用户名: 密码: 验证码:
砂岩弹塑性及蠕变特性的水物理化学作用效应试验与本构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水是地质环境中的活跃因素,它是一种复杂的水化学溶液,具有不同离子组分、浓度及酸碱度,即使是纯水,它与岩土介质的相互作用,仅从有效应力原理考虑其力学效应也是不够的,尚需考虑其复杂的水-岩物理化学作用效应。已有的研究初步表明,水对岩石的弹塑性与流变特性存在十分明显的影响。因此,岩体工程的稳定性不单纯取决于应力作用下岩体本身的力学行为,同时也有赖于应力与水物理化学环境的共同作用效应,就此问题开展深入细致和定量化的研究,对于存在水物理化学作用效应的岩体工程稳定性、核废料储存库安全、滑坡孕育以及环境工程中的污染物处置等问题均具有重要的理论意义与应用价值。
     本论文在完成一系列砂岩微细观结构损伤、弹塑性和蠕变特性的水物理化学作用效应等试验的基础上,分析了砂岩的水物理化学损伤演化特征与机理,研究了水物理化学作用对砂岩弹塑性与蠕变特性的影响效应与规律,建立了描述砂岩水物理化学损伤的损伤变量表达式,提出了能够描述水物理化学作用对砂岩弹塑性变形特性影响的改进型Duncan模型以及考虑水溶液离子浓度的H-P-C Burgers蠕变模型,同时实现了基于该蠕变模型对砂岩蠕变行为的数值模拟。论文的主要内容如下:
     (1)通过开展不同水环境作用下砂岩试件矿物成分与含量、空隙度、水溶液离子浓度、pH值等物性指标的系列测试,并对不同水环境作用后的砂岩试件进行显微结构分析与CT检测,从不同角度和层次揭示了水物理化学作用下砂岩的微细观损伤特征与机理,进而提出并验证了以次生空隙率变化描述砂岩水物理化学损伤的损伤变量表达式。
     (2)完成了干燥、饱水及不同水环境作用后砂岩单轴压缩试验的系列研究,获得了水物理化学作用对砂岩单轴抗压强度、变形性能及峰后变形与强度特性的影响效应,在分析水溶液离子浓度和pH值对砂岩强度与变形特性影响规律的基础上,提出了改进的Duncan模型以描述水物理化学作用下砂岩的弹性变形行为。
     (3)完成了干燥、饱水及不同水环境作用后砂岩单轴压缩蠕变试验的系列研究,获得了水物理化学作用对砂岩蠕变特性的影响效应与规律,研究表明:不同水溶液离子浓度和pH值对砂岩的蠕变特性存在较明显的影响效应,且水溶液离子浓度比酸碱度对砂岩蠕变变形的影响更显著;在离子浓度相同情况下,水溶液酸碱度越大,对砂岩蠕变变形的影响越明显;在酸碱度相同情况下,水溶液离子浓度越大,对砂岩蠕变变形的影响越明显。
     (4)通过比较干燥、纯水和不同水环境作用后砂岩蠕变变形的差异,分离出水物理化学作用对砂岩蠕变变形的贡献,获得了砂岩蠕变变形、水溶液离子浓度和pH值及其与时间的相关关系,在此基础上,考虑水溶液离子浓度对砂岩蠕变特性的影响效应,研究并确定了砂岩蠕变模型的基本结构,进而采用遗传算法对模型参数进行辨识,提出了考虑水溶液离子浓度作用效应的砂岩H-P-C Burgers蠕变模型。
     (5)将所提出的H-P-C Burgers模型嵌入Abaqus软件的蠕变模型库,实现了基于该蠕变模型对砂岩蠕变行为的数值模拟。
Underground water is an active component in geological environment. It is a complex chemical solution with kinds of ions, different concentrations and pH values. Even for pure water, its interactions with geo-materials are not only through the concept of effective stress, but also the complicated Hydro-Physico-Chemical (H-P-C) effect. The instability of rock mass is frequently induced by the time-dependent deformations of intact rock and rock joints; meanwhile, underground water is the most active carrier in most of engineering geological disasters. Previous studies have shown that water plays an important role in mechanical behavior of rocks. Therefore, it is important to assess the role of H-P-C effect in microscopic damage mechanism, conventional mechanical behavior and creep characteristics for theory and engineering applications. In this thesis, microscopic investigations on H-P-C damage mechanism and conventional and creep uniaxial compression tests are performed. Based on the test results, the H-P-C damage mechanism is elaborated, and the creep behavior and modeling are discussed. The achievements and conclusions are summarized as follows:
     1. A series of test and analysis on mineral constituent, porosity, ion concentration and pH values of solution subject to different solutions are conducted. The time-dependent variations of corresponding physical indices are obtained. Microscopy observation and CT scanning are performed on the sandstones after 180 days' water-circulating with different solutions. The evolution characteristics microstructures in sandstones subject to H-P-C effect are discussed. The mechanism of H-P-C damage is investigated from different perspectives and in different scales. An expression of H-P-C damage variable is proposed for sandstone. The predicted damage values from the expression are compared with those obtained from tests.
