用户名: 密码: 验证码:
通风空调系统管网聚集物的燃烧特性及系统火灾预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在公共疫情传播、火灾安全等影响公共安全的多种因素成为国内外社会各界共同关注焦点的今天,建筑通风空调系统作为兼顾改善室内环境品质和消防等维护环境安全的重要建筑环境设备,也日益引起政府,研究者的广泛关注。众多的研究证明,建筑通风空调系统及其系统内的聚集物不仅分别作为影响室内环境品质和人员健康的潜在污染源和重要污染物,同样更是潜在的建筑火灾蔓延渠道和可能的火灾助燃物。为此,通风空调系统管网的动力特性和聚集物燃烧和火灾传播机理需要深入研究和了解。然而,国内外的研究工作主要集中在常态下系统特性及其污染物的沉降和流动传播机理上,而忽略了在火灾这一重要的非常态下的系统聚集物燃烧特性及火灾蔓延机理研究。因此,本文在结合传统的研究理论的基础上,以火灾研究领域中具有某些共性的建筑狭长受限空间的基础和应用研究理论为切入点,采用现场采样分析验证以及实验和数值模拟研究方法,重点对聚集物在建筑通风空调系统中的燃烧特性和火灾蔓延规律进行了比较深入的分析研究。论文的主要研究工作和成果有:
     (1)在回顾国内外众多针对常见的且具有一定共性的各类建筑狭长受限空间火灾的研究工作的基础上,提出了以通风空调系统管网内壁面为环境边界,以风管内聚集物燃烧为研究对象,从聚集物的沉积演变到聚集物的热解及着火燃烧,最后导致聚集物的火灾蔓延及烟气扩散的三段式理论。重点回顾了通风空调系统管网聚集物热解模型和着火的相关理论,以及火灾模拟时采用的大涡模拟理论及FDS数值模拟软件。为深入开展相关理论及实验研究奠定理论基础。
     (2)在前人所提出的对建筑通风空调系统管网火灾危害性带有估计性结论的基础上,通过现场建筑环境调查和聚集物存在性调查,并随机取样分析等方法解决了系统管网聚集物的可燃性问题。实验结果充分证明,通风空调系统中聚集物的大量聚积是客观存在的,引发或促进火灾的危害程度也是不容忽略的。
     (3)建立了一个实尺寸单风管聚集物燃烧物理模型,通过统计学正交设计方法建立工况组合,计算得到各个时刻风管内气流温度、流速等的变化及发展情况。为更好的考查火灾影响因素及火灾危害程度,首次提出了“着火温度概率函数PFT~*”的综合考查指标,并由此进行因素分析和单因素分析,有关结论为火灾的预测和预防提供参考。
     (4)通过自行搭建的全尺寸单风管聚集物火灾实验平台,建立了反映聚集物燃烧特性的均匀设计实验模型和对比性实验模型。首次提出了“动态着火温度”的概念,并采用统计学中的数量化理论对实验结果进行分析,得出了因素分析的相关结论。对实验和数值模拟方法得出的数据和结论进行了分析和讨论,进一步阐述了风管聚集物火灾的客观危害性以及建模方法的有效性。
     (5)建立了通风空调系统管网火灾蔓延模型。通过正交设计工况和对比性工况数值模拟对管网内的火灾综合特性和各管段的温度场耦合关系进行深入的分析,结合考查指标“着火温度概率函数PFT~*”对系统管网的火灾蔓延进行客观评价和预测。结合前文的分析,从而对系统管网的火灾蔓延机理和特征有了全面的了解。
     (6)提出了一种针对建筑通风空调系统管网火灾评价和预测的新方法。对系统管网火灾的危险性进行综合分析,在综合阐述现有评价方法的基础上,根据前文所提出的“着火温度概率函数”等考查指标及相关方法,提出解决通风空调系统火灾评价和预测的新方法,并对其合理性进行了论证性分析。进而,根据全文的理论性和实践性分析,结合现有工程规范标准以及工程实际中可能出现的问题,提出建筑通风空调系统管网火灾的综合防治措施。
When the dissemination of public epidemic and fire security become the main focus in nowadays, the HVAC (Heating, Ventilation and Air Conditioning) system, considered as the important building environmental equipment to improve indoor air quality and protect fire, has attracted more and more attentions. It has been certified widely that the HVAC system is the potential headstream of not only contamination but also the building fire as a result of its sediments. Consequently, it is very important to look deep into the dynamic performance of duct network and the mechanism of both sediments combustion and fire spreading. However, the current research are all concentrated on the system properties in normal condition and mechanisms of contaminant sedimentation and diffusion, but neglect the system properties and the fire breakout and spreading in the special situation. Therefore, in this dissertation, the combustion performances of the sediments and the characteristics and mechanisms of fire spreading in the HAVC systems are deeply analyzed by the way of spot sampling, experiments and numerical simulation from the angle of long-narrow confined space in the buildings in the fire research, based on the theories of long-narrow confined space in the buildings and some other traditional theories. The main research work and its conclusions are introduced as follows:
