用户名: 密码: 验证码:
大型公共建筑火灾逃生环境风险测度与导航路径优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们生活在一个不平凡的世界。人类社会几千年的发展创造了丰硕的物质文明和精神文明。同时,我们也生活在一个不平静的世界。每年发生的大量的自然灾害、事故灾难、公共安全突发事件以及日益增多的恐怖袭击在给社会造成巨大损失的同时也带走了千千万万个宝贵的生命。因此,安全问题受到各个国家的普遍重视。突发事件应急管理研究也是各国学者共同关注的问题。
     建筑是人类文明的象征,也是现代人们进行大多数行为活动的主要空间。大型公共建筑与普通建筑物相比较,具有结构复杂、人员密集、财富集中的特点。发生在大型公共建筑内的突发事件无疑会带来更严重、更广泛的经济、环境、社会影响。相对比于其他类型的突发事件,火灾的爆发频率比较高,在大型公共建筑突发事件中比较具有代表性。而相对于物质财富和文化成果而言,人的生命更加宝贵。如何在极端复杂的大型公共建筑火灾条件下,保障逃生者安全、快速地逃离灾害现场是本文的主要研究内容。
     建筑火灾是一个动态的破坏过程,逃生者所处的环境瞬息万变,火灾及其蔓延产物所带来的环境风险时刻威胁着逃生者的生命安全。在这样复杂多变而又极度危险的环境下寻找到正确的逃生道路、迅速撤离火灾现场,对每一位逃生者都是极大的生存挑战。
     本文从对大型公共建筑火灾环境与逃生互动行为分析入手,讨论了建筑火灾特性与建筑火灾主动、被动防御系统在火灾环境下的作用。通过对建筑火灾逃生安全分析,归纳了建筑火灾环境下存在的主要风险类型(高温、毒气、浓烟、坍塌),并应用微效用积累作用模型将其对逃生者的影响作用定量化表达。通过建筑火灾环境下逃生者心理与互动行为分析逃生者选择路径的过程与机理,为大型公共建筑火灾逃生导航提供必要的理论依据。
     建筑火灾破坏性的复杂动态过程会产生多种危及逃生者生命安全的环境风险。为了能对逃生路径上的火灾环境风险客观、准确地评价,首先需要明确火灾环境风险的种类及其相互之间的关联。本文应用空间数据挖掘方法构建适用于建筑火灾环境风险挖掘的多层次空间聚类模型,实现大型公共建筑火灾应急逃生智能导航系统IENS Fire Guide在GIS数据库中的火灾环境风险挖掘的功能。
     建筑火灾逃生路径存在的多种风险在一定程度上会共同影响逃生者的生命安全。本文采用ESDA技术发掘空间数据中隐藏的不同类型风险之间以及风险与逃生者动态网络流之间的关联关系。为了客观地评价建筑火灾这种极度复杂环境下不同类型风险对逃生者的影响作用,正确评价不同类别的风险之间以及风险与逃生者动态网络流之间的关联关系,本文通过构建单变量空间依赖性判别模型和双变量空间相关性评价模型,实现不同类别风险之间以及风险与逃生者动态网络流之间的相关性评价。并在此基础上,建立大型公共建筑逃生O-D路径环境风险评价模型,描述出建筑火灾逃生网络中每一条路段上的逃生概率P和在该路段上消耗的逃生时间T,为基于逃生概率的最短逃生时间消耗网络优化,寻找最佳逃生路径,实现智能逃生导航提供必要的数据基础和算法保障。
     在对建筑逃生路网评价的基础上,本文应用有条件的最小资源消耗网络优化技术,构建基于逃生概率的最短逃生时间消耗网络优化模型,用以在建筑火灾环境下的逃生者动态流网络中寻找最安全且最快速的逃生道路。基于逃生概率的最短逃生时间消耗网络优化模型不仅能够为个体逃生者提供双路径优化方案,并且能够为群体逃生者提供n级动态逃生路径优化策略,以满足群体安全快速逃生的需求。
     为了满足逃生者又安全又快的逃生需求,实现大型公共建筑火灾群体应急逃生策略最优的目标,本文基于大型公共建筑智能逃生空间理论讨论如何构建大型公共建筑火灾应急逃生智能导航系统IENS Fire Guide。IENS Fire Guide基于网络地理信息系统平台和无线传感器网络,通过对逃生者移动设备发射出的信号实现对逃生者的定位,并通过火灾空间风险挖掘与分析功能对逃生者所能够选择的路网进行空间风险关联与评价,在此基础上应用系统的逃生路网的优化功能确定基于最低逃生概率的n级动态逃生方案以辅助逃生者的路径选择及应急指挥人员的决策分析。最后,本文通过对某会展中心火灾场景的模拟,对IENS Fire Guide辅助决策能力进行实例分析。
We are living in a marvelous world. Thousands of years of human society development created abuandence of substantial civilization and spiritual civilization. And we are living in an unpeaceful world. Numerous of natural disasters, technological accidents, public security emergencies and increasing terrorist attacks bring huge lost and take away tens of thousands of precious lives every year. Public security problems and emergency managment have been generally regarded serious by both governments and scholars.
