用户名: 密码: 验证码:
黄土高原地区滴灌方式下枣树最优调亏灌溉模式及作物系数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对黄土高原地区生态环境脆弱、水土流失严重和主要特色果品生产技术落后等实际情况,为了保证黄土高原地区水土资源可持续利用,提高退耕还林区群众经济效益,满足农业现代化建设和改善区域生态环境条件,于2009-2011年在陕西米脂县孟岔枣树试验园进行了连续试验。试验以黄土高原地区特色果品枣树为研究对象,在枣树的不同生育期设置了不同亏水度的调亏处理,以不同灌水处理的土壤水分动态变化规律为基础,针对调亏灌溉对枣树需水耗水规律、生理生态指标、果实的品质指标、产量和水分利用效率的影响进行了详细分析,建立了基于熵理论的枣树调亏灌溉综合效益模型,探求了基于FAO-56水分胁迫系数的枣树园土壤水分估算方法,并制定了黄土高原地区滴灌方式下枣树的调亏灌溉制度,最终得到了黄土高原地区滴灌方式下枣树最优灌溉模式和作物系数,为黄土高原地区发展节水、稳产,优质、高效的可持续型枣树种植提供全面的理论依据。取得以下几方面成果:
     (1)通过对不同灌水条件下枣树土壤水分变化特性进行研究,发现生育期内不同亏水度处理间的土壤含水率存在明显差异,各调亏处理在水分亏缺期间的土壤水分消耗趋势均缓于对照。相同调亏程度的处理在不同生育期的土壤含水率状态差异显著:枣树在开花坐果期和萌芽展叶期的土壤含水率变化速率相对较快。
     (2)黄土高原地区枣树的各生育期作物系数(3年均值)从大到小的排列顺序为:果实膨大期(1.188>果实成熟期(0.897)>开花坐果期(0.655)>萌芽展叶期(0.526)),并且作物系数和叶面积指数之间存在显著的二次曲线关系。各调亏处理在亏水的生育期中,作物系数都不同程度的低于对照处理,存在一个水分胁迫系数。不同调亏处理在亏水阶段的水分胁迫系数随着亏水程度的增加而减小,即重度调亏<中度调亏<轻度调亏。
     (3)通过对枣树各生态指标的研究发现,调亏灌溉对枣树各器官的生长有显著的影响,调亏处理的新梢长度、叶面积指数和开花坐果数均受到不同程度的抑制或促进效果。综合考虑各调亏处理对枣树营养生长和生殖生长的调控效果,萌芽展叶期进行适度的亏水能控制冗余生长,起到抑制枣树新梢生长和叶面积指数、增加开花数和坐果数的作用,尤其以萌芽展叶期中度调亏处理T2(M-P1)具有相对良好的效果,而开花坐果期不适宜进行水分胁迫,各处理均会降低开花数和坐果数,从而影响枣树最终的经济效益。
     (4)调亏灌溉对黄土高原地区枣树的生理指标有显著性影响,主要表现为亏水时和复水后的状态差异。亏水状态下的各调亏处理的净光合速率日变化曲线不同程度的低于对照处理CK,且随着调亏程度的增加而减小,即重度调亏处理<中度调亏处理<轻度调亏处理<对照;调亏后复水会显著提高净光合速率,并净光合速率日变化曲线的峰值时间前移。亏水时期调亏处理的枣树叶片气孔导度均有不同程度的下降,复水后各调亏处理的气孔导度值均有显著提高。在相同的天气条件下,叶水势的变化状况直接与调亏程度相关,随亏水程度的增加而减小。
     (5)不同生育期调亏灌溉对果实的物理品质指标有一定的影响:果实膨大期的中度和重度调亏处理使单果质量和体积显著降低;调亏灌溉会降低枣果实的含水率,坏果率,提高果实硬度,其中果实膨大期的调亏处理降低果实含水率和提高果实硬度的效果最显著,达到9.1%和10.3%;果实成熟期的重度调亏处理降低坏果率的效果最为显著,为20.1%。不同生育期调亏灌溉对果实的化学品质指标有较显著影响:其中果实成熟期的重度亏水处理降低枣的有机酸含量最为显著(P<0.05),平均降幅25.5%;提高枣树果实维生素C含量的效果最为显著,平均增幅23.9%。开花坐果期中度调亏处理提高果实可溶性固形物的效果最为显著,平均增幅25.3%。而果实膨大期的重度调亏处理对可溶性蛋白的抑制作用最为显著,3年中平均降低了14.8%。
     (7)使用基于信息熵理论的模糊评判方法建立了黄土高原地区枣树调亏灌溉综合效益模糊评价模型。根据2009~2011年黄土高原地区枣树不同生育期不同调亏处理的试验资料,综合考虑果实物理指标、化学品质指标、产量、水分利用效率与经济效益等因素,对各调亏处理的综合效益作出了全面客观的评价。
     (8)通过使用基于FAO-56水分胁迫系数的计算模型,模拟了黄土高原地区滴灌条件枣树水分胁迫状态下土壤含水率的动态变化过程,分析了计算模型在枣树不同生育期的精度变化和误差形成原因。
     (9)建立黄土高原地区滴灌方式下枣树的最佳调亏灌溉制度,参考本试验中调亏灌溉对枣树各项指标影响的分析,以综合效益最大化的处理为模板,按照萌芽展叶期中度调亏,开花坐果期和果实膨大期尽可能保证充分供水,果实成熟期重度调亏的具体原则,结合不同水文年的降水情况和试验中已经实测的枣树耗水量,设计了黄土高原地区滴灌方式下枣树的调亏灌溉制度。
The condition of the Loess Plateau is special: the ecological environment is fragile, thesoil is eroded seriously and the production technology of the main specific fruit is backward.Considering that special condition, this research is to ensure the sustainable utilization ofwater resources in the Loess Plateau region, improve the economic benefit of people whohave returned farmland to forest, meet the agricultural modernization and improve theregionally ecological environment conditions; additionally, the research object is the specificfruit—jujubes—in the loess plateau region. In the different growth periods of jujubes, theresearch designs different water deficit treatments, which are based on the dynamic change ofsoil water. The research analyzes the affection of Regulated Deficit Irrigation (RDI) onjujube’s water need and consumption rule, physiological and ecological index, fruit qualityindex, yield and water use efficiency; additionally, the research establishes the entropytheory based on the comprehensive benefits model of jujubes under RDI and the estimationmethod of jujube orchard soil moisture’s FAO-56water stress coefficient, and establishes thejujube’s RDI system under drip irrigation in Loess Plateau region. The result of this researchgains the jujube’s optimal irrigation model and crop coefficient under drip irrigation in theLoess Plateau, which provides a theoretical basis for promoting sustainable jujubes withsaving-water, stable-yield, high-quality and efficient in the Loess Plateau.
