicente J. Real-time identification of smoke images by clustering motions on a fractal curve with a temporal embedding method. Optical Engineering, 2001, 40 (4):554-563.
    [221] Cui Y, Dong H, Zhou E Z. An early fire detection method based on smoke texture analysis and discrimination. In. Proc. of the Congress on Image and Signal Processing (CISP), 2008, 3:95-99.
    [222] Gubbi J, Marusic S, Palaniswami M. Smoke detection in video using wavelets and support vector machines. Fire Safety Journal, 2009, 44(8):1110-1115.
    [223] Li T, Ishwar K S. Optimal multiple level decision fusion with distributed sensors. IEEE transactions on Aerospace and Electronic System. 1993, 29(4):1252-1258.
    [224] Klein L A. A boolean algebra approach to multiple sensor voting fusion. IEEE Trans. Areosp. Electron. Syst. 1993, 29(1):317-327.
    [225]杜春雷,李宏文,王随林,等.大空间棉绳阴燃火烟气运动实验研究.建筑科学, 2008, 24(12):32-35.
    [226]白宇,李宏文,杜翠凤,等.高大空间早期火灾实验的火源选择研究.科技导报, 2008, 26(15):50-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700