     Buildings are symbols of human civilization, and they are also the majority space for modern activities. Compared with normal buildings, large-scale public buildings are characterized by complex structure, dense of population and wealth concentration. So emergencies happen in large scale-public undoubtedly buildings broad and seriously economical, environmental, and social influence. Fire accidents are much more common compared with other types of public security events, and they are the typical and majority dangerous emergencies happened in large-scale public buildings. And human lives are much more precious than any other treasures and wealth. How to help occupants safely and quickly evacuate from the complex large-scacle public building fire environment is the main content of this research.
     Building fire is a dynamic ruinous process, which threats the evacuees so much with its environmental risks caused by fire propagation. In such changeable and dangerous condition, it would be challenge for all occupants to chose a safe and quick way to escape out.
     In this paper, large-scale public building fir dynamic environment and evacuees’interaction performance has been analysed first. In chapter two, general building fire features and interaction performance of active and passive building fire defence systems in large-scale public buildings has been expatiated. By building fire evacuation safety analysis, the majority types of building fire environmental risks (heat, toxic gas, smoke, and structure collapse) have been summarized with Fractional Effective Dose models expression. Evacuees’psychology analysis and interaction performance understanding in building fire environment provides necessary theoretical basis for path choice and evacuation navigation study.
     In order to objectively and accurately evaluate environmental risks caused by the dynamic ruinous process of building fire propagation, relationships and associations among types of risks should be confirmed. Spatial cluster algorithm has been modeled based on spatial data mining theories in chapter three to fulfil building fire environmental risks mining function of large-scale public building fire navigation intelligence navigation system: IENS Fire Guide.
     Exploratory Spatial Data Analysis (ESDA) technology has been employed in chapter four to discover hidden relationships among types of risks and associations between risks and evacuees dynamic flow. Univariate spatial risks independence evaluation model and bivariate risks association evaluation model has been proposed to estimate relativities of those relations and associations. In chapter four, large-scale public building evacuation origin-determination (O-D) path environmental risks evaluation has been also proposed to calculate escape probability P and time cost T of each section on the O-D paths.
     In chapter five, optional minimal cost network optimization technology has been employed to model up an escape probability based shortest time cost network optimization models to find out the most reliable and fast way to escape out. These models can not only be able to provide optimal scheme for individual evacuation, but also could provide n-level dynamic evacuation optimal strategies for group evacuation.
     To realized large-scale public building fire evacuation navigation, chapter six illustrates how to build up an intelligent space and evacuation navigation system for large-scale public building fire safe and quick evacuation. Finally, a fire scenario case study has been proposed to validate intelligent large-scale public building fire evacuation navigation system IENS Fire Guide use.