     (1) According to the study of soil moisture distribution characteristics under differentirrigation conditions, it has been concluded that there is obvious difference between differentwater deficit treatments in the same growth period. The soil water consumption trend ofdifferent water deficit treatments is slower than CK. The same deficit degree in differentgrowth periods of soil moisture rate appears to be quite different: the soil moisture rates ofjujube’s flowering and fruit-setting period and sprout developing period are relatively higherthan in other growth periods.
     (2) The jujube’s crop coefficient under drip irrigation in the Loess Plateau is sequencedfrom large to small as follows: fruit developing period> fruit maturing period> flowering andfruit-setting period> sprout-developing period; additionally, there are two curves relationshipbetween crop coefficient and leaf area index. As the RDI treatments in water deficit growth period, crop coefficients are generally lower than CK, that is, there is a water stress coefficient.The water stress coefficients in the water deficit periods under different RDI decreases aswater deficit degree increases, that is the severe RDI<     (3) According to the study of jujube’s ecological indexes, RDI has significant effect onthe growth of jujube’s various organs. New shoot length, leaf area index and the number offruit blossom are all under different effects of RDI. Considering the effect of RDI on jujube’snutrition growth and reproduction growth, moderate RDI in the sprout developing period cancontrol the redundant growth to suppress jujube’s new shoot growth and leaf area index, andincrease the number of blossom and fruit bearing number. Especially the moderate RDItreatment T2(M-P1) in the sprout developing period has a relatively active effect; however,the flowering and fruit-setting period doesn’t suit for water stress, which can decrease thenumber of blossom and fruit, thus affecting the jujube’s economic benefits
     (4) Jujube’s physiological index in Loess Plateau has significant difference in response towater deficit and rewatering. In the condition of water deficit, daily curves of netphotosynthetic rate under each RDI treatment generally lower than CK; additionally, thechanges of curves decreases as the RDI treatment increases, that is, severe RDI      (5) RDI treated in different growth periods has effect on fruit physical quality index. Themoderate RDI and the severe RDI treated in the fruit developing period significantly decreasefruit weight and volume. RDI can decrease fruit’s water content, bad fruit rate, increase fruithardness. Specifically, the RDI treated in the fruit developing period most significantlydecreases fruit’s water content and increases fruit hardness, reaching9.1%and10.3%; thesevere RDI treated in the fruit developing period decreases the bad fruit rate mostsignificantly reaching20.1%. RDI treated in different growth periods has significant effect onfruit’s chemical quality index. Specifically, the severe RDI treated in the fruit maturing periodmost significantly decreases jujube’s organic acid content(P<0.05), the average decreasingrange is25.5%; that most significantly increases fruit’s vitamin C content, the averageincreasing range is23.9%. The moderate RDI treated in the flowering and fruit-setting periodmost significantly increases fruit’s soluble solids, the average increasing range is25.3%.However, the severe RDI treated in the fruit developing period most significantly decreases soluble protein, decreasing of14.8%in3years.