     2. Uniaxial compression tests on dry, water-saturated, and chemical solution-saturated sandstones are conducted. The influences of H-P-C effect on strength, deformation, and post-peak behavior are investigated. The effects of ion concentration and pH value on the strength and deformation are assessed. The modified Duncan model is used to describe the mechanical of sandstones with H-P-C effects.
     3. Uniaxial compression creep tests on dry, water-saturated, and chemical solution-saturated sandstones are conducted. The influence of H-P-C effect on creep behavior is investigated. It is shown that the influences of ion concentration and pH value are significant to creep behavior. The influence of ion concentration is more significant that that of pH value. The creep strain is greater with higher level of acidity or basicity under the same ion concentration, while the creep strain is greater with higher ion concentration under the same pH value.
     4. By comparing the creep strains of dry, water-saturated, and chemical solution-saturated samples, the component of creep strain due to H-P-C effect is obtained. The dependency of creep strain on H-P-C effect and loading time is investigated; then, the influence of ion concentration on the creep behavior of sandstone is discussed. Based on the classic Burgers creep model, a new creep model, namely, H-P-C Burgers model, for sandstone subject to H-P-C effect is proposed. Genetic algorithm is applied in parameter determination. With the consideration of influence of ion concentration, the model has the ability to reflect the influence of ground water on the rock facilities.
     5. The H-P-C Burgers model is coded into Abaqus subroutine, and is applied to reproduce the creep behavior in creep tests, which provides feasibility to apply the model into engineering applications.
引文
[1]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [2]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [3]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791-1796.
    [4]李铀,朱维申,白世伟等.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报,2003,22(10):1673-1677.
    [5]刘光廷,胡昱,陈凤歧等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报,2004,23(8):1237-1241.
    [6]Lipponen,A.,Manninen,S.,Niini,H.,and et al.Effect of water and geological factors on the long-term stability of fracture zones in the Paijanne Tunnel,Finland:a case study[J].International Journal of Rock Mechanics and Mining Sciences,2005,42:3-12.
    [7]周瑞光,成彬芳,高玉生等.断层泥蠕变特性与含水量的关系研究[J].工程地质学报,1998,6(3):217-222.
    [8]杨圣奇,徐卫亚,谢守益等.饱和状态下硬岩三轴流变应变与破裂机制研究[J].岩土工程学报,2006,28(8):962-969.
    [9]吴恩江,韩宝平,王桂梁.红层中水—岩作用微观信息特征及对孔隙演化的影响—以兖州矿区为例[J],中国矿业大学学报,2005,34(1):123-128.
    [10]李晓峰,华仁民,毛景文,季峻峰.岩石变形对粘土矿物结晶生长影响的初步研究—以江西金山金矿为例[J],岩石矿物学杂志,2003,22(3):265-272.
    [11]朱义年,刘辉利,Stober I.,Bucher,K.室湿下水—花岗岩作用时液相组分的演化[J],广西科学,2003,10(3):216-219.