引文
1 Richard D. Peacock, Richard W. Bukowski. A prototype methodology for fire hazard analysis. Fire Technology. 1990, (2):15~41
    2 Lyman L. Parks, Brian D. Kushler, Michael J. Serapiglia, Lawrence A. McKenna, Edward K. Budnick, John M. Watts. Fire risk assessment for telecommunications central offices. Fire Technology. 1998, 34(2):156~177
    3杨立中,方伟峰.可燃材料火灾中的毒性评估方法.中国安全科学学报. 2001:11(1):65~71
    4郑双忠,高永庭,陈宝智.城市建筑火灾评价指标及其权重处理.工业安全与环保. 2001:27(11):37~40
    5杜红兵,周心权,张敬宗.高层建筑火灾风险的模糊综合评价.中国矿业大学学报. 2002:31(5):242~246
    6鈡茂华,厉培德,卢兆明,熊建明.多层多室建筑火灾烟气运动的网络模拟.火灾科学. 2002:11(2):103~109
    7徐敏,陈国良,周心权.高层建筑火灾风险的神经网络评价.湘潭矿业学院院报. 2003:18(3):69~72
    8卢兆明,胡宝清,陆君安,方正.高层建筑火灾风险灰关联评估.武汉大学学报(工学版). 2004:37(5):62~67
    9田玉敏,刘茂.高层建筑火灾风险的概率模糊综合评价方法.中国安全科学学报. 2004:14(9):99~105
    10 Thiago Tinoco Pires. A decision aided fire risk analysis. Fire Technology. 2005, (41):25~35
    11刘爱华,施士亮,吴超.基于模糊模式识别的模糊综合评价在高层建筑火灾危险评价中的应用.中国安全科学学报. 2005:15(11):103~108
    12伍爱友,施士亮,王从陆.基于神经网络和遗传算法的城市火灾风险评价模型.中国安全科学学报. 2006:16(11):108~114
    13王威,韩阳,赵月平.两种模型在城市建筑火灾预测中的应用分析.消防科学与技术. 2006: (25):347~351
    14杜咏,李国强,黄珏倩.大空间建筑火灾中烟气温度计算模型的比较.自然灾害学报. 2007:16(6):99~104
    15杜红兵.建筑火灾风险评价中定性指标的模糊灰色评价方法研究.太原理工大学学报. 2007:38(5):441~444
    16付强,张和平,王辉,谢启源.公共建筑火灾风险评价方法研究.火灾科学. 2007:16(3):137~144
    17于作明,王小文.基于BP神经网络的商场建筑火灾风险评价.沈阳航空工业学院学报. 2007:24(1):71~74
    18朱力平,杨政,张娇.高层建筑火灾概率预测FTA分析方法的研究.消防科学与技术. 2007:26(5):469~473
    19田玉敏.建筑火灾风险评价体系的建立与应用探讨.中国安全科学学报. 2008:18(8):74~81
    20何顺法.基于模糊综合评判的建筑火灾危险性研究.消防科学与技术. 2008:27(8):606~609
    21石剑云,潘科.权变和相对差异函数在建筑火灾风险评估中的应用.安全与环境学报. 2008:8(4):157~159
    22温晓虎,贾水库,徐辉.高层建筑火灾风险评估技术的研究.工业安全与环保. 2008:34(6):22~23
    23张叶,何嘉鹏.高层建筑火灾疏散的灰色欧几里德关联度安全评估模型与应用.火灾科学. 2008:17(2):105~121
    24 Gwynne S, Galea ER, Owen M, Lawrence PJ, Filippidis L. A review of the methodologies used in the computer simulation of evacuation from the built environment. Building and Environment. 1999, 34:741~749.
    25 Kuligowski ED. Review of 28 egress models. In: Peacock RD, Kuligowski ED, Workshop on building occupant movement during fire emergencies, June 10-11. 2004, 27~52.
    26 Santos G, Aguirre BE. A critical review of emergency evacuation simulation models. Workshop onBuilding Occupant Movement During Fire Emergencies. In: Peacock RD, Kuligowski ED, editors. Workshop on building occupant movement during fire emergencies, June 10-11. 2004. 27-52.
    27 Yang LZ, Zhao DL, Li J, Fang TY. Simulation of the kin behavior in building occupant evacuation based on cellular automaton. Building and Environment. 2005, (40):411~415.
    28 Friedman R. An international survey of computer models for fire and smoke. Journal of Fire Protection Engineering 1992, 4(3):81~92.
