用户名: 密码: 验证码:
冬小麦降雨利用过程及其模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国社会经济的快速发展,水资源短缺越来越严重,农业水资源供需矛盾也在不断加剧。灌溉用水是农业用水的主体,在整个社会的水资源消耗中占有很大的比重,但目前我国的灌溉水利用效率与效益都还较低,用水浪费现象仍较普遍。因此,发展节水高效的灌溉技术与管理模式对于缓解水资源供需矛盾,保障国家粮食安全都具有十分重要的意义。在这样的背景下,深入研究作物生育期间的降雨利用过程,分析降水利用影响因子及其作用机制,并对相关因子的影响进行数值模拟,可为科学估计作物生育期间降雨的有效转化程度,以及制定优化灌溉制度提供重要的理论依据,对于农业水资源的高效利用也具有重要的理论和现实意义。
     研究工作于2009-2011年在河南焦作市广利灌区灌溉试验站进行。选取冬小麦作为研究对象,通过三年的田间试验,对冬小麦的降雨冠层截留特性,降雨产流、入渗特征,降水的蒸发及进入土壤后的再分布规律等内容进行了试验观察及定量模拟,并通过试验探讨分析了不同覆盖方式和降雨特性对降雨利用过程和利用效率的影响,取得的主要研究结果如下:(1)采用“简易吸水法”分别研究了冬小麦单株和群体的降雨截留性能。结果表明:冬小麦抽穗前,叶片数量对单株截留量影响显著(P<0.05);而在相同叶片数的情况下,不同生育时期的单株截留量也有显著的差异(P<0.01)。冬小麦单株截留量分别与株高、叶面积、鲜重呈线性正相关关系,吸水率则与株高、鲜重呈线性负相关关系。冬小麦群体截留量分别与LAI、地上部生物量呈线性正相关关系,吸水率则分别与它们呈线性负相关关系。从拔节至成熟,冬小麦冠层截留量呈现先增加后减少的趋势,最大冠层截留量出现在抽穗期(1.28mm),不同生育期的冠层截留量之间差异极显著(P<0.01)。
     模拟降雨试验结果显示,冬小麦生育期透过冠层落在棵间的雨量与降雨总量呈显著的正相关关系(P<0.01);冠层截留量与降雨总量呈显著的幂函数关系(P<0.01)。降雨强度与落在棵间的雨量占总降水量的百分比呈负指数函数关系(P<0.01),与冠层截留量所占百分比呈负幂函数关系(P<0.01)。不同降雨强度下冬小麦冠层截留过程趋势一致,降雨强度越小,其达到冠层截留容量所需时间越长。降雨强度对冠层截留容量没有明显影响。在雨量恒定条件下,截留量随雨强的增加而减小,呈明显的负相关关系。通过分析试验数据构建了冬小麦冠层降雨截留过程模型:
     基于实测数据,确定了模型中表征冬小麦降雨蒸发能力的参数α为0.008。模型的模拟值和实测值有较好的一致性,显示建立的模型适用于冬小麦冠层截留的计算。
     (2)通过模拟降雨试验,研究了冬小麦田降雨强度(RI)、冠层覆盖度(用Leaf area index表示,LAI)及0-40cm初始土壤剖面含水量(θ40)对降雨产流、入渗特征的影响。结果表明:在其他影响因子保持稳定的条件下,径流强度、累积径流量、入渗速率和累积入渗量分别与降雨历时(t)具有显著的负指数函数、幂函数、幂函数和对数函数关系(P<0.01)。产流时间随RI增大而提前,两者呈显著幂函数关系(P<0.01);径流强度、累计径流量和径流系数随RI增大而增大;平均入渗率、稳定入渗率和入渗量随RI增大而增大,入渗率趋于稳定值的时间随RI增大而提前,降雨蓄积系数则随RI增大而减小。产流时间随LAI的减少而提前,两者呈显著线性函数关系(P<0.01);径流强度、径流量及径流系数随LAI的增加而减小;平均入渗率、稳定入渗率、入渗量和降雨蓄积系数随LAI增大而增大,入渗率趋于稳定值的时间则随LAI的增大而延长;当降雨强度增大时,LAI对麦田产流、入渗过程的影响减弱。在RI和LAI保持不变时,产流时间随θ40增大而提前,两者呈显著线性函数关系(P<0.01),而40cm以下土层的含水量对产流时间影响相对较小;径流强度、径流量及径流系数随θ40增大而增大,但稳定径流强度基本相同;入渗率趋于稳定值的时间随θ40增大而提前,平均入渗率、入渗量和降雨蓄积系数随θ40增大而减小,但稳定入渗率基本相同。
     通过多元回归分析,建立了基于RI、LAI和θ40的产流时间计算模型:
     tp=20.3070RI-1.0761LAI1.5209θ0-1.1844
     经检验,模型具有较好的模拟效果。
     径流强度、累积径流量、入渗率、累积入渗量可最终表示为t、RI、LAI和θ40等四因素的函数;建立的径流系数和降雨蓄积系数多元回归计算模型如下
     RC=-0.19188+0.2282RI-0.00785LAI+0.009231θ40
     RSC=1.5754RI-0.5437LAI0.0430θ40-0.2339
     (3)通过人工模拟小雨至特大暴雨6个降雨级别的降水过程,研究了不同降雨条件下的麦田土壤蒸发和土壤水再分布规律,结果表明:在相同的气象条件下,不同降水强度处理下的土壤蒸发过程具有相同的变化趋势。日土壤蒸发量和累积蒸发量均随着降雨量的提高呈对数函数方式增加;不同处理下白天土壤蒸发量有着显著的差异,但晚间的差异不明显;一次降水处理后,麦田土壤累计蒸发量占降雨总量的比例(E/P)随降雨总量的增加呈幂函数减小。土壤日蒸发量与气象因子的相关关系说明,降雨后麦田土壤蒸发与日照时数、20cm蒸发皿水面蒸发、日最高气温、日平均气温相关性程度较高,均达到显著和极显著水平。土壤蒸发量对各气象因子的响应程度随降雨级别(降雨量和降雨强度)的增加而变大。土壤日蒸发量与0-100cm土体内各土层的含水量呈现显著的相关性(P<0.01),且相关系数随降雨级别的提高呈不断增加的趋势。
     降雨级别(降雨量和降雨强度)越大,土壤水再分布影响的土层就越深,土壤含水量变化幅度越大,同时土壤水再分配过程所需的时间越长。湿润锋运移速率随降雨级别提升而增大,同时湿润锋运移深度也相应增加。在同一降雨级别下,湿润锋运移和土壤水再分布过程随着土壤初始含水量的增加而加快。从整体上看,受作物根系生长发育的影响,返青期0-100cm土层水分变化幅度不如拔节期、灌浆期明显。降雨级别越大,降水转化为土壤水的量也越多,但从转化效率上看,中等级别降雨最高。
     利用HYDRUS-1D模型对受降雨、蒸发和作物根系吸水影响的土壤不饱和区含水量分布的变化进行模拟,结果表明HYDRUS-1D模型的模拟结果可以较好地反映不同降雨条件下麦田土壤水分变化的真实情况,因此可以作为实际管理中对土壤水分变化的一种预测手段使用。
     (4)在大田中设置地膜覆盖(PM)、4种秸秆覆盖(覆盖量分别为1500,4500,7500,10500kg/hm2,分别标记为SM15、SM45、SM75和SM105和无覆盖处理(CK),研究不同覆盖方式和降雨特性对降雨后冬小麦棵间蒸发量、土壤剖面水分分布和降雨土壤蓄积量的影响。结果表明:模拟降雨后,各处理的日土壤蒸发量和土壤蒸发累积量有着相同的变化趋势;同一时间段内不同覆盖处理的土壤蒸发量差异明显,均表现为SM105With rapid social and economic development, shortage of water resources is becoming more andmore serious, and competition for limited agricultural water resources also is becoming more and morebitterly in China. Water consumption for irrigation is the majority of agricultural water resourcesconsumption and also occupies a very important position in whole social water resources utilization.However, water use efficiency and return is still relative low and water waste is still very common andserious. So that, development of water-saveing irrigation techniquies and irrigation management modelsis very helpful for relieving severe competition for water resources and ensuring national security ofgrain supply. With this background, it is necessary and urgent to study systematically the transformationand utilization of rainfall during crop growth period, to analyse factors related with rainfall utilizationand their affecting mechanisms, and simulate numerically the relationships between relavant factors andrainfall utilization. The research results may provide an important theoretical basis for estimatingeffective conversion level of rainfall during crop growing period and a helpful tool for designingoptimal irrigation schedule, which has theoretical and practical significance for improving the utilizationof limited agricultural water resources in China.