    [12]张梅英,袁建新.砂岩变形破坏的微观特性[J],岩石力学与工程学报,1996,15(6):546.
    [13]刘冬梅,蔡美峰,周玉斌.岩石细观损伤演化与宏观变形响应关联研究[J],中国钨业,2006,21(4):16-19.
    [14]黄树华.岩石力学研究中AE和CT装置的应用[J],岩土力学,1989,10(1):83-86.
    [15]杨更社.岩体损伤力学特性及细观损伤的CT识别[D],西安:西安理工大学博士学位论文,1995.
    [16]Verhelst,F.,Vervoort,A.,Debosscher,P.,and et al.X-ray computerized tomography:Determination of heterogeneities in rock samples.In Proceedings of the 8~(th)Intenational Congress on Rock Mechanics.Rotterdam:A.A.Balkema,1995,105-108.
    [17]Kawakata,H.,Cho,A.,Yanagidani,T.,and et al.The observations of faulting in Westerly granite under triaxial compression by X-ray CT scan[J].Int.J.Rock Mech.& Min.Sci.,1997,34(3-4):151-162.
    [18]Raynaud,S.,Fabre,D.,and Mazerolle,F.Analysis of the internal structure of rocks and characterization of mechanical deformation by a non-destructive method:X-ray tomodensitometry[J].Tectnophysis,1989,159:149-159.
    [19]Fabre,D.,Mazerolle,F.,and Raynaud,S.Charaterisation tomodensito metrique de 1a porosite et de al fissuration de roches sedimentaires.In:Rocks at Great Depth.Rotterdam:Balkema,1989.297-304.
    [20]Vinagard,H L,de Waal,J A,Wellington,S L.CT studies of brittle failure in Castlegate sandstones[J].Int.Rock Mech.Min.Sci.Geomech.Abstr.1991,28(5):441-448.
    [21]Toth,J.Groundwater as a geologic agent:an overview of the causes,processes-and manifestations[J].Hydrogeology Journal,1999,7(1):1-14.
    [22]马水山,雷俊荣,张保军,王志旺.滑坡体水岩作用机制与变形机理研究[J],长江科学院院报,2005,22(5):37-48.
    [23]吴恒,代志宏,张信贵,易念平.水土作用研究现状与研究要点[J],广西大学学报(自然科学版),1999,24(4):255-258.
    [24]Cai,Chua-Fang,Wang,Ji-Yang,Gu,Jia-Yu.Fluid-Rock Interaction in Chinese Sedimentary Basins[J],Journal of the Graduate School of the Chinese Academy of Sciences,2005,22(2):39-247.
    [25]党志,侯英.玄武岩—水相互作用的溶解机理研究[J],岩石学报,1995,11(1):9-15.
    [26]王玉荣,王志祥,张生.水—岩反应实验与成矿作用,矿物岩石地球化学通报[J],2000,19(4):426-427.
    [27]汤连生.略论岩土化学力学[J],中山大学学报(自然科学版),2002,41(3):86-90.
    [28]汤连生.水—岩土化学作用的环境效应[J],中山大学学报(自然科学版),2001,40(5):103-107.
    [29]汤连生,王思敬,张鹏程等.水—岩土化学作用与地质灾害防治[J],中国地质灾害与防治学报,1999,10(3):61-70.
    [30]徐则民,黄润秋,杨立中.斜坡水.岩化学作用问题[J],岩石力学与工程学报,2004,23(16):2778-2787.
    [31]徐则民,黄润秋,唐正光.硅酸盐矿物溶解动力学及其对滑坡研究的意义[J],岩石力学与工程学报,2005,24(9):1479-1491.
    [32]徐则民,黄润秋,范柱国.滑坡灾害孕育一激发过程中的水一岩相互作用[J],自然灾害学报,2005,14(1):1-9.
    [33]孙占学,朱永刚,张文.矿物-水反应的地球化学动力学研究进展[J],东华理工学院学报,2004,27(1):14-18.