     (1) After reviewing the current fire research on the long-narrow confined space in the buildings, a three-phase theory is put forward on sediments sedimentation, sediments pyrogenation and ignition and fire spread, in which the air duct system is set up as geometry boundary, and sediments are taken as the research subject. Theory of the large eddy three-dimensional mathematics model for the fire burning in the narrow and long underground confined space is set up for the fire spread model and FDS (Fire Dynamics Simulator) software is adopted for fire simulation, which are all the theoretical basis of the research below.
     (2) The investigations of building environment and sediment existence were taken, and random sampling were adopt in several commercial and industrial buildings to certify the combustibility of sediments in the air duct system. It is approved that a mass of sediments in air duct system do harm to fire due to their existence and combustibility.
     (3) A model of the single air duct system for sediments combustion is established and several cases are finished according to the orthogonal design, and the variances of temperature and velocities of the air flow are also calculated. A new parameter of PFT* (Probability of Fire-happened Temperature) is put forwarded for the first time, and the factor analysis is taken finally for fire evaluation and forecast on air duct system.
     (4) A new experimental platform of actual-dimension single air duct system has been built in the lab, and accordingly the models of both homogeneous design experiment and control experiment are set up for sediments combustion in the air duct system. The new parameter of dynamic ignition temperature (T*) is advanced for fire characteristic on sediments in air duct system. The quantification theory is used to analyze the influence factors. Further discuss are made on the experiment data and simulation data. The hazardness of sediments to cause the fire and the validity of the model is further specified finally.
     (5) A model for sediments combustion in the actual-dimension compositive air duct system has been set up, and the comprehensive properties of the fire and the temperature field in the air duct system are simulated by the orthogonal design cases and comparative cases. The estimation and forecast of the fire spreading are completed combining the parameter of PFT* (Probability of Fire-happened Temperature). A full understand of the characteristics and mechanism of fire spreading in the air duct system is achieved based on the above analyses.
     (6) A new fire risk evaluation method in the air duct system is advanced and validated based on the current evaluation methods and the analyses of fire hazardness. Consequently, integrated control measures on the air duct system fire are brought forward based on the experimental and theoretic analyses in this dissertation, engineering application and related regulations.