     Field experiments were conducted at Guangli Irrigaiton Experimental Station located in Qinyangcounty, Jiaozuo city, Henan province in2009-2011. Characteristics of canopy interception, surfacerunoff and soil infiltration during a rainfall, and soil surface evaporation and redistribution of soil waterafter the rainfall were investgated and studied in winter wheat season, The effcets of soil surfacemulching patterns and characteristics of rainfall on utilization of rainfall on winter wheat field were alsostudied. The main results are as followings:
     (1)The capacity of intercepting rainfall in winter wheat at plant and canopy level was measuredand factors affected the capacity were analyzed with wet-absorption method. The results showed thatintercepted rainfall amount(IRA) by a winter wheat plant was effected significantly by leaf number(P<0.05) before heading. The IRA by a plant with same leaf number varied significantly at differentgrowing stages (P<0.01). The IRA per plant increased linearly with leaf area, plant height and freshweight increasing, respectively. However, absorption rate decreased linearly with leaf area, plant heightand fresh weight increase. The IRA by the whole winter wheat canopy presented linear positivecorrelation with leaf area index (LAI), and aboveground biomass(AB) separately, but absorption rateexpressed a negative correlation with LAI and aboveground biomass. From jointing stage to maturity,IRA by winter wheat canopy increased slowly, and then decreased gradually. The peak value of IRA(1.28mm) occurred at heading stage. The IRA values varied significantly in different growing stages(P<0.01),
     Simulated rainfall experiment showed that water amount fell on interrow soil surface in winterwheat was positively correlated significantly with total rainfall (P<0.01), while the relationship betweencanopy interception and total rainfall fitted significantly a power function (P<0.01). There existed anegative exponential correlation between rainfall intensity and interrow throughfall percentage (P<0.01) and a negative power correlation between rainfall intensity and canopy interception percentage (P<0.01). The canopy interception under different rainfall intensities changed similarly with growing stages of winter wheat, while the time from starting of rainfall to reaching canopy interception capacity was longer with lower rainfall intensity. Rainfall intensity did not show significant influence on canopy interception capacity of winter wheat. Rainfall Interception decreased with the increase of rainfall intensity, and showing a significant negative correlation with rainfall intensity under a fixed rainfall amount. A mechanism model for simulating rainfall interception process of winter wheat canopy was developed, and relavent parameters were determined based on experimental data.
     A parameter, a, indicating evaporative capacity of rainfall intercepted by winter wheat canopy, was set to0.008. Simulated values fitted well to measured values, indicating that the model is suitable for estimating rainfall interception of winter wheat canopy.
     (2) The effects of rainfall intensity (RI), canopy coverage (expressed with Leaf area index, LAI) and initial water content of soil layer of0-40cm (θ4O) on surface runoff and water infiltration characteristics was investigated and analyzed with a simulated artificial rainfall experiment in winter wheat field. Results indicated that under other factors were fixed, the surface runoff intensity, cumulative runoff, infiltration rate and cumulative infiltration fitted obviously as negative exponent function, power function, power function, and logarithmic function of the rainfall duration(t)(P<0.01), respectivally The time that surface runoff began to be seen was advanced with RI increased and can be fitted well as a power function (P<0.01). Runoff intensity, accumulative runoff and runoff coefficient increased with RI increasing. As RI increasing, the time reached stable infiltration was advanced, and average infiltration rate, stable infiltration rate, and accumulative infiltration gradually increased, but rainfall storage coefficient decreased. As LAI decreasing, surface runoff appeared earlier and can be fitted significantly with a linear function (P<0.01). Runoff intensity, accumulative runoff and runoff coefficient decreased with LAI increasing. Average infiltration rate, stable infiltration rate, accumulative infiltration volume and rainfall storage coefficient increased with LAI increasing, and the time reached stable infiltration was postponed with LAI increasing. As RI increasing, the effects of LAI on surface runoff and infiltration during a rainfall process diminished. Under a stable RI and LAI, the time surface runoff appeared was advanced with the increase of θ40, and can be fitted well as a positive linear function (P<0.01), but there was little effects of initial moisture in soil layer of40-100cm on the time surface runoff appered. Runoff intensity, runoff volume and runoff coefficient increased with the increasing of θ40, but with a similar stable runoff intensity. Under fixed RI and LAI, the time that infiltration rate reached stable point was advanced, and infiltration rate, infiltration volume and rainfall storage coefficient decreased with the increasing of θ40, but with a similar stable infiltration rate.
     With multiple regression analysis, a numerical model describing the relationship among the time surface runoff appears and RI, LAI, θ40in winter wheat was established as: tp=2O.3O7ORI-1.0761LAI1.52O9θ0-1.1844
     The practical use of the model showed that the modificated values fitted well with the measuredvalues.