    [34]Logan,J.M.,and Blackwell,M.I.The influence of chemically active fluids on frictional behavior of sandstone[J].EOS,Trans.A M.Geophys.Union,1983,64:835.
    [35]耿乃光,郝晋昇,李幻汉等.断层泥力学性质与含水量关系初探[J],地震地质,1986,3:58-62.
    [36]李炳乾.地下水对岩石的物理作用[J],地震地质译从,1995,17(5):32-37.
    [37]Dyke,C.G.,and Dobereiner,L.Evaluating the strength and deformability of sandstones[J].Quarterly Journal of Engineering Geology,1991,24:123-134.
    [38]Hawkins,A.B.,and McConnell,B.J.Sensitivity of sandstone strength and deformability to changes in moisture content[J].Quarterly Journal of Engineering Geology,1992,25:115-130.
    [39]喻学文,吴永锋.长江三峡巴东县城区三道沟滑坡成因研究[J],中国三峡建设,1996,4(1):1-7.
    [40]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的实验研究[J].地球物理学报,1991,34(3):335-342.
    [41]康红普.水对岩石的损伤[J].水文地质工程地质,1994,(3):39-41.
    [42]Van Asch,Th.W.J.,Hendriks,M.,Hessel,R.,and et al.Hydrological trigering conditions of landslides in varved clays in the French Alps[J].Enginering Geology,1996,42(4):239-251.
    [43]Kyabran B.负载状态下溶解作用对不同成因岩石强度的影响[J],赵惠珍译.地质科技译丛.1997,14(2):61-64.
    [44]Dunning,J.,Douglas,B.,Miller,M.,and et al.The role of the chemical environment in frictional deformation:stress corrosion cracking and comminution[J].Pure Applied Geophysics,1994,43(1-3):151-178.
    [45]Feucht,L.J.,and Logan,J.M.Effects of chemically active solutions on sheafing behavior of a sandstone[J].Tectonophysics,1990,175:159-176.
    [46]汤连生,王思敬.水-岩化学作用对岩体变形破坏力学效应研究进展[J].地球科学进展,1999,14(5):433-439.
    [47]汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的试验研究[J].岩石力学与工程学报,2002,21(4);526-531.
    [48]汤连生,王思敬.岩石水化学损伤的机理及量化方法探讨[J].岩石力学与工程学报,2002,21(3):314-319.
    [49]冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性—第一部分:试验研究[J].岩石力学与工程学报,2000,19(4):403-407.
    [50]王泳嘉,冯夏庭.化学环境侵蚀下的岩石破裂特性—第二部分:时间分形分析[J].岩石力学与工程学报,2000,19(5):551-556.
    [51]陈四利,冯夏庭,李邵军.化学腐蚀对黄河小浪底砂岩力学特性的影响[J].岩土力学,2002,23(3):284-287.
    [52]丁梧秀,冯夏庭.化学腐蚀下灰岩力学效应的试验研究[J],岩石力学与工程,2004,23(21):3571-3576.
    [53]霍润科,李宁,刘汉东.受酸腐蚀砂岩的统计本构模型[J],岩石力学与工程,2005,24(11):1852-1856.
    [54]Li,N.,Zhu,Y.M.,Su,B.,and Gunter,S.A chemical damage model of sandstone in acid solution[J].Int.J.Rock Mech.Min.Sci.,2003,40(2):243-249.
    [55]姜立春,陈嘉生.AMD蚀化砂岩的性征及其机理研究[J],矿业研究与开发,2006,26(6):27-31.
    [56]张信贵,吴恒,方崇,易念平。水土化学体系中钙镁对土体结构强度贡献的试验研究[J],地球与环境,2005,33(4):58-64.
    [57]Griggs,D.T.Creep of rocks,J.of Geol.,1939,47:225-251.
    [58] Langer, M. Rheological behavior of rock masses. Proc, of 4th Cong, of ISRM, 1979.
    [59] Ladanyi, B. In situ determination of creep properties of rock salt Proc, of 5th Cong, of ISRM, 1983.