引文
[1]范维澄,孙金华,陆守香等.火灾风险评估方法学.北京:科学出版社,2004,6-11
    [2]王清安.燃烧学.北京:高等教育出版社,1987,234-242
    [3]Chadderton,David V.Building Services Engineering(4~(Th)Ed).London:New York Taylor & Francis Routledge,2004,542-544
    [4]Horrocks,A.Richard,Price,et al.Fire Retardant Materials.Cambridge:England Woodhead Publishing,2001,63-71
    [5]李引擎.建筑防火工程.北京:化学工业出版社,2004,628-658
    [6]伍作鹏.消防燃烧学.北京:中国建筑工业出版社,1994,134-142
    [7]范维澄,王清安,姜冯辉等.火灾学简明教程.合肥:中国科学技术大学出版社,1995,3-19,21-55,163-168
    [8]范维澄,王清安,张人杰.火灾科学导论.武汉:湖北科学技术出版社,1993,52-64
    [9]邱春.隐患整改不及时等原因引发火灾--万豪酒店、“外婆桥”将被重罚.http://cqtoday.cqnews.net/system/2004/08/11/000395383.shtml.2004-08-11
    [10]何世家.隧道火灾和隧道防火涂料.消防技术与产品信息,2002,5(2):41-44
    [11]李新华,李念平.通风空调系统中沉积物可燃性的影响因素分析.洁净与空调技术,2006,3(2):35-38
    [12]章孝思,王德智.高楼火灾的反思——重庆中天大酒店火灾探析.www.china-fireren.com/article/lunwen/200442794825.htm,2004-04-27
    [13]无锡日报.一汽锡柴油漆排风管发生火灾.http://news.sina.com.cn/c/2006-10-24/085610310571s.shtml,2006-10-24
    [14]马晓茜,管霖.建筑火灾中值得深入研究的几个问题.火灾科学,2000,9(4):25-31
    [15]Zhong Maohua,Fan Weicheng,Liu Tiemin.China:Some Key Technologies and the Future Developments of Fire Safety Science.Safety Science,2004,42(7):627-637
    [16]Alan N Beard.Requirements for acceptable model use.Fire Safety Journal,2005,40(3):477-484
    [17]陈伟红,张磊,张中华等.地下建筑火灾中的烟气控制及烟气流动模拟研究进展.消防技术与产品信息,2004,10(2):7-9
    [18]Du Yang,Zhang Yunquan,Yang Xiaofeng,et al.Experimental study on smoke flow,combustion process and subarea model for the fire in a long-narrow confined space.In:Proceeding of 1999 International Symposium on City Fire Safety.Beijing,1999,244-248
    [19]Steckler K.D.,Baum H.R.,Quintere J.G.SaltWater Modeling of Fire Induced Flows in Multicompartment Enclosures.In:Proc.of 21st Symposium (International)on Combustion.Pittsburgh,1986,143-149
    [20]M.V.Chobotov,E.E.Zukoski,T.Kubots.Gravity Currents With Heat Transfer Effect Nbs-Grc-87-522,California Institute Of Technology Pasadena,1986,29-30
    [21]张和平.火灾烟气运动盐水实验模拟和受限空间初起火灾烟气运动特性的研究.[中国科学技术大学博士学位论文].合肥:中国科学技术大学,1996,17-20
    [22]刘江虹,廖光煊,范维澄等.受限空间中固体可燃物的热释放速率.材料研究学报,2002,6(4):418-420
    [23]R.Huo,W.K.Chow,X.H.Jin,et al.Experimental studies on natural smoke filling in atrium due to a shop fire.Building and Environment,2005,40(2005):1185-1193
    [24]钱海兵,杜扬,叶子兵.狭长受限空间临界可燃距离实验研究.后勤工程学院学报,2004,20(1):6-9
    [25]W.K.Chow.Application of Computational Fluid Dynamics in Building Services Engineering.Building and Environment,1996,31(5):425-436
    [26]Glenn P.Forney,Daniel Madrzykowski,Kevin B.McGrattan.Understanding Fire and Smoke Flow Through Modeling and Visualization.IEEE Computer Graphics and Applications,2003,23(4):6-13
    [27]P.Z.Gao,S.L.Liu,W.K.Chow,N.K.Fong.Large eddy simulations for studying tunnel smoke ventilation.Tunnelling and Underground Space Technology,2004,19(2):577-586
    [28]Walter W.Yuen,W.K.Chow.A Monte Carlo Approach for the Layout Design of Thermal Fire Detection System.Fire Technology,2005,41(5):93-104
    [29]H.Xue,J.C.Ho,Y.M.Cheng.Comparison of different combustion models in enclosure fire simulation.Fire Safety Journal,2001,36(1):37-54
    [30]杜扬,杨小凤,郭春等.地下狭长受限空间火灾实验及大涡数值模拟研究.工程热物理学报,2006,27(2):167-170
    [31]肖海洋,杜扬,周琳莉.地下狭长组合受限空间不同介质火灾分区现象实验研 究.热科学与技术,2007,6(2):152-155
    [32]李元洲,霍然,易亮等.隧道火灾烟气发展的模拟计算研究.中国工程科学.2004,6(2):67-72
    [33]C.C.Hwang,J.C.Edwards.The critical ventilation velocity in tunnel fires-a computer simulation.Fire.Safety Journal,2005,40(3):213-244