    29 Olenick SM, Carpenter DJ. An updated international survey of computer models for fire and smoke. Journal of Fire Protection Engineering. 2003, 13(2):87~110.
    30 Fredkin E, Toffoli T. Conservative logic. International Journal of Theoretical Physics. 1982, 21(3/4):219~253.
    31 Tajima Y, Nagatani T. Scaling behavior of crowd flow outside a hall.Physica A. 2001, 292:545~554.
    32 Tajima Y, Takimoto K, Nagatani T. Scaling of pedestrian channel flow with a bottleneck. Physica A. 2001, 294:257~268.
    33 Tajima Y, Nagatani T. Clogging transition of pedestrian flow in T-shaped channel. Physica A 2002, 303:239~250.
    34 Fukamachi M, Nagatani T. Sidle effect on pedestrian counter flow. Physica A. 2007, 377: 269~278.
    35 Nagai R, Nagatani T, Isobe M, Adachi T. Effect of exit configuration on evacuation of a room without visibility. Physica A. 2004, 343:712~724
    36 Helbing D, Molnar P. Social force model for pedestrian dynamics. Physical Review E. 1995, 51(5):4282~4286
    37 Seyfried A, Steffen B, Lippert T. Basics of modeling the pedestrian flow. Physica A 2006, 368: 232~238
    38 Parisi DR, Dorso CO. Microscopic dynamics of pedestrian evacuation. Physica A. 2005, 354: 606~618.
    39 Parisi DR, Dorso CO. Morphological and dynamical aspects of the room evacuation process. Physica A. 2007, 385:343~355.
    40 Henderson LF. The statistics of crowd fluids. Nature. 1971, 9:381~383.
    41 Bradley GE. A proposed mathematical model for computer prediction of crowd movements and their associated risks. In: Smith RA., Dickie JF, editors. Engineering for Crowd Safety. Amsterdam: Elsevier. 1993, 303~311
    42 Helbing D, Farkas IJ, Molnar P, Vicsek T. Simulation of pedestrian crowds in normal and evacuation situations. In: Schreckenberg M, Sharma SD, editors. Pedestrian and Evacuation Dynamics. Berlin: Springer~Verlag. 2002, 21~58.
    43 Hughes RL. The flow of large crowds of pedestrians. Mathematics and Computers in Simulation. 2000, 53:367~370.
    44 Hughes RL. The flow of human crowds. Annual Review of Fluid Mechanics. 2003, 35: 169~182.
    45 Colombo RM, Rosini MD. Pedestrian flows and non~classical shocks. Mathematical Methods in the Applied Sciences. 2005, 28:1553~1567.
    46 Goldstone RL, Janssen MA. Computational models of collective behavior. Trends in Cognitive Sciences. 2005, 9(9):424~430.
    47 Bonabeau E. Agent~based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the USA (PNAS). 2002, 99(suppl.3): 7280~7287.
    48 Zarboutis N, Marmaras N. Searching efficient plans for emergency rescue through simulation: the case of a metro fire. Cognition. Technology & Work.2004, 6:117~126.
    49 Braun A, Bodmann BEJ, Musse SR. Simulating virtual crowds in emergency situations. In: Proceedings of the ACM symposium on Virtual reality software and technology (VRST’05), Monterey, California, USA. 2005, 244~252.
    50 Pelechano N, Allbeck JM, Badler NI. Controlling individual agents in high-density crowd simulation. In: Metaxas D, Popovic J, editors. Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, San Diego, California, USA, 3~4 August. 2007, 99~108.
    51 R. F. Fahy An Evacuation model for high rise buildings. Proceedings of the Third International Symposium on Fire Safety Science. 1991, 815~823.
    52 Dunn C.E., Newton D. Opimal Routes in GIS and Emergency Planning Applications. 1992, 24:259~267
    53 Yamada, T. A network flow approach to a city emergency evacuation planning. International Journal of Systems Science. 1996, 27:931~936
    54 Campos V.B.G., da Silva, P.A.L., Netto, P.O.B., 2000. Evacuation transportation planning: a method of identifying optimal independent routes. In: Surcharov, L.J. (Ed.), Proceedings of Urban Transport V: Urban Transport and the Environment for the 21st Century. WIT Press, Southampton. 2000, 555~564.