    [60] Ito, H. Creep of rock based on long-term experiments. Proc, of 4th Cong, of ISRM, 1983.
    [61] Ito, H. and Sasajima, S. A ten year creep experiment on small rock specimens [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1987,24(2): 113-121.
    [62] Ito, H. The phenomenon and examples of rock creep. In Comprehensive Rock Engineering, vol.3. Pergamon Press, Oxford, 1993, pp: 693-708.
    [63] Okubo, S., Nishimatsu, Y. and Fukui, K. Complete creep curves under uniaxial compression [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1991, 28 (1): 77-82
    [64] Korzeniowski, W. Rheological model of hard rock pillar [J]. Rock Mech. and Rock Eng., 1991,24: 155-166.
    [65] Matsumoto, M, and Tatsuoka, F. Study of rheological modelling of creep behavior for sedimentary soft rock [C]. In: Proc, of the 51st Annual Conference of the Japan Society of Civil Engineers, 1996, 660-661.
    [66] Malan, D. F., Vogler, U. W., and Drescher, K. Time-dependent behavior of hard rock in deep level gold mines [J]. Journal of the South African Institute of Mining and Metallurgy, 1997: 135-147.
    [67] Malan, D. F. An investigation into the identification and modelling of time-dependent behaviour of deep level excavations in hard rock, PhD thesis, University of the Witwatersrand, Johannesburg, South Africa, 1998.
    [68] Malan, D. F. Time-dependent behaviour of deep level tabular excavations in hard rock [J]. Rock Mech. And Rock Eng. 1999, 32(2): 123-155.
    [69] Maranini, E., and Brignoli, M., Creep behaviour of a weak rock: experimental characterization [J]. Int. J. Rock Mech. Min. Sci., 1999, 36 (1): 127-138.
    [70] Maranini, E., and Tsutomu, Y. A non-associated viscoplastic model for the behaviour of granite in triaxial compression [J]. Mechanics of Materials, 2001, 33: 283-293.
    [71] Senseny, P.E. Specimen size and history effects on creep of rock salt. In: Proc, of the 1st Conference on the Mechanical Behaviour of salt, 1981, 369-379.
    [72] Vouille, G., Tijani, S. M., and de Grenier, F. Experimental determination of the reological behaviour of Tersanne rock salt, Proc, of the 1st Conference on the Mechanical Behaviour of salt, 1981,408-420.
    [73]Cornelins,R.R.,and Scott,P.A.A materials failure relation of accelerating creep as empirical description of damage accululation.Rock Mech.and Rock Eng.1993,26(3):233-252.
    [74]Munson,D.E.Constitutive model of creep in rock salt applied to underground room closure[J].Int.J.Rock Mech.Min.Sci.,1997,34(2):233-247.
    [75]Callahan,G..D.,Mellegard,K.D.,and Hansen,F.D.Constitutive behavior of reconsolidating crushed salt[J].Int.J.Rock Mech.Min.Sci.,1998,35(4-5):422-423.
    [76]Haupt,M.A constitutive law for rock salt based on creep and relaxation tests[J].Rock Mech.and Rock Eng.1991,24:179-206.
    [77]梅剑云,付冰骏,康文法.中国岩石力学的发展与现状[J].岩石力学与工程学报,1983,1(2):22-32.
    [78]孙均,章旭昌.软弱断层流变对地下洞室围岩力学效应的粘弹塑性分析,岩土工程学报,1987,9(6):16-26.
    [79]宋德彰,孙均.岩质材料非线性流变属性及其力学模型[J].同济大学学报,1991,19(4):395-401.
    [80]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报,1995,14(1):39-47.
    [81]凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,12(4):304-312.
    [82]陈有亮,孙均.岩石的流变断裂特性[J].岩石力学与工程学报,1996,15(4):323-327.
    [83]刘保国,孙均.岩体流变本构模型的辨识及其应用[J].北方交通大学学报,1998,22(4):10-14.
    [84]林伟平.葛洲坝基岩202号泥化夹层强度选取的探讨.工程岩石力学[M],武汉:武汉工业大学出版社,1998,19-23.