    [34]W.Z.Lu,S,M.Lo,Z.Fang,et al.A preliminary investigation of airflow field in designated refuge floor.Building and Environment,2001,36(2):219-230
    [35]X.G.Zhang,Y.C.Guo,C.K.Chan,et al.Numerical simulations on fire spread and smoke movement in an underground car park.Building and Environment,2007,42(10):3466-3475
    [36]傅培舫.实际巷道火灾过程热物理参数变化规律与计算机仿真的研究.[中国矿业大学博士生学位论文].江苏:中国矿业大学,2002,5-7
    [37]易亮.中庭式建筑中火灾烟气的流动与管理研究.[中国科学技术大学博士学位论文].合肥:中国科学技术大学,2005,28-33
    [38]里查.萨克森著.中庭建筑——开发与设计.戴复东译.北京:中国建筑工业出版社,1990,11-14
    [39]J.A.Sharry.An atrium fire.Fire Journal,1973,67(6):39-41
    [40]H.P.Morgan.Smoke control method in enclosed shopping complexes of one or more storeys:a design summary.Building Research Establishment Report.London:BRE,1979,34-38
    [41]B.R.Morton,G.Taylor,J.S.Turner.Turbulent gravitational convection from maintained and instantaneous sources.In:Proceedings of the Royal Society of London.London,1956,234-241
    [42]P.H.Thomas,C.T.Webster,M.M.Raftery.Some experiments on buoyant diffusion flames.Combustion and Flame,1961,5(2):359-367
    [43]McCaffery B J.Momentum implications for buoyant diffusion flames.Combustion and Flame,1983,52(2):149-167
    [44]Zukoski E E,Kubota T,Cetegen B M.Entrainment in Fire Plumes.Fire Safety Journal,1980,3(1):107-121
    [45]G.Heskestad.Virtual origins of fire plumes.Fire Safety Journal,1983,5(2):174-185
    [46]G.Heskestad.Engineering relations for fire plumes.Fire Safety Journal,1984,7(1):25-32
    [47]L.Y Cooper.ASET-a computer program for calculating available safe egress time.Fire Safety Journal,1985,9(1):29-45
    [48] Peacock R D, Forney G P, Reneke P, et al. CFAST, the consolidated model of fire growth and smoke transport. National Institute of Standards and Technology, Gaithersburg, 1993, 103-106
    [49] T. Tanaka, T. Yamana. Smoke control in large scale spaces, Part 1. Fire Science and Technology, 1985, 5(1): 31-40
    [50] T. Yamana, T. Tanaka. Smoke control in large scale spaces. Part 2. Fire Science and Technology, 1985, 5 (1): 41-54
    [51] H. P. Morgan, G. O. Hansell. Atrium buildings: calculating smoke flows in atria for smoke-control design. Fire Safety Journal, 1987, 12(1): 9-35
    [52] NFPA92B. Guide for smoke management systems in malls, atria, and large areas. Quincy: National Fire Protection Association, 1991, 200-201
    [53] G. O. Harsell, H. P. Morgan. Design approaches for smoke control in atrium buildings. London: Building Research Establishment Report, 1994, 316-317
    [54] J. A. Milke. Smoke management for covered malls and atria. Fire Technology, 1990, 26(3): 223-243
    [55] John H. Klote, D. Sc. , P. E. . Prediction of smoke movement in atria:Part Ⅰ -physical concepts.ASHRAE Trans, 1997,103(2): 534-544
    [56] John H. Klote, D. Sc. , P. E. . New Development In Atrium Smoke Management (DA-00-6-2). ASHRAE Transactions: Symposia, 2000, 24-37
    [57] W. K. Chow, C. L. Chow. Evacuation with smoke control for atria in green and sustainable buildings. Building and Environment, 2005, 40(2): 195-200
    [58] W. K, Chow, J. Li. Simulation on Natural Smoke Filling in Atrium With a Balcony Spill Plume. Fire Science, 2001, 19 (4): 259-283
    [59] W. K. Chow, J. Li. Possibility of Using a Time Constant in Fire Codes For Smoke Management in Atria. Fire Science, 2000, 18 (2): 131-151
    [60] W. K. Chow. Experimental Studies on Natural Smoke Filling in Atria. Journal of Fire Science, 2000, 18 (2): 85-103