     Runoff intensity, cumulative runoff volume, infiltration rate and cumulative infiltration volume canall be fitted as a function of t, RI, LAI and θ40, Respectively. The regression models for calculatingrunoff coefficient and rainfall storage coefficient were established respectively as:
     RC=0.19188+0.2282RI-0.00785LAI+0.009231θ_40
     RSC=1.5754RI~(-0.5437)LAI~(0.0430)θ_(40)~(-0.2339)
     (3)Soil evaporation and soil water redistribution in winter wheat field under different rainfallsituations were explored with simulating6rainfall grades, from light rain to torrential rainfall. Resultsshowed that under similar meteorological conditions, soil evaporation varied with growing stages, buton a similar pattern for different rainfall grades. Both daily soil evaporation and cumulative evaporationcan be fitted well as a positive logarithmic function of the rainfall volume. The soil evaporation volumesin different rainfall grades in daytime was significantly different, but the differences in night time werenot obvious. The ratio of soil evaporation to rainfall (E/P) in winter wheat was fitted well as a negativepower function of rainfall. Correlating meteorological factors and soil evaporation showed that soilevaporation after a rain was signicantly correlative with sunshine hours,20cm Pan evaporation, dailymaximum temperature and mean temperature in winter wheat field (P<0.05or P<0.01), respectively.Effects of meteorological factors on soil evaporation increased with the rising of rainfall grades (rainfallvolume and rainfall intensity). The correlation between daily soil evaporation and water content in soillayer of0-100cm was very significant (P<0.01), and the correlation coefficients for each soil layers allincreased with rainfall grade rising.
     The higher a rainfall grade (rainfall volume and rainfall intensity) was, the deeper a soil profileinfluenced by soil water redistribution was, the larger soil water content change, and the longer the timeneeded to finish soil water redistribution was. Movement velocity of wetting front increased withrainfall grade rising, while final depth of wetting front reached also increased. In addition, with a fixedrainfall grade, wetting front movement velocity increased, but the time needed to finish soil waterredistribution shorted with the increasing of initial soil water content. The changing range of soilmoisture within0-100cm at reviving stage was smaller than those at jointing stage and grain fillingstage, showed the influence of crop root growth. The higher rainfall grade was, the greater the ratio ofrainfall volume to water stored finally in soil was. However, the transformation efficiency of mediumgrade rainfall to soil water was relatively higher.
     With HYDRUS-1D model, changes of soil water content in unsaturated zone caused by rainfall,evaporation and crop root water uptake was simulated. Results showed that simulated values fitted verywell to the measured valued in all rainfall situations in winter wheat field, and the model is a suitabletool of forecasting soil moisture in practical field water management.
     (4)Six mulching theatments, consisting of one plastic mulching (PM), four straw mulching(with1500,4500,7500, and10500kg/hm2, and labeled as SM15, SM45, SM75and SM105, respectively),and one no mulching(CK), was set in winter wheat field to study the effectes mulching models and rainfall characteristics on interraw soil surface evaporation, soil moisture distribution and soil waterstorage after a rainfall under simulated rainfall situation. Results indicated that the changing trends ofdaily soil evaporation and cumulative evaporation are very similar for all mulching treatments, but thedifferences of cumlative soil evaporation during a same period among six mulching treatments wereobvious, and ranged as SM105
引文
1.包含,侯立柱,刘江涛,等.室内模拟降雨条件下土壤水分入渗及再分布试验[J].农业工程学报,2011,27(7):70-75
    2.蔡太义,贾志宽,孟蕾,等.渭北旱塬不同秸秆覆盖量对土壤水分和春玉米产量的影响[J].农业工程学报,2011,27(3):43-48
    3.陈洪松,邵明安.黄土区坡地土壤水分运动与转化机理研究进展[J].水科学进展,2003,14(4):513-520
    4.陈洪松,邵明安,王克林.上方来水对坡面降雨入渗及土壤水分再分布的影响[J].水科学进展,2005,16(2):233-237
    5.陈洪松,邵明安,王克林.土壤初始含水率对坡面降雨入渗及土壤水分再分布的影响[J].农业工程学报,2006,22(1):45-47
    6.陈洪松,邵明安,张兴昌,等.野外模拟降雨条件下坡面降雨入渗、产流试验研究[J].水土保持学报,2005,19(2):5-8
    7.陈力,刘青泉,李家春.坡面降雨入渗产流规律的数值模拟研究[J].泥沙研究,2001,(4):61-67
    8.杜尧东,王建,刘作新,等.春小麦田喷灌的水量分布及小气候效应[J].应用生态学报,2001,12:398-400
    9.段爱旺.作物群体叶面积指数的测定[J].灌溉排水学报,1996,15(1):50-53
    10.樊引琴,蔡焕杰,王健.冬小麦棵间蒸发的试验研究[J].灌溉排水学报,2000,19(4):1-4
    11.高阳.玉米/大豆条带间作群体PAR和水分的传输与利用[博士学位论文].北京:中国农业科学院,2009
    12.耿晓东,郑粉莉,张会茹.红壤坡面降雨入渗及产流产沙特征试验研究[J].水土保持学报,2009,23(4):39-43
    13.谷茂.张北试区降水规律与防沙尘暴对策[J].深圳职业技术学院学报,2002,3(25):1-6
    14.郭向红,孙西欢,马娟娟.降雨灌溉蒸发条件下苹果园土壤水分运动数值模拟[J].农业机械学报,2009,40(11):68-73
    15.胡建忠,李文忠,郑佳丽,等.祁连山南麓退耕地主要植物群落植冠层的截留性能[J].山地学报,2004,22(4):492-501
    16.贾绍凤.黄土高原降雨径流产沙相互关系的研究[J].水土保持学报,1992,6(3):42-47
    17.贾志军,王贵平,李俊义,等.土壤含水率对坡耕地产流入渗影响的研究[J].中国水土保持,1987,(9):25-27
    18.康绍忠,张书函,张富仑,等.积水入渗条件下土壤水分动态变化的野外观测与分析——以内蒙古敖包小流域为例[J].水土保持通报,1997,17(l):7-12
    19.雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988:77-131
    20.罗伟祥,白立强,宋西德,等.不同覆盖度林地和草地的径流量和冲刷量[J].水土保持学报,1990,4(1):29-36