    [85]白世伟,吴玉山等.金川镍矿二矿区不良岩层巷道稳定性研究报告[R].中国科学院武汉岩土力学研究所,1991.
    [86]徐海滨,朱维申,白世伟.岩体粘弹塑性—损伤本构模型及其有限元分析[J].岩土力学,1992,13(1):11-20.
    [87]雷承弟.二滩水电站枢纽区岩体蠕变试验[J].水电工程研究,1989,1:1-11.
    [88]徐平,夏熙伦.三峡工程花岗岩蠕变断裂与Ⅰ-Ⅱ型断裂试验研究[J].长江科学院 院报,1995,12(3):31-36.
    [89]徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报,1996(4):63-67.
    [90]周火明,徐平,王复兴.三峡永久船闸边坡现场岩体压缩蠕变试验研究[J].岩石力学与工程学报,2001,20(增):1882-1885.
    [91]杨春和,白世伟,吴益民.应力水平及加载路径对盐岩时效的影响[J].岩石力学与工程学报,2000,19(3):270-275.
    [92]Yang,Chunhe,and Bai,Shiwei.Analysis of stress relaxation behavior of salt rock.In:Proc.of the 37th U.S.Rock Mechanics Symposium,John Willy & Sons(Eds.),New York,1999,pp:935-938.
    [93]杨春和,殷建华,J.J.K.Daemen.盐岩应力松弛效应的研究[J].岩石力学与工程学报,1999,18(3):262-265.
    [94]彭苏萍,王希良,刘咸卫等.“三软”煤层巷道围岩流变特性研究[J].煤炭学报,2001,26(2):149-152.
    [95]徐卫亚,杨圣奇,杨松林等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学,2005,26(4):531-537.
    [96]刘泉声,许锡昌,山口勉等.三峡花岗岩与温度及时间相关的力学性质试验研究[J].岩石力学与工程学报,2001,20(5):715-719.
    [97]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002,21(5):632-634.
    [98]Boukharov,G.N.,Chanda,M.W.,and Boukharov N.G..The three processes of brittle crystalline rock creep[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.,1995,32(4):325-335.
    [99]邓荣贵,周德培,张倬元等.一种新的岩石流变模型[J].岩石力学与工程学报,2001,20(6):780-784
    [100]韦立德,徐卫亚,朱珍德等.岩石粘弹塑性模型的研究[J].岩土力学,2002,23(5):583-586.
    [101]陈沅江,潘长良,曹平等.软岩流变的一种新力学模型[J].岩土力学,2003,24(2):209-214.
    [102]汪华安,杨庆刚,陈记.弹粘塑本构模型辨识的半经验法及三阀值流变模型[J]. 西部探矿工程,2003,8:44-46.
    [103]孙均,李永盛.岩石流变力学的数值方法及其工程应用[A].中国力学学会岩土力学专业委员会,第一届全国计算岩土力学研讨会论文集[C].成都:西南交通大学出版社,1987.
    [104]Cruden,D.M.A Technique for estimating the complete creep curve of a sub-bituminous coal under uniaxial compression[J].Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.,1987,24(4):265-269.
    [105]张向东,李永靖,张树光等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635-1639.
    [106]芮勇勤,徐小荷,马新民等.露天煤矿边坡中软弱夹层的蠕动变形特性分析[J].东北大学学报,1999,20(6):612-614.
    [107]张学忠,王龙,张代钧等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报,1999,22(5):99-103.
    [108]宋飞,赵法锁,李亚兰.石膏角砾岩蠕变特性试验研究[J].水文地质工程地质,2005,3:94-96.
    [109]杨延毅.节理裂隙岩体损伤—断裂力学模型及其在岩体工程中的应用[D].北京:清华大学博士论文,1990.
    [110]凌建明.岩体蠕变裂纹起裂与扩展的损伤力学分析方法[J].同济大学学报,1995,23(2):141-146.
    [111]缪协兴,陈至达.岩石材料的一种蠕变损伤方程[J].固体力学学报,1995,16(4):343-346.