    55 Sabiha Amin Wadoo, Pushkin Kaschroo. Feedback Control Design and Stability Analysis of One Dimensional Evacuation System. Proceedings of the 2006 IEEE Intelligent Transportation Systems Conference. Toronto, Canada, September 17-20. 2006, 618~623
    56 D. Dochain, J. P. Babary, and M. N. Tali Manaarn. Modeling and adaptive control of nonlinear distributed parameter bioreactors via orthogonal colloction. Automatica. 2002, (68):873~883,
    57 A. Pazy. Semigrous of Linear Operations and Applications to Partial Differential Equations. Springer-Verlag, New York. 2003, 126~190
    58 Paraskevi S. Georgiadou, Ioannis A. Papazoglou, Chris T. Kiranoudis, Nikolaos C. Markatos. Modeling Emergency Evacuation for Major Hazard Industrial Sites. Reliability Engineering and Safety 92. 2007, 1388~1402.
    59 Kouhei Takimoto, Takashi Nagatani. Spatio~temporal Distribution of Escape Time in Evacuation Process. Physica A 320. 2003, 611~621
    60 P. Lin, S. M. Lo, H. C. Huang, K. K. Yuen. On the use of multi~stage time varying quickest time approach for optimization of evacuation plan. Fire safety Journal. 2007, (08): 2~11
    61 Nadine Baumann, Martin Skutella. Solving Evacuation Problems Efficiently: Earliest Arrival Flows with Multiple Sources. Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science. 2006: 0-7695-2720-5/06.
    62 W.K. Chow. Waiting time for evacuation in crowded areas. Building and Environment 42. 2007, 3757~3761
    63 Michael K. Lindell. EMBLEM2: An empirically based large scale evacuation time estimate modle. Transportation Research Part A 42. 2008, 140~154
    64 Q. Zhang, M. Liu, J. Liu, G. Zhao. Modification of Evacuation Time Computational Model for Stadium Crowd Risk Analysis. Process Safety and Environmental Protection. 2007, (11):541~548
    65邸凯昌,李德毅,李德仁.云理论及其在空间数据挖掘和知识发现中的应用.中国图像图形学报. 1999: 930~935
    66 Computer-Based Library Information Systems: Designing Techniques/Madan Mohan Kashyap. Edited by A. Neelameghan and K.N. Prasad. Reprint. New Delhi, Ess Ess Pub., 2006, xxii, 522
    67 Bell D. Wang Hui, Düntsch I. Data reduction based on hyper relations. In: Proceedings of the KDD98, New York. 1998, 349~353
    68蒋昊.基于空间数据库的数据挖掘技术.武汉科技大学学报(自然科学版). 2002: 25(2):183~186
    69 Murray A T, Estivill~Castro V. Cluster discovery techniques for exploratory spatial data analysis. International Journal of Geographical Information Science. 1998, 12(5):431~443.
    70 Krzysztof Koperski, Jiawei Han. Discovery of spatial association rules in geographic information databases. Proceedings of the Fourth International Symposium on LargeSpatial Databases. 1995, 190~290
    71王晋年.以地物识别和分类为目标的高光谱数据挖掘.中国图像图形学报(A) . 1999:4(11):957~964
    72 T. Arentze, A. Borgers, H. Timmermans. A konwledge~based system for developing retail location strategies. Computers, Environment and Urban Systems, 24. 2000, 489~508
    73 Maro Vlaeho Poulou , GeogreSilleos , Vassiliki Mnathou. Geographic information systems in ware house site seleetion decisions. Int. J. produetion Eeonomies, 71. 2001, 205~212
    74舒风笛,毋国,庆王敏.图象数据关联规则挖掘.小型微型计算机系统. 2001:22(11):1353~1356
    75刘大有,王生生,虞强源,胡鹤.基于定性空间推理的多层空间关联规则挖掘算法.计算机研究与发展. 2004:41(4):565~570
    76赵波,边馥荃,潘蜀健.人工神经元网络在空间数据挖掘与知识发现中的应用研究.系统工程. 2004:22(9):92~95
    77 Micheal Pidd, F. N. de Silva, Richard W. Eglese. CEMPS: A Gonfigurable Evacuation Management and Planning System. Proceedings of the 1993 Winter Simulation Conference. 1993, 1319~1324.