    21.李春杰,任东兴,王根绪,等.青藏高原两种草甸类型人工降雨截留特征分析[J].水科学进展,2009,20(6):769-774
    22.李广,黄高宝.雨强和土地利用对黄土丘陵区径流系数及蓄积系数的影响[J].生态学杂志,2009,28(10):2014-2019
    23.李洪,黄国强,李鑫钢.自然条件下土壤不饱和区中水含量分布模拟[J].农业环境科学学报,2004,23(6):1232-1234
    24.李久生,饶敏杰.冬小麦冠层对喷灌水量分布的影响[J].灌溉排水学报,1999,18(增刊):106-111
    25.李王成,黄修桥,龚时宏,等.玉米冠层对喷灌水量空间分布的影响[J].农业工程学报,2003,19(3):59-62
    26.李衍青,张铜会,赵学勇,等.科尔沁沙地小叶锦鸡儿灌丛降雨截留特征研究[J].草业学报,2010,19(5):267-272
    27.李毅,邵明安.人工草地覆盖条件下降雨入渗影响因素的实验研究[J].农业工程学报,2007,23(3):18-23
    28.李毅,邵明安.雨强对黄土坡面土壤水分入渗及再分布的影响[J].应用生态学报,2006,(17)12:2271-2276
    29.李毅,王全九,王文焰,等.入渗、再分布和蒸发条件下一维土壤水运动的数值模拟[J].2007,26(1):5-8
    30.李裕元,邵明安.降雨条件下坡地水分转化特征实验研究[J].水利学报,2004(4):48-53
    31.林超文,罗春燕,庞良玉,等.不同覆盖和耕作方式对紫色土坡耕地降雨土壤蓄积量的影响[J].水土保持学报,2010,24(3):213-216
    32.刘汗,雷廷武,赵军.土壤初始含水率和降雨强度对黏黄土入渗性能的影响[J].中国水土保持科学,2009,7(2):1-6
    33.刘峻杉,高琼,郭柯,等.毛乌素裸沙丘斑块的实际蒸发量及其对降雨格局的响应[J].植物生态学报,2008,32(1):123-132
    34.刘立晶,高焕文,李洪文.秸秆覆盖对降雨入渗影响的试验研究[J].中国农业大学学报,2004,9(5):12-15
    35.刘荣花,朱自玺,方文松,等.冬小麦根系分布规律[J].生态学杂志,2008,27(11):2024-2027
    36.刘婷,贾志宽,张睿,等.秸秆覆盖对旱地土壤水分及冬小麦水分利用效率的影响[J].西北农林科技大学学报(自然科学版),2010,38(7):68-76
    37.刘新平,张铜会,赵哈林,等.流动沙丘降雨入渗和再分配过程[J].水利学报,2006,37(2):166-171
    38.刘钰,Fernando R M, Pereira L S.微型蒸发器田间实测麦田与裸地土面蒸发强度的试验研究[J].水利学报,1999,(6):54-59
    39.刘自华.冬小麦叶面积矫正系数及叶面积指数的研究[J].河北农业科学,1996(1):12-14
    40.龙桃,熊黑钢,张建兵,等.不同降雨强度下的草地土壤蒸发试验[J].水土保持学报,2010,24(6):240-245
    41.吕国华,康跃虎,李兰,等.冬小麦棵间蒸发研究进展[J].灌溉排水学报,2009,28(6):136-138
    42.满开言,林卓英.坡面植被对坡面径流和入渗的影响[J].地理研究,1989,8(4):78-85
    43.逄焕成.秸秆覆盖对土壤环境及冬小麦产量状况的影响[J].土壤通报,1999,30(4):174-175
    44.沈冰,王文焰.植被影响下的黄土坡地降雨漫流数学模型[J].水土保持学报,1993,7(1):23-28
    45.沈冰,王文焰,沈晋.短历时降雨强度对黄土坡地径流形成影响的试验研究[J].水利学报,1995,(3):21-27
    46.沈冰,王文焰.降雨条件下黄土坡地表层土壤水分运动实验与数值模拟的研究[J].水利学报,1992,(6):29-35
    47.宋孝玉,康绍忠,沈冰,等.黄土区不同下垫面农田降雨入渗及产流关系的数值模拟[J].农业工程学报,2005,21(1):1-5
    48.宋孝玉,李永杰,陈洪松,等.黄土沟壑区不同下垫面条件农田降雨入渗及产流规律野外实验研究[J].干旱地区农业研究,1998,16(4):66-72
    49.孙宏勇,刘昌明,张喜英,等.华北平原冬小麦田间蒸散与棵间蒸发的变化规律研究[J].中国生态农业学报,2004,12(3):62-64
    50.孙庆艳,余新晓,杨新兵,等.密云水库集水区防护林不同树种林冠截留研究[J].中国水土保持科学,2009,6(3):73-78
    51.唐涛,郝明德,单凤霞.人工降雨条件下秸秆覆盖减少水土流失的效应研究[J].水土保持研究,2008,15(1):9-11
    52.王爱娟,章文波.林冠截留降雨研究综述[J].水土保持研究,2009,16(4):55-59
    53.王安志,刘建梅,裴铁璠,等.云杉截留降雨实验与模型[J].北京林业大学学报,2005,27(2):38-42
    54.王迪,李久生,饶敏杰.玉米冠层对喷灌水量再分配影响的田间试验研究[J].农业工程学报,2006,22(7):43-47
    55.王迪,李久生,饶敏杰.喷灌冬小麦冠层截留试验研究[J].中国农业科学,2006,39(9):1859-1864
    56.王健,蔡焕杰,刘红英.利用Penman-Monteith法和蒸发皿法计算农田蒸散量的研究[J].干旱地区农业研究,2002,20(4):67-71
    57.王俊,李凤民,宋秋华,等.地膜覆盖对土壤水温和春小麦产量形成的影响[J].应用生态学报,2003,14(2):205-210
    58.王庆改,康跃虎,刘海军.冬小麦冠层截留及其消散过程[J].干旱地区农业研究,2005,23(1):3-8
    59.王全九,王文焰,吕殿青,等.水平一维土壤水分入渗特性分析[J].水利学报,2000(6):34-38
    60.王晓燕,高焕文.保护性耕作的不同因素对降雨入渗的影响[J].中国农业大学学报,2001,6(6):42-47
    61.王新平,李新荣,康尔泗,等.腾格里沙漠东南缘人工植被区降水入渗与再分配规律研究[J].生态学报,2003,23(6):1234-1241
    62.王彦辉,于澎涛,徐德应,等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报,1998,20(6):25-30
    63.王育红,姚宇卿,吕军杰.残茬和秸秆覆盖对黄土坡耕地水土流失的影响[J].干旱地区农业研究,2002,20(4):109-11
    64.王占礼,黄新会,张振国,等.黄土裸坡降雨产流过程试验研究[J].水土保持通报,2005,25(4):1-4
    65.王占礼,靳雪艳,马春艳,等.黄土坡面降雨产流产沙过程及其响应关系研究[J].水土保持学报,2008,22(2):24-28
    66.王兆伟,郝卫平,龚道枝,等.秸秆覆盖量对农田土壤水分和温度动态的影响[J].中国农业气象,2010,31(2):244-250
    67.吴发启,赵晓光.缓坡耕地降雨、入渗对产流的影响分析[J].水土保持研究,2000,7(1):12-17
    68.吴发启,赵西宁,佘雕.坡耕地土壤水分入渗影响因素分析[J].水土保持通报,2003,23(1):16-72
    69.吴发启,赵西宁,崔卫芳.坡耕地土壤水分入渗测试方法对比研究[J].水土保持通报,2003,23(3):39-41
    70.武海霞.降雨强度对土壤水再分布的影响[J].人民长江,2010,41(9):98-100
    71.武继承,管秀娟,杨永辉.地面覆盖和保水剂对冬小麦生长和降水利用的影响[J].应用生态学报,2011,22(1):86-92
    72.吴希媛,张丽萍.降水再分配受雨强、坡度、覆盖度影响的机理研究[J].水土保持学报,2006,20(4):28-30
    73.吴旭东,周梅,张慧东,等.兴安落叶松林冠截留与降雨量及降雨强度的关系[J].内蒙古农业大学学报,2006,27(4):84-86
    74.徐丽宏,时忠杰,王彦辉,等.六盘山主要植被类型冠层截留特征[J].应用生态学报,2010,21(10):2487-2493
    75.徐绍辉,刘建立.土壤水力性质确定方法研究进展[J].水科学进展,2003,14(4):494-501
    76.薛德榕,谭协麟译.根系研究法[M].北京:科学出版社,1985
    77.闫文德,陈书军,田大伦,等.樟树人工林冠层对大气降水再分配规律的影响研究[J].水土保持通报,2005,25(6):10-13
    78.杨永辉,武继承,吴普特,等.秸秆覆盖与保水剂对土壤结构、蒸发及入渗过程的作用机制[J].中国水土保持科学,2009,7(5):70-75
    79.于稀水,廖允成,袁泉,等.秸秆覆盖条件下冬小麦棵间蒸发规律研究[J].干旱地区农业究,2007,25(3):58-61
    80.于舜章,陈雨海,周勋波,等.冬小麦期覆盖秸秆对夏玉米土壤水分动态变化及产量的影响[J].水土保持学报,2004,18(6):175-179
    81.余开亮,陈宁,余四胜,等.物种组成对高寒草甸植被冠层降雨截留容量的影响[J].生态学报,2011,31(19):5771-5779
    82.原翠萍,张心平,雷廷武,等.砂石覆盖粒径对土壤蒸发的影响[J].农业工程学报,2008,24(7):25-28
    83.曾德慧,裴铁璠,范志平,等.樟子松林冠截留模拟实验研究[J].应用生态学报,1996,7(2):134-138
    84.张光辉,梁一民.土丘陵区人工草地径流起始时间研究[J].水土保持学报,1995,9(3):78-83
    85.张光辉,梁一民.模拟降雨条件下人工草地产流产沙过程研究[J].水土保持学报,1996,10(3):56-59
    86.张焜,张洪江,程金花,等.重庆四面山三种人工林林冠截留效应研究[J].水土保持研究,2011,18(1):201-204
    87.张莉.红壤坡地土壤水分入渗与再分布规律的研究[D].湖南农业大学硕士学位论文,2004
    88.张秋英,李发东,欧国强,等.土壤水对降水和地表覆盖的响应[J].北京林业大学学报,2005,27(5):37-41
    89.张树兰,Lovdahl L,同延安.渭北旱塬不同田间管理措施下冬小麦产量及水分利用效率[J].农业工程学报,2005,21(4):28-32
    90.张杰,任小龙,罗诗峰,等.环保地膜覆盖对土壤水分及玉米产量的影响[J].农业工程学报,2010,26(6):14-19
    91.赵聚宝,梅旭荣,薛军红,等.秸秆覆盖对旱地作物水分利用效率的影响[J].中国农业科学,1996,29(2):59-66
    92.赵鹏宇,徐学选,李波.黄土丘陵区不同土地利用方式降雨产流试验研究[J].中国水土保持,2009(1):55-57
    93.郑文杰,郑毅,Fullen M A,等.模拟降雨条件下秸秆编织地表覆盖物对土壤侵蚀和小麦产量的影响[J].土壤通报,2006,37(5):969-972
    94.周国逸,潘淮俦.林地土壤的降雨入渗规律[J].水土保持学报,1990,4(2):79-84
    95.朱冰冰,李占斌,李鹏,等.草本植被覆盖对坡面降雨径流侵蚀影响的试验研究[J].土壤学报,2010,47(3):402-407
    96.卓丽,苏德荣,刘自学,等.草坪型结缕草冠层截留性能试验研究[J].生态学报,2009,29(2):669-675
    97.邹焱,陈洪松,苏以荣,等.红壤积水入渗及土壤水分再分布规律室内模拟试验研究[J].水土保持学报,2005,19(3):174-177