    [112]郑永来,周澄,夏颂佑.岩土材料粘弹性连续损伤本构模型探讨[J].河海大学学报,1997,25(2):114-116.
    [113]陈卫忠,朱维申,李术才.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报,1999,12:33-37.
    [114]浦奎英,范华林.流变损伤模型及其应用[J].河海大学学报,2001,29(增):17-20.
    [115]秦跃平,王林,孙文标等.岩石损伤流变理论模型研究[J].岩石力学与工程学报,2002,21(增2):2291-2295.
    [116]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602-1604.
    [117]朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002.
    [118]朱维申.粘弹—塑性介质中围岩与衬砌的应力状态[J],力学学报,1981,1:56-67.
    [119]Chen,S.H.,and Pande,G.N.Rheological model and finite element analysis of jointed rock masses reinforced by passive fully-grouted bolts[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.,1994,31(3):273-277.
    [120]Jin,Jishan,and Cristescu,N.D.An elastic/viscoplastic model for transient creep of rock salt[J].Int.J.of Plasticity.1998,14:85-107.
    [121]Nicolae,M.Non-associated elasto-viscoplastic models for rock salt[J].Int.J.of Eng.Sci.,1999,37:269-297.
    [122]Sakurai,S.,and Takeuchi,K.,Back analysis of measured displacement of tunnel.Rock Mech.Rock Eng.,1983,16(3):173-180
    [123]Gioda,G.,and Sakurai,S.,Back analysis procedures for the interpretation of field measurements in geomechanics.Int.J.for Num.and Anal.Meth.in Geomech.,1987,11(5):555-583.
    [124]Yang,L.,Zhang,C.,and Wang,Y.,Back analysis of initial rock stresses and time-dependent parameters.Int.J.Rock Mech.Min.Sci.,1996,33(6):641-645.
    [125]Sakrrai,S.,deeswasmongkol,N.,and Shinji,M.,Back analysis for determining material characteristics in cut slopes.Proc.of the Int.Sym.On Eng.In Complex Rock Formations,Beijing:Science Press,1986,770-776.
    [126]Wang,Zhiyin,and Liu,Huaiheng.Back analysis of measured rheologic displacement of underground openings.In:Proc.6th Conf.on Num.Meth.in Geo.,Austria,1988,2291-2297.
    [127]Wang,Zhiyin,and Li,Yunpeng.Back analysis of viscoparameters and strata stress in underground openings.In:Proc.Int.Symp.on Underground Eng.New Delhi,1988,181-186.
    [128]王芝银,李云鹏.地下工程位移反分析法及程序[M].西安:陕西科学技术出版社,1993.
    [129]徐平.三峡枢纽试验洞围岩变形粘弹性反分析[J].人民长江,1992,23(6):48-52.
    [130]肖洪天,杨若琼,杜广林.三峡船闸高边坡反分析及变形趋势预测[J].岩石力学与工程学报,1998,17:863-867.
    [131]Li,Yunpeng,and Wang,Zhiyin.Three dimensional back analysis of viscoelastic creep displacements.In:Proc.3~(rd)Int.Conf.On Underground Space and Earth Sheltered Buildings,Shanghai:Tongji Press,1988,383-387.
    [132]Wang,Sijing,and Yang,Zhifa.The back analysis method form displacements for viscoelastic rock mass.In:Proc.2~(nd)Int.Symp.on FMGM,1987,1059-1068.
    [133]王芝银,杨志法,王思敬.岩石力学位移反演分析回顾及进展[J].力学进展,1998,28(4):488-498
    [134]薛琳.圆形隧道围岩蠕变柔量的确定及粘弹性力学模型的识别[J].岩石力学工程学报,1993,12(4):338-344.
    [135]朱浮声,薛琳.粘弹性围岩力学参数反分析的一种数值法[J].岩石力学工程学报,1997,16(5):478-482.
    [136]袁勇,朱合华,孙钧.围岩粘弹性本构方程的反演识别[J].同济大学学报,1993,21(4):439-445.