    [61] Y. He, V. Beck. Smoke spread experiment in a multi-storey building and computer modeling. Fire Safety Journal, 1996, 28(2): 139-164
    [62] J. S. Rho, H. S. Ryou. A numerical study of atrium fires using deterministic models. Fire Safety Journal, 1999, 33(3): 213-229
    [63] F. W. Mowrer. Enclosure smoke filling revisited. Fire Safety Journal, 1999, 33(2): 93-114
    [64] H. Satoh, O. Sugawa, H. Kurioka, et al. Plume behavior in a confined tall and narrow space-as one of sub-model of plume for an atrium fire. In: Proceedings of the fourth international symposium on Fire Safety Science.Ontario,1994,551-562
    [65]霍然,袁宏永.性能化建筑防火分析与设计.合肥:安徽科学技术出版社,2003.43-57
    [66]李元洲.中庭式大空间建筑内火灾烟气流动与控制研究.[中国科学技术大学博士学位论文].合肥:中国科学技术大学,2001,13-16
    [67]刘方.中庭火灾烟气流动与烟气控制研究.[重庆大学博士学位论文].重庆:重庆大学,2002,3-9
    [68]封红权,林真国,张素云.中庭建筑火灾模型实验研究——可燃物种类对温度场的影响.消防科学与技术.2005,24(4):425-427
    [69]中国建设部.高层民用建筑设计防火规范(GB50045-95).北京:中国计划出版社,2001,14-15
    [70]T Wakamatsu.Calculation Methods for Predicting Smoke Movement in Building Fires and Designing Smoke Control Systems.New York:ASTM Specical Technical Publication,1976,168-174
    [71]Rajive Ganguli,S.Bandopadhyay.Mine Ventilation.In:Proceedings of the Tenth US/North American Mine Ventilation Symposium.Alaska,2004,16-19
    [72]Gupton,Guy W.HVAC Controls:Operation & Maintenance(3rd Edition).Lilburn:The Fairmont Press,2002,112-146
    [73]Thumann,Albert.Efficient HVAC Systems Deskbook.Lilburn:The Fairmont Press,1997,241-247
    [74]Hordeski,Michael F.Control and Instrumentation Technology in HVAC:PCs and Environmental Control.Lilburn:The Fairmont Press,1999,173-193
    [75]T.Woolley,S.Kimmins.Green Building Handbook(Volume 2):A Guide to Building Products and Their Impact On the Environment.London:London Taylor & Francis,2000,346-349
    [76]Langley,Billy C.Fundamentals of Air Conditioning Systems.Lilburn:The Fairmont Press,2000,237-243
    [77]Clarke,Regina.Environmental Management:A Guide for Facility Managers.Lilburn:The Fairmont Press,1996,76-79
    [78]Binggeli,Corky.Building Systems for Interior Designers.New York:New York John Wiley & Sons,Inc.,2003,36-45
    [79]陆耀庆.实用空调设计手册.北京:中国建筑工业出版社,1992,237-239
    [80]中国建设部.采暖通风与空气调节设计规范(GB50019-2003).北京:中国建筑工业出版社,2003,106-110
    [81]中国建设部.《人民防空地下室设计规范》(GB50038-94).北京:中国计划出版社,2003,14-17
    [82]中国建设部.建筑设计防火规范(GB50016-2006).北京:中国计划出版社,2006.21-23
    [83]中国建设部.通风与空调工程施工质量验收规范(GB 50243-2002).北京:中国计划出版社,2002,13-16
    [84]中国建筑标准设计研究院.防、排烟设备安装图99K103.北京:中国建筑标准设计研究院出版社,4-8
    [85]中国建设部.民用建筑电气设计规范(JGJ16-2008).北京:中国计划出版社,2008,5-11
    [86]FCRC.Fire Engineering Guidelines(1st Edition).Sydney:Fire Codes Reform Centre Ltd.,1996,20-24
    [87]A.H.Buchanan.Fire Engineering Design Guide.New Zealand:University of Canterbury,2001,40-41
    [88]NFPA Standard.Standard for Smoke and Heat Venting(2002 Edition).NFPA 204M,2002,17-23
    [89]British Standard.Fire Safety Engineering in Buildings.BS DD240,1997,6-11
    [90]ISO Standard.Fire Safety Engineering-Selection of design fire scenarios and design fires.ISO/TC92/SC4:ISO/WD 16733,2003,14-18
    [91]Yunyong Utiskula,James G.Quintierea,Ali S.Rangwalaa,et al.Compartment fire phenomena under limited ventilation.Fire Safety Journal,2005,40(4):367-390
    [92]C.C.Hwang,J.C.Edwards.The critical ventilation velocity in tunnel fires-a computer simulation.Fire Safety Journal,2005,40(3):213-244
    [93]Wenting Ding,Yoshikazu Minegishi,Yuji Hasemi,et al.Smoke control based on a solar-assisted natural ventilation system.Building and Environment,2004,39(7):775-782.