    98. Adel Z T, Anyoji H, Yasuda H. Fixed and variable light extinction coefficients for estimatingplant transpiration and soil evaporation under irrigated maize[J]. Agricultural watermanagement,2006,84:186-192
    99. Aken A O, Yen B.C. Effect of rainfall intensity no infiltration and surface runoff rates[J]. J. ofHydraulic Research.1984,21(2):324-331
    100.Allen R G, Rase D, Smith M. Crop evapotranspiration guidelines for computing crop waterrequirements[M]. FAO Irrigation and Drainage Paper56,1998
    101.Allen S J. Measurement and estimation of evaporation from soil under barly crops in northernsyria[J]. Agricultural and Forest Meteorology,1990,49:291-309
    102.Antonio Ceballos, Jose’Marty’nez_Ferna’ndez, Fernando Santosw, et al. Soil_water behaviourof sandy soils under semi-arid conditions in the Duero Basin(Spain)[J]. Journal of AridEnvironments,2002,51:501-519
    103.Arnaez J, Lasanta T, Ruiz-Flano P, et al. Factors affecting runoff and erosion under simulatedrainfall in Mediterranean vineyards[J]. Soil&Tillage Research,2007,93:324-334
    104.Arnáez J, Larreab V, Ortigosa L. Surface runoff and soil erosion on unpaved forest roads fromrainfall simulation tests in northeastern Spain[J]. Catena,2004,57:1-14
    105.Aston A R. Rainfall interception by eight small trees[J]. Journal of Hydrology,1979,42:383-396
    106.Berndtsson R, Chen H. Variability of soil water content along a transect in a desert area[J].Journal of Arid Enviroment,1994,27:127-139
    107.Berndtsson R, Ncdomi K. Soil water and temperature patterns in an arid desert dune sand[J].Journal of Hydrology,1996,185:221-240
    108.Boast C W and Robertson T M. A micro-Lysimeter method for determining evaporation frombare Soil: description and laboratory evaluation[J]. Soil Sci. Soc. AM. J,1982,46:689-699
    109.Bodam G B, Colman E A. Moisture and energy conduction during down-ward entry of waterinto soil[J]. Soil Sci.Soc, AM.J,1944,(8)2:166-182
    110.Bouten W, Schaap M G, Aerts J, Vermetten A W M. Monitoring and modeling canopy waterstorage amounts in support of atmospheric deposition studies[J]. Journal of Hydrology,1996,181:305-321
    111.Brenner A J, Incoll L D. The effect of clumping and stomatal response on evaporation fromsparsely vegetated shrublands[J]. Agricultural and Forest Meteorology,1997,84:187-205
    112.Brisson, N, Itier B, L’Hotel J C, et al. Parameterisation of the Shuttleworth–Wallace model toestimate daily maximum transpiration for use in crop models[J]. Ecol. Model.1998,107,159-169
    113.Brunone B, Ferrante M, Romano N, et al. Numerical simulations of one-dimensionalinfiltration into layered soils with the Richards equation using different estimates of theinterlayer conductivity[J]. Vadose Zone Journal,2003,2:193-200
    114.Brutsaert W. Hydrology[M]. New York: Cambridge University Press,2005:605
    115.Calder I R, Wright I R. Gamma ray attenuation studies of interception from sitka spruce: someevidence for an additional transport mechanism[J]. Water Resources Research,1986,22(3):409-417
    116.Calvo-Cases A, Boix-Fayos C, Imeson A C. Runoff generation, sediment movement and soilwater behavior on calcareous (limestone) slopes of some Mediterranean environments insoutheast Spain[J]. Geomorphology,2003,50:269-291
    117.Castillo V M, Cómez-Plaza A, Martínez-Mena M. The role of antecedent soil water content inthe response of semiarid catchments: A simulation approach[J]. Journal of Hydrology,2003,284:114-130
    118.Cerda A. Parent material and vegetation affect soil erosion in eastern spain[J]. Soil Sci Soc AmJ,1999,63:362-368
    119.Chen H S, Shao M A, Li Y Y. The characteristics of soil water cycle and water balance onsteep grassland under natural and simulated rainfall conditions in the Loess Plateau of China[J].Journal of Hydrology,2008,360(14):242-251
    120.Childs S W, Hanks R J. Model of soil salinity effects on crop growth[J]. Soil Sci Soc Am,1975,39(4):617-622
    121.Choudhury B J, Monteith J L. A four-layer model for the heat budget of homogeneous landsurfaces[J]. Q.J.R.Meteorol.Soc.,1988,11:373-398
    122.Christiansen J R, Elberling B, Jansson P-E. Modelling water balance and nitrate leaching intemperate Norway spruce and beech forests located on the same soil type with theCoupModel[J]. Forest Ecology and Management,2006,237:545–556
    123.Connolly R D, Schirmer J, Dunn P K. A daily rainfall disaggregation model[J]. Agriculturaland Forest Meteorology,1998,92:105-117
    124.Crockford R H, Richardson D P. Partitioning of rainfall in a eucalypt forest and pine plantationin South-eastern Australia: Ⅲ Determination of the canopy storage capacity of a drysclerophyll eucalypt forest[J]. Hydrological Processes,1990,4:157-167
    125.Daamen C C, Simmond L P, Wallace J S, et al. Use of microlysimeters to measure evaporationfrom sandy soils[J]. Agricultural and Forest Meteorology,1993,65:159-173
    126.Dastance N. G. Effective rainfall in irrigated agriculture[M]. FAO Irrigation and DrainagePaper25, Rome,1978
    127.Dawes W R, Short D L. The efficient numerical solution of differential equations for coupledwater and solute dynamics: the WAVES model[J]. CSIRO Division of Water ResourcesTechnical Memorandum.1993,93:18