    [137]徐日庆,龚晓南.粘弹性本构模型的识别与变形预报[J].水利学报,1998,4:75-80.
    [138]朱珍德,徐卫亚.岩体粘弹性本构模型辨识及其工程应用[J].岩石力学与工程学报,2002,21(11):1605-1609.
    [139]高玮,郑颖人.岩体参数的进化反演[J].水利学报,2000,8:1-5.
    [140]Zhang,Q.The application of neural network to rock mechanics and rock engineering [J].Int.J.Rock Mech.Min.Sci.,1991,28(6):535-540.
    [141]Feng,Xia-Ting,and Katsuyama,K.A new direction-intelligent rock mechanics and rock engineering[J].Int.J.Rock Mech.Min.Sci.,1997,34(1):135-141.
    [142]Feng,Xia-Ting,Wang,Yongjia and Yao,Jianguo.A neural network model on real-time prediction of roof pressure in coal mines[J].Int.J.Rock Mech.Min.Sci.1996,33(6):647-653.
    [143]Feng,Xia-Ting,and Lin,Yunmei,An expert system for rockmass classification of underground engineer.29th Int.Geo.Congress,Japan,1992.
    [144]Feng,Xia-Ting,and Lin,Yunmei.Neural networks for optimal design of underground opening support system.Innovation Mine Design for 21st Century,A.A.Balkema,1993.
    [145]Feng,Xia-Ting,Zhang,Zhiqiang,and Xu,Ping.Adaptive and intelligent prediction of deformation time series of high rock excavation slope.Trans.Nonferrous Met.Soc.China,1999,9(4):842-846.
    [146]Yi,Huang,Application of artificial neural networks to predictions of aggregate quality parameters[J].Int.J.Rock Mech.Min.Sci.,1999,36:551-561.
    [147]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [148]Holland,J.H.Adaptation in natural and artificial system.University of Michigan Press,1975.
    [149]孟召平,彭苏萍,凌标灿等.不同侧压下沉积岩石变形与强度特征[J],煤炭学报,2000,25(1):15-18.
    [150]郝春山,李治平,杨满平.变形介质的变形机理及物性特征研究[J].西南石油学院学报,2003,25(4):19-22
    [151]欧阳蕤,白武明,方华.某些砂岩孔隙结构的分形特征[J],岩石力学与工程学报,1998,17(4):446-452.
    [152]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [153]曾本兰.福建火山岩型铀矿化特征及其形成机制[J],华东地质学院学报,2001,24(4):295-297.
    [154]刘云华,黄同兴,黄新耀等.桂西堆积型铝土矿中三水铝石定量分析方法对比研究[J],岩矿测试,2004,23(2):87-91.
    [155]楼章华.松辽盆地储层成岩反应与孔隙流体地球化学性质及成因[J],地质学报,1998,72(2):144-152.
    [156]周翠英,谭详韶,邓毅梅等.特殊软岩软化的微观机制研究,岩石力学与工程学报,2005,24(3):394-399.
    [157]曾云松,罗祥康,黄德辉.试论重庆酸雨对地下水水质变异的影响[J].中国地质灾害与防治学报,1995,6(3):43-48.
    [158]李汶国,张晓鹏,钟玉梅.长石砂岩次生溶孔的形成机理[J].石油与天然气地质,2005,26(2):220-223.
    [159]姜永东,鲜学福,粟健.单一岩石变形特性及本构关系的研究[J].岩土力学,2005,26(6):941-945.
    [160]张义同.变温粘弹性蠕变型本构方程[J].固体力学学报,1995,16(2):152-156.
    [161]刘泉声,陈刚.花岗岩时温等效原理的进一步验证[J].岩石力学与工程学报,2003,22(10):1601-1606.
    [162]陈四利.化学腐蚀下岩石细观损伤破裂机理及其本构模型.中国科学院武汉岩土 力学研究所博士学位论文,武汉,2003.
    [163]丁梧秀.水化学作用下岩石变形破裂全过程实验与理论分析.中国科学院武汉岩土力学研究所博士学位论文,武汉,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700