    78 Densham, P.J. Spatial Decision Support Systems, in: (eds.), D.J. Maguire, M.F. Goodchild and D.W. Rhind Geographical Information Systems: Principles and Applications, Longman, Harlow, London. 1991, 403.
    79 M. Pidd, F.N. de Silva, R.W. Eglese. A simulation model for emergency evacuation. European Journal of Operational Research 90. 1996, 413~419
    80 Laurent Buisson, Vincent Cligniez. Development of a spatial knowledge base system for environment protection: the ARSEN project. Safety Science 20. 1995, 27~37
    81 F. Guarnieri, J.L. Wybo. Spatial decision support and informatin management application to wildland fire prevention: The WILFRIED System. Safety Science 20. 1995, 3~12
    82 B.S. Lee, M.E. Alexander, B.C. Hawkes, T.J. Lynham, B.J. Stocks, P. Englefield. Information system in support of wildland fire management decision making in Canada. Computers and Electronics in Agriculture 37. 2002, 185~198
    83 Bartel Van de Walle, Murray Turoff. Decision support for emegency situations. Information system E-Bus Management. 2008, 6:295~316
    84 Gunnar G. Lovas. On the Importance of Building Evacuation System Components. IEEE Transactions on Engineering Management. 1998, 45(2): 181~192.
    85 Konstantinos G. Zografos, George M. Vasilakis, Ioanna M. Giannouli. Methodological Framework for Developing Decision Support Systems (DSS) for Hazardous Materials Emergency Response Operations. Journal of Hazardous Materials 71. 2000, 503~521.
    86 A. Zerger, D.I. Smith, G.J. Hunter, S.D. Jones. Riding the Storm: a comparison of uncertainty modelling techniques for storm surge risk management. Applied Geography 22. 2002, 307~330
    87 Micheal J. Kevany. GIS in the World Trade Center Attarck Trial by Fire. Computers, Environment and Urban Systems 27. 2003, 571~583.
    88 Claudia Zepeda, Mauricio Osorio, David Sol. Modeling Evacuation Planning Using A-Prolog. Proceedings of the 15th International Conferenceon Electronics. Communications and Computers (CONIELECOMP 2005) 0-7695-2283-1/05.
    89 Mei-Po Kwan, Jiyeong Lee. Emergency Response after 9/11: the potential of real-time 3D GIS quick emergency response in micro-spatial environments. Computers, Environment and Urban Systems, 29. 2005, 93~113.
    90 Slobodan P. Simonovic, Sajjad Ahmad. Computer Based Model for Flood Evacuation Emergency Planning. Natural Hazards. 2005, 34: 25~51.
    91 Georgiana L. Hamza~Lup, Kien A. Hua. Exit~Point based Approaches for Real Time Traffic Evacuation Management. 2006 IEEE Intelligent Transportation Systems Conference Toronto, Canada, Sep. 17~20. 2006, 151~157.
    92 Maher Lahmar, Tiravat Assavapokee, Siamak A. Ardekani. A Dynamic Transportation Planning Support System for Hurricane Evacuation. Proceedings of the IEEE Intelligent Transportation Systems Conference Toronto, Canada, September 17~20. 2006, 612~618
    93 Michael K. Lindell, Carla S. Prater. A Hurricane Evacuation Management Decision Support System. Nat Hazards. 2007, 40:627~634.
    94 Qiang Li, Xiaokuan Yang, Heng Wei. Integrating Traffic Simulation Models with Evacuation Planning System in A GIS Environment. Proceedings of the IEEE Intelligent Transportation System Conference, Toronto, Canada, September 17~20. 2006, 590~596.