    128.Dolman A J. A multiple-source land surface energy balance model for use in generalcirculation models[J]. Agricultural and Forest Meteorology,1993,65:21-45
    129.Dolman A J. Summer and winter rainfall interception in an oak forest. Predictions with ananalytical and a numerical simulation model[J]. Journal of Hydrology,1987,90:1-9
    130.Dunkerley D. Measuring interception loss and canopy storage in dryland vegetation: a briefreview and evaluation of available research strategies[J]. Hydrological Processes,2000,14:669-678
    131.Edraki M, Land C, Water. Validation of the SWAGMAN Farm and SWAGMAN Destinymodels[M]. CSIRO Landand Water,2003:3-12
    132.Elmaloglou S, Diamantopoulos E. The effect of intermittentwater application by surface pointsources on the soil moisture dynamics and on deep percolation under the root zone[J].Computers and Electronics in Agriculture,2008,62:266-275
    133.Elmaloglou S, Malamos N. A method to estimate soil-water movement under a trickle surfaceline source, with water extraction by roots[J]. Irrigation and Drainage,2003,52(3):273~284
    134.Feddes R A, Bresler E, Neuman S P. Field test of a modified numer-ical model for wateruptake by root systems[J]. Water Resource Res,1974,10(6):1199-1206
    135.Feddes R A, Kowalik P J, Kolinskamalinka K, et al. Simulation of field water uptake by plantsusing a soil water dependent root extraction function[J]. Journal of Hydrology,1976,31(1/2):13-26
    136.Feddes R A, Kowalik P J, Zarandy H. Simulation of field water use and crop yield[M]. Pudoc.Wageningen,1978:20
    137.Fu B, Wang Y k, Xu P, et al. Changes in overland flow and sediment during simulated rainfallevents on cropland in hilly areas of the Sichuan Basin, China[J]. Progress in Natural Science,2009,19:1613-1618
    138.Gardner W R. Modeling water uptake by roots[J]. Irrig. Sci,1991,12(3):109-114
    139.Gash J. An analytical model of rainfall interception by forest [J]. Quarterly Journal of theRoyal Meteorological Society,1979,105:43-55
    140.Gash J, Lloyd C, Lachaud G. Estimating sparse forest rainfall interception with an analyticalmodel[J]. Journal of Hydrology,1995,170:79-86
    141.Gash J, Morton A. Application of the Rutter model to the estimation of the interception lossfrom Thetford forest[J]. Journal of Hydrology,1978,38:49-58
    142.Gash J, Valente F, David J. Estimates and measurements of evaporation from wet, sparse pineforest in Portugal[J]. Agricultural and Forest Meteorology,1999,94:149-158
    143.Gash J, Wright I, Lloyd C. Comparative estimates of interception loss from three coniferousforests in Great Britain[J]. Journal of Hydrology,1980,48:89-105
    144.Gaze S R, Simmonds L P, Brouwer J, et al. Measurement of surface redistribution of rainfalland modeling its effect on water balance calculations for a millet field on sandy soil inNiger[J]. J. Hydro,1997,188-189:267-284
    145.Giorgi P. An approach for the representation of surface heterogeneity in land surface modelspart I: Theoretical framework[J]. Mon Wea Rev,1997,125:1885-1899
    146.Gómez J A, Giraldez J V, Fereres E. Rainfall interception by olive trees in relation to leafarea[J]. Agricultural Water Management,2001,49:65-76
    147.Gómez J A, Nearing M A. Runoff and sediment losses from rough and smooth soil surfaces ina laboratory experiment[J]. Catena,2005,59:253-266
    148.Hamed Y, Jean A, Yannick P, et al. Comparison between rainfall simulator erosion andobserved reservoir sedimentation in an erosion-sensitive semiarid catchment[J]. Catena,2002,50(1):1-16
    149.Herkelrath W N, Miller E E, Gardner W R. Water uptake by plant: I. Divided rootexperiment[J]. Soil Sci Soc Am J,1977,41:1033-1038
    150.Hikaruk, Yoshinori S, Tomonori K, et al. Relationship between annual rainfall and interceptionratio for forests across Japan[J]. Forest Ecology and Management,2008,256(8):1189-1197
    151.Hillel D. Soil and water-physical principles and processes[M]. New York: Academic Press,1971
    152.Horton R. Rainfall interception [J]. Monthly Weather Review,1919,47:603-623
    153.Huang G H, Zhang R D, Huang Q Z. Modeling soil water retention curve with a fractalmethod[J]. Pedosphere,2006,16(2):3-12
    154.Imeson A C, Prinsen H A M. Vegetation Patterns as Biological Indicators for IdentifyingRunoff and Sediment Source and Sink Areas for Semi-arid Landscapes in Spain[J]. AgricultureEcosystems and Environment,2004,104:333-342
    155.Itoh K, Tosaka H, Nakajima K, et al. Masahiro application of surface-subsurface flow coupledwith numerical simulator to runoff analysis in an actual field [J]. Hydrological Processes,2000,14(3):417-430
    156.Jackson C R. Hillslope infiltration and lateral downslope unsaturated flow[J]. Water ResourRes,1992,28(9):2533-2539
    157.Jackson N. Measured and modelled rainfall interception loss from an agroforestry system inKenya[J]. Agricultural and Forest Meteorology,2000,100:232-336
    158.Jin K, Wim M C, Donald G, et al. Soil management effects on runoff and soil loss from fieldrainfall simulation[J]. Catena,2008,75:191-199
    159.Jing-S J, Chaoo C H. Laboratory simulation of water-resources conservation bymeans of thelayout of a series of ponds along stream bank. Hydra-geology Journal,1998,6:233-242