    [94]Richard G.Gewain,James H.Shanley Jr.,Philip J.DiNenno,et al.Evaluation of duct opening protection in two-hour fire walls and partitions.Fire Technology,1991,27(3):204-218
    [95]S.C.COMITIS,D.GLASSER,B.D.YOUNG.An Experimental and Modeling Study of Fires in Ventilated Ducts.Part Ⅰ:Liquid Fuels.COMBUSTION AND FLAME,1994,96(2):428-442
    [96]S.C.COMITIS,D.GLASSER,B.D.Young.An Experimental and Modeling Study of Fires in Ventilated Ducts.Part Ⅱ:PMMA and Stratification. COMBUSTION AND FLAME,1996,104(3):138-156
    [97]W.K.Chow.Application of Computational fluid dynamics in building services engineering.Building and Environment,1996,31(5):425-436
    [98]Steven D.Wolin,Noah L.Ryder,Frederic Leprince,et al.Measurements of Smoke Characteristics in HVAC Ducts.Fire Technology,2001,37(4):363-395
    [99]刘倩,李念平,龙娟等.通风空调管道中聚积物燃烧时温度场分布的实验研究.中国粉体技术,2007,13(6):5-8
    [100]Jeffrey Siegel,Iain Walker.Deposition of Biological Aerosols on HVAC Heat Exchangers LBNL-47669.Lawrence Berkeley National Laboratory,2001,13-21,46-49
    [101]Morey,P.R.Microorganisms in Buildings and HVAC Systems:A Summary of 21 Environmental Studies.ASHRAE IAQ'88,1988,10-24
    [102]Mark R.Sippola,William W.Nazaroff.Particle Deposition from.Turbulent Flow:Review of Published Research and Its Applicability to Ventilation Ducts in Commercial Buildings LBNL-51432.Lawrence Berkeley National Laboratory,2002,11-16,27-30,82-91
    [103]谭洪卫,范存养.从SARS引出的对建筑设备维护管理的反思.暖通空调,2003,23(4):7-9
    [104]Michael A.Delichatsiosa;Gordon W.H.Silcocka,Xijuan Liub,et al.Mass pyrolysis rates and excess pyrolysate in fully developed enclosure fires.Fire Safety Journal,2004,39(1):1-21
    [105]陈长坤,汪箭,廖光煊等.受限空间火灾环境固体可燃物热释放速率模拟研究.燃烧科学与技术,2002,8(2):122-125
    [106]冷暖空调网.中央空调可能引发建筑综合症.http://info.hvacr.hc360.com/2005/08/02170057715.shtml,2005-8-2
    [107]许钟麟.空气洁净技术原理.北京:中国建筑工业出版社,1983,101-127
    [108]卢正永.气溶胶科学引论.北京:原子能出版社,2000,24,195-206
    [109]理查特·丹尼斯.气溶胶手册.梁鸿富,卢正永译.北京:原子能出版社,1988,142-166
    [110]B.Ⅱ.林切夫斯基.燃料及其燃烧.张凤禄译.北京:高等教育出版社,1958,53-55
    [111]张斌全.燃烧理论基础.北京:北京航空航天大学出版社,1990,52-67
    [112]许晋源,徐通模.燃烧学.北京:机械工业出版社,1990,103-112
    [113]R.G.Rehm,H.R.Baum.The Equations of Motion for Thermally Driven Buoyant Flows.Journal of Research of the NBS,1978,83(3):297-308
    [114]C.Huggett.Estimation of the Rate of Heat Release by Means of Oxygen Consumption Measurements.Fire and Material,1980,4(2):61-65