    95 Georgiana L. Hamza~Lup, Kien A. Hua, Rui Peng. Leveraging E-transportation in Real~time Traffic Evacuation Management. Electronic Commerce Research and Application 6. 2007, 413~424.
    96 Jason K. Levy, Kouichi Taji. Group Decision Support for Hazards Planning and Emergency Management: a group analytic network process (GANP) approach. Mathematical and Computer Modeling 46. 2007, 906~917.
    97 Xiafa Huang, Kejun Wang, Lianying Guo. Modeling of Pedestrian Evacuation Safety Control System based on Agent. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation. August 5~8. Harbin, China. 2007, 3582~3587.
    98 Yuu Nakajima, Hironori Shiina, Shohei Yamane Toru Ishida. Disaster Evacuation Guide: Using a Massively Multiagent Server and GPS Mobile Phones. Proceedings of the 2007 International Symposium on Applications and the Internet. 2007,0-7695-2756-6/07.
    99 Konstantinos G. Zofrafos, Konstantinos N. Androutsopoulos. A Decision Support System for Integrated Hazardous Materials Routing and Emergency Response Decisions. Transportation Research Part C. 2008, 10:22~42.
    100 E. Alparslan, F. Ince, B. Erkan, C.Aydoner, H. Ozen, A. Donertas, S. Ergintav, F.S. Yagsan, A. Zaterogullari, I. Eroglu, M. Deger, H. Elalmrs, M. Ozkan. A GIS Model for Settlement Suitability Regarding Disaster Mitigation: a case study in Bolu Turkey. Engineering Geology 96. 2008, 126~140.
    101 Bartel Van de Walle and Murray Turoff. Decision Support for Emergency Situations. Information System E-Bus Manage. 2008, 6: 295~316.
    102 S. R. Bishop and P. G. Holborn. Dynamic modeling of building fires. Application of Math Modeling. 1993, 17:170~184
    103田宏,田永刚.建筑火灾逃生对策.中国西部科技. 2008:7:63~64
    104 Purser D. Human Tenability: Technical Basis for Performance~based fire regulations. Engineering Foundation Conference, San Diego California, January. 2001, 14~95
    105 Draft Technical Specification: Life threat form fire~guidance on the estimation of time available for escape using fire data. ISO/DTS 13571, 2001.
    106 Purser, D.A. Toxic Product yields and hazard assessment for fully enclosed design fires. Polymer International. 2000, 49:1232~1255.
    107 Purser D.A. Toxicity Assessment of Combustion Products, in SFPE Handbook of Fire Protection Engineering, P. J. DiNenno, Ed., 2nd ed., National Fire Protection Association, Quincy, MA, Sect. 2. 1995, 85~146.
    108 Jin T. Visibility through fire smoke: Allowable smoke density for escape from fire. Report of Fire Research Institute of Japan. 1976, 42:12~25.
    109 K. B. McGrattan and G. P. Forney. Fire Dynamics Simulation (Version 4), User’s Guide, NIST Special Publication 1019, National Institute of Standards and Technology, Gaithersburg, Maryland, July. 2004, 298~390
    110 G. W. Mulholland. SFPE Handbook of Fire Protection Engineering: Chapter Smoke Production and Properties. National Fire protection Association, Quincy, Massachusetts, 3rd edition. 2002, 1652~1894
    111 Tyagi G.. Heuristic Optimization Based Methodology for Fire Evacuation Simulation Incorporating Human Behaviors Master Thesis. Department of Mechanical & Aerospace Engineering, University at Buffalo, New York. 2004, 286~370
    112 Han J. and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco. 2001, 94~589
    113 Shashi S. and Sanjay C. Spatial Databases: A Tour, Prentice Hall. 2003, 237
    114 Gatrell A. Distance and Space: A Geographical Perspective. Oxford: Clarendon Press. 1983, 24~27.
    115 Tiefelsdorf M. Specification and Distributional Properties of the Spatial Cross-correlation Coefficient. Paper presented at the Western Regional Science Conference, Palm Springs, February 26. 2001, 2~501
    116 Anselin L. Computing environments for spatial data analysis. Journal of Geographical System. 2000, 2(3):201~220.
    117 Fischer M. M. Spatial analysis: retrospect and prospect Geographical Information Systems, Vol1: Principles and Technical Issues, edited by Longley P. A., Goodchild M. F., Maguire D. J., Richard D. W., 2nd Edition, New York: John Wiley & Sons. 1999, 283~292.