    160.Kannan N, White S M, Worrall F, et al. Sensitivity analysis and identification of the bestevapotranspiration and runoff options for hydrological modelling in SWAT-2000[J]. Journal ofHydrology,2007,332:456-466
    161.Kang Y H, Wang Q G, Liu H J. Winter wheat canopy interception with its influence factorsunder sprinkler irrigation[J]. Agricultural Water Management,2005,74:189-199
    162.Kashyap P S, Panda R K. Evaluation of evapotranspiration estimation methods anddevelopment of crop-cofficients for potato crop in a sub-humid region[J]. Agricultural WaterManagement,2001,50(1):10-25
    163.Klaassen W, Bosveld Fred, De Water E. Water storage and evaporation as constituents ofrainfall interception[J]. Journal of Hydrology,1998,212-213:36-50
    164.Lamm F.R, Manges H.L. Partitioning of the sprinkler irrigation water by a corn canopy[J].Transactions of the ASAE,2000,43:909-918
    165.Leonard J, Ancelin O, Ludwig B, et al. Analysis of the dynamics of soil infiltrability ofagricultural soils from continuous rain-fall-runoff measurements on small plots[J]. Journal ofHydrology,2006,326(1/4):122-134
    166.Li J S, Rao M J. Sprinkler water distributions as affected by Winter wheat canopy[J]. IrrigationScience,2000,20:29-35
    167.Limousin L M, Rambal S, Ourcival J M, et al. Modelling rainfall interception in aMediterranean Quercus ilex ecosystem: Lesson from a throughfall exclusion experiment[J].Journal of Hydrology,2008,357:57-66
    168.Littleboy M, Cogle A L, Smith G D, et al. Soil management and production of alfisols in thesemi-arid tropics I modeling the effects of soil management on runoff and erosion[J]. Aust J ofSoil Re,1996,34:91-102
    169.Liu S G. Estimation of rainfall storage capacity in the canopies of cypress wetlands and slashpine uplands in North-Central Florida[J]. Journal of Hydrology,1998,207:32-41
    170.Loch R J, Connolly R D, Littleboy M. Using rainfall simulation to guide planning andmanagement of rehabilitated areas: Part II. Computer simulations using parameters fromrainfall simulation[J]. Land Degrad. Dev.2000,11,241-255
    171.Ma Y, Feng S Y, Su D Y, et al. Modeling water infiltration in a large layered soil column with amodified Green–Ampt model and HYDRUS-1D[J]. Computers and Electronics in Agriculture,2010,71S: S40–S47
    172.Malik R S, Butter B S, Analauf R, et al. Water penetration into soils with different textures andinitial soil contents[J].Soil Science,1987,144(6):389-393
    173.Mamedov A L, Levy G J, Shainberg I, et al. Wetting rate and soil texture effect on infiltrationrate and runoff[J]. Australia Journal of Soil Research,2001,36:1293-1305
    174.Mamedov A L, Shainberg I, Levy G J. Wetting rate and sodicity effects on interrill erosionfrom semi-arid Israeli soils[J]. Soil and Tillage Research,2002,68:121-132
    175.Manuel S. Uncertainty of factors determining runoff and erosion processes as quantified byrainfall simulations[J]. Catena,2007,71:56-67
    176.María J M, Ramón B, Luis J et al. Effect of vegetal cover on runoff and soil erosion underlight intensity events. Rainfall simulation over USLE plots[J]. Science of the TotalEnvironment,2007,378:161-165
    177.Michaud J, Sorooshian S. Comparison of Simple Versus Complex Distributed Runoff Modelson a Midsized Semiarid Water-shed[J]. Water Resour. Res.,1994,30:593-605
    178.Michele R. Water availability at sowing and nitrogen management of durum wheat: a seasonalanalysis with the CERES-Wheat model[J]. Field Crops Research,2004,89:27–37
    179.Mishra S K, Kumar S R, Singh V P. Calibration and validation of a general infiltrationmodel[J]. Hydrological Processes,1999,13:1691-1718
    180.Mishra S K, Tyagi J V, Singh V P. Comparison of infiltration models[J]. HydrologicalProcesses,2003,17:2629-2652
    181.Mmolawa K, Or D. Experimental and numerical evaluation of analytical volume balancemodel for soil water dynamics under drip irrigation[J]. Soil Science Society of AmericaJournal,2003,67(6):1657~1671
    182.Molz F J, Irwin Remson. Application of an extraction term model to study of moisture flow toplant roots [J]. Agronomy Journal,1971,63,62-77
    183.Molz F J, Irwin Remson. Models of water transport in the soil-pant system: a review [J]. WaterResources Res.,1981,17(5):1245-1260
    184.Muzylo A, Llorens P, Valente F, et al. A review of rainfall interception modelling [J]. Journalof Hydrology,2009,(370):191-206
    185.Nicola Fohrer, Jorg Berkenhagen, J-Martin Hecker, et al. Changing soil and surface conditionsduring rainfall single rainstorm/subsequent rainstorm[J]. Catena,1999,37:355-375
    186.N L Klocke, D L Martin, R W Todd, et al. Evaporation measurements and predictions fromsoils under crop canopies[J]. Trans of the ASAE,1990,33(5):1590-1596
    187.Pachepsky Y, Timlin D, Rawls W. Generalized Richards’ equation to simulate water transportin unsaturated soils[J]. Journal of Hydrology,2003,272:3-13
    188.Pan C Z, Shangguan Z P. Runoff hydraulic characteristics and sediment generation in slopedgrassplots under simulated rainfall conditions[J]. Journal of Hydrology,2006,331:178-185