    [115]J.P.Holman.Heat Transfer(5th edition).New York:McGraw-Hill,1989,61-65
    [116]彭小芹,刘松林,卢国建.材料热释放速率的试验分析.重庆大学学报(自然科学版),2005,28(8):122-125
    [117]W.A.Fiveland.Discrete-Ordinate solution of the radiative transport equation for rectangular enclosure.Journal of Heat Transfer,1994,106(4):699-706
    [118]李新华,李念平,龙娟等.关于通风空调系统风管中聚集物的燃烧特性测试.安全与环境工程,2006,13(4):66-69
    [119]李新华.通风空调系统风管中聚集物的燃烧特性及对建筑火灾的影响研究.[湖南大学硕士学位论文].长沙:湖南大学,2006,31-35
    [120]刘军,刘敏,智会强等.FDS火灾模拟基本理论探析与应用技巧.安全,2006,27(1):6-9
    [121]G.Heskestad.Rise of plume front from starting fires.Fire Safety Journal,2001,36(3):201-204
    [122]Nelson,H.E.,MacLennan,H.A..Emergency Movement,in The SFPE Handbook of Fire Protection Engineering.Quincy:National Fire Protection Association,1988,106-115
    [123]郑少华,姜奉华.试验设计与数据处理.北京:中国建筑工业出版社,2004,67-125
    [124]刘倩,李念平,龙娟等.通风空调管道中聚积物燃烧时温度场分布的实验研究.中国粉体技术,2007,13(6):5-8
    [125]龙娟.风管内聚集物燃烧的数值模拟研究.[湖南大学硕士学位论文].长沙:湖南大学,2007,12-30
    [126]方开泰,马长兴.正交与均匀试验设计.北京:科学出版社,2001,23-44
    [127]方开泰.均匀设计与均匀设计表.北京:科学出版社,1994,32-37
    [128]袁志发,周静芋.多元统计分析(2版).北京:科学出版社.2003,128-138
    [129]Jiang X,Weicheng F.Numerical prediction of flame spread over solid combustibles in a microgravity environment.Fire Safety Journal,1995,30(3):279-298
    [130]董文泉,周光亚,夏立显.数量化理论及其应用.长春:吉林人民出版社.1979
    [131]于晓秋,葛家麒,徐中儒.应用数量化理论对区域产量模型的修正和拟合.农业与技术,2005,25(1):16-18
    [132]李明艳,刘悦翠,曹小玉.基于数量化方法的森林蓄积与环境因子关系的研 究.西北林学院学报.2006,21(4):89-92
    [133]汪茜,李广杰.数量化理论在泥石流灾害预测预报中的应用——以吉林和龙市泥石流为例.中国地质灾害与防治学报.2006,17(2):85-88
    [134]刘达民,程岩.应用统计.北京:化学工业出版社.2004,34-41
    [135]薛薇.统计分析与spss的应用.北京:中国人民大学出版社,2001,192-216
    [136]郑端文,刘海辰.消防安全技术.北京:化学工业出版社,2004,341-346
    [137]P.Heino,R.Kakko.Risk assessment modelling and visualization.Safety Science,1998,30(1):71-77
    [138]Komamoto H,Henley E J.Probabilistic risk assessment and mangement for engineerings and scientists(Second Edition).New York:IEEE Press,1996,22-30
    [139]Norstrom J G.Use of precautionary loss functions in risk analysis.IEEE Transactions on Reliability,1996,45(3):400-403
    [140]杜霞,张欣,刘庭全等.国外区域火灾风险评估技术及应用现状.消防科学与技术,2004,23(2):137-139
    [141]Frantizch H.Risk analysis and fire safety engineering.Fire Safety Journal,1998,31(4):313-329
    [142]朱耀武.建筑性能化防火设计概述.山西建筑,2005,31(22):1-2
    [143]王振,刘茂.城市公共场所建筑火灾风险理解及其在建筑设计中的应用.中国公共安全(学术版),2005,1(2):6-10
    [144]徐亮,张和平,杨昀等.性能化防火设计中火灾场景设置的讨论.消防科学与技术,2004,23(2):129-132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700