    118 Egenhofer M. J. Reasoning about Binary Topological Relations. Proceeding of 2nd Int. Symposium on Large Spatial Databases, Zurich, Switzerland. 1991, 143~160.
    119 M. J. A. Berry and G. Linoff. Data Mining Techniques~for Marketing. Sales and Customer Support. Wile, New York. 1997, 17~24.
    120 A. A. Freitas and S. H. Lavington Mining Very Large Databases with Parallel Proessing, Kluwer, London. 1998, 29~35.
    121 M. B. Teitz and P. Bart. Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph. Operations Research. 1968, 16:955~961.
    122 F. Glover. Future paths for integer programming and links to artificial intelligence. Computers and Operations Research. 1986, 5:533~549.
    123 Ester M., Kriegel H. P., Sander J., Xu X. A density~based algorithm for discovering cluster in large spatial databases with noise. Proceeding 2nd International Conference on Knowledge Discovery and Data Mining. Portland, OR. 1996, 226~231.
    124 W. R. Tobler. A computer movie simulating urban growth in the Detroit region. Economic Geography. 1970, 46(2):234~240.
    125 C. Eldershaw and M. Hegland, (1997),―Cluster analysis using triangulation‖, in: B.J. Noye, M.D. Teubner, and A.W. Gill (Eds). Computational Techniques and Applications: CTAC97, World Scientific: Singapore. 1997, 201~208.
    126 G. Karypis, E. Han, and V. Kumar. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer: Special Issue on Data Analysis and Mining. 1999, 32(8):68~75.
    127 Satoko Manada, Kazuhisa Makino, and Satoru Fujishige. Evacuation Problems and Dynamic Network Flows. Proceedings of SICE Annual Conference in Sapporo, August. 2004, 4(6):530~536.
    128 Belyaev SV, (1938),―Public Buildings Evacuation‖, All-Russia Academy ofthe Architecture, Moscow. In: V.V. Kholshevnikov, T. J. Shields, K. E. Boyce, D. A. Samoshin. Recent developments in pedestrian flow theory and research in Russia. Fire Safety Journal. 2008, 43:108~118
    129 Milinskii AI. The study of egress processes from public buildings of mass use. PhD thesis, Moscow Civil Engineering Institute. 1951, 85~128
    130 Kholshevnikov V. V. The study of human flows and methodology of evacuation standisation. Moscow: MIFS. 1999, 154~187
    131 Lee S. I. Developing a bivariate spatial association measure: an integration of Pearson’s r and Moran’s. Journal of Geographical Systems. 2001, 3(4): 37~49.
    132 Wartenberg D. Multivariate spatial correlation: a model for exploratory geographical analysis. Geographical Analysis. 1985, 17(4):263~283.
    133 Tiefelsdorf M. Specification and distributional properties of the spatial cross~correlation coefficient. Paper presented at the Western Regional Science Conference, Palm Springs. 2001, (26):167~186
    134 J.H. Lee, H. Hashimoto. Intelligent Space, Its Past and Future, The 25th Annual Conference of the IEEE Industrial Electronics Society, San Joes, CA, USA. 1995, 126~131.
    135 G. Appenzeller, J. H. Lee, H. Hashimoto. Building Topological Maps by Looking at People: an example of cooperation between intelligent spaces and robots. Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 1997),Vol. 3 Grenobel, France. 1997, 1326~1333.
    136 J. H. Lee and H.Hashimoto. Controlling Mobile Robots in Distributed Intelligent Sensor Network. IEEE Transactions on Industrial Electronics. 2003, 50(5): 890~902.
    137 F. Derbel. Performance Improvement of Fire Detectors by Means of Gas sensors and Neural Networks. Fire Safety Journal. 2004, 39(5):383~398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700