    189.Pappas E A, Smith D R, Huang C, et al. Impervious surface impacts to runoff and sedimentdischarge under laboratory rainfall simulation[J]. Catena,2008,72:146-152
    190.Parkin G W, Kachanoski R G, Elsick D E, et al. Unsaturated hydraulic conductivity measuredby time domain re-flectometry under a rainfall simulator[J]. Water Resour. Res.,1995,31:447-454
    191.Philip J R. Infiltration and downslope unsaturated flows in concave and convex topographies[J]. Water Resour Res,1991,27(6):1041-1048
    192.Philip J R. The theory of infiltration:5. the influence of he initial moisture content[J]. SoilScience,1957,84:329-339
    193.Plauborg F. Evaporation from bare soil in a temperate humid climate-measurement usingmicro-lysimeters and time domain reflectometry[J]. Agricultural and Forest Meteorology,1995,76:1-17
    194.Poulenard J, Podwojewski P, Janeau J L, et al. Run-off and soil erosion under rainfallsimulation of Andis-ols from the Ecuadorian Paramo: effect of tillage andburning[J]. Catena,2001,45(3):185-207
    195.Rose D A. The dynamics of soil water following single surface wettings[J]. European Journalof Soil Science, March1996,47(1):21-31
    196.Rubin J. Theory of rainfall uptake initially driver than their field capacity and itsapplications[J]. Water Resour. Res,1996,2(4):739-749
    197.Rutter A, Kershaw K, Robins P, et al. A predictive model of rainfall interception in forest. I.Derivation of the model from observation in a plantation of Corsican pine [J]. AgriculturalMeteorology,1971,9:367-384
    198.Rutter A, Morton A, Robins P. A predictive model of rainfall interception in forests. II.Generalization of the model and comparison with observations in some coniferous andhardwood stands[J]. Journal of Applied Ecology,1975,12:367-380
    199.Self-Davis M L, Moore Jr P A, Daniel T C, et al. For-age species and canopy cover effects onrunoff from small plots [J]. Journal of Soil and Water Conservation,2003(6):349-358
    200.Simunek J M, Sejna H, Saito M, et al. The HYDRUS-1D software package for simulating theone-dimensional movement of water, heat, and multiple solutes in variably-saturated media[M].California: Department of Environmental Sciences University of California Riverside,2008:10-41
    201.Singh A K, Tripathy R, Chopra U K. Evaluation of CERES-Wheat and CropSyst models forwater–nitrogen interactions in wheat crop[J]. Agricultural Water Management,2008,95:776-786
    202.Singh R, Panigrahy N, Philip G. Modified rainfall simulator infiltrometer for inflitration,runoffand erosion studies[J]. Agricultural WaterManagement,1999,41:167-175
    203.Timlin D, Pachepsky Y. Infiltration measurement using a vertical time-domain reflectometryprobe and a reflec-tion simulation model[J]. Soil Sci.,2002,167:1-8
    204.Vahabi J, Mahdian M H. Rainfall simulation for the study of the effects of efficient factors onrun-off rate[J]. Current Science,2008,95(10):1439-1445
    205.Van Dijk A I J M, Bruijnzeel L A. Modelling rainfall interception by vegetation of variabledensity using an adapted analytical model I. Model description[J]. Journal of Hydrology,2001,247:230-238
    206.Van Genuchten M.T. A close-form equation fro predicting the hydraulic conductivity ofunsaturated soils[J]. Soil Sci. Soc. Am. J.,1980,44:892-898
    207.Villalobos F J, Fereres E. Evaporation measuement beneath corn,cotton,and sunflowercanopies[J]. Agron.J,1990,82:1153-1159
    208.Wallace J S, Holwill C J. Soil evaporation from tiger-bush in south-west Niger[J]. Journal ofHydrology,1997,188-189,426-442
    209.Wang Q G, Kang Y H, Liu H J, et al. A method for measurement of canopy interception undersprinkler irrigation[J]. Irrigation and Drainage Engineering, ASCE,2004,132:185-187
    210.Ward R, Robinson M. Principles of Hydrology[M]. London: McGraw-Hill PublishingCompany,1990:365
    211.Wei L H, Zhang B, Wang M Z. Effects of antecedent soil moisture on runoff and soil erosion inalley cropping systems[J]. Agricultural water management,2007,94:54-62
    212.Willmott C J, Matsuura K. Advantages of the mean absolute error (MAE) over the root meansquare error (RMSE) in assessing average model Performance[J]. Climate Researeh.2005,30(l):79
    213.Williams J R, Singh V P. The EPIC model[J]. Computer models of watershed hydrology.1995:909-1000
    214.Xu L G, Yang J S, Zhang Q, et al. Salt-water transport in unsaturated soils under crop planting:Dynamics and numerical simulation[J]. Pedosphere,2005,15(5):634-640
    215.Zhang Y, Liu B Y, Zhang Q C, et al. Effect of different vegeta-tion types on soil erosion bywater[J]. Acta Botanica Sinica,2003,45(10):1204-1209
    216.Zhao P P, Shao M A, Melegy A A. Soil water distribution and movement in layered soils of adam farmland[J]. Water Resources Management,2010,24(14):3871-3883
    217.Zheng F L, Huang C, Norton L D. Vertical hydraulic gradient and run-onwater and sedimentson erosion processes and sediment regimes[J]. Soil Sci Soc Am J,2000,64(1):4-11
    218.Zhou Z C, Shangguan Z P. Effects of ryegrasses on soil runoff and sediment control[J].Pedosphere,2008,18(1):131-136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700