     (7) Applying comprehensive optimum seeking method on different RDI treatment andbasing on fuzzy evaluation method of information entropy to establish the evaluation modelof benefit under RDI treated in jujube in Loess Plateau area. According to the test data ofdifferent RDI treated in jujube’s different growth period during2011~2009in Loess Plateauregion, considering fruit’s physical index, chemical quality index, yield, water use efficiencyand economic benefits, this research provide comprehensive and objective evaluation of RDItreatment benefit.
     (8) Applying the calculated model of FAO-56water stress coefficient to simulate thedynamic process of soil moisture content under water stress of drip irrigation jujube’s in theLoess Plateau region, and additionally analyzing the precision changes and error reasons ofjujubes in different growth periods calculated by computer model.
     (9) Establishing the optimum RDI system of drip irrigation jujubes in Loess Plateau,referring the analysis of RDI’s influence on jujube’s each index, applying the treatment ofcomprehensive benefit maximization as the model, according to the following rule—applyingmoderate RDI in the sprout developing period, insuring adequate water supply in theflowering and fruit-setting period and fruit developing period, applying severe RDI in the fruitmaturing period—considering the precipitation conditions of different years and jujube’swater consumption tested, this research has designed the RDI system of drip irrigation jujubesin Loess Plateau region.
引文
白麟,李援农,曹瑞芳.2012.亏水灌溉对开花坐果期梨枣树生长的影响.干旱地区农业研究,30(2):84-87.
    彼季诺夫.1966.最适宜的土壤水分极限和适宜灌溉.农业译丛.4:43~45.
    陈清硕.1990.节水型农业技术的开发与利用.农业现代化研究,05,25~27
    陈立松.1999.果树对水分胁迫的反应与适应性,干旱地区农业研究,17(l):88~94.
    陈家琦,王浩,杨小柳.2002.水资源学.北京:科学出版社,4,1~41
    陈献男.2000.水分胁迫对果梅光合色素和光合作用的影响,福建农业大学学报,29(1):35~39
    陈清西,詹廷平.1988.果树增产潜力与光合作用的关系.福建果树,95:16~20.
    成福云.2000.水资源短缺:21世纪中国面临的严峻挑战.中国减灾,01,28~30
    程先军,许迪,张昊.1999.地下滴灌技术发展及应用现状.节水灌溉,4:13~15
    财政部国家林业局联合调查组.2000.关于内蒙古,宁夏自治区退耕还林的调查报告.农村财政与财务,7:2~4.
    崔宁博,杜太生,李忠亭,王密侠,郭军.2009.不同生育期调亏灌溉对温室梨枣品质的影响.农业工程学报,25(7):32-38.
    段爱旺,张寄阳.2000.中国灌溉农田粮食作物水分利用效率的研究.农业工程学报,16(4)41~44.
    冯尚友2000.水资源持续利用与管理导论.北京:科学出版社:66
    方国华.2010.面对三十个危机人类还能走多远?http://www.in-en.com/article/html/energy_1518151850626818.html[2010-04-19].
    高淑红,杨春丽.2010.生长冗余和补偿效应的研究.黑龙江水利科技,01:35~41
    高峰.1997.我国农业灌溉科技面临的挑战与对策.西北水资源与水工程,01:61~64
    郭元裕.1985.农田水利学.北京:水利电力出版社:80~88
    贡力,靳春玲.2004.西北地区生态环境建设和水资源可持续利用的若干问题.中国沙漠,24(4):513~517
    胡田田,康绍忠.2005.植物抗旱性中的补偿效应及其在农业节水中的应用.生态学报,25(4):885-891.
    黄修桥,段爱旺.1999.我国节水灌溉农业建设途径研究.灌溉排水,04:1~6.
    黄兴法,李光永.2001.充分微喷灌溉条件下苹果树耗水量的研究.中国农业大学学报,6(4):42~46
    黄占斌,山仑.1999.不同供水下作物水分利用效率和光合速率日变化的时段性及其机理研究,华北农学报,14(l):47~52
    贺正中,王兰桂.1998.旱作灌溉农业的节水途径与效益初探.灌溉排水,02:13~16
    贾大林.1995.节水农业是提高用水有效性的农业.农田水利与小水电,01:5~7
    贾锐鱼,赵晓光,朱德兰.1998.我国发展节水灌溉技术的必要性及其现状与前景.西北林学院学报,13(2):46~50.
    康绍忠,杜太生,孙景生.2007.基于生命需水信息的作物高效节水调控理论与技术.水利学报.38(6):661~667.
    康绍忠,蔡焕杰,冯绍元.2004.现代农业与生态节水的技术创新与未来研究重点.农业工程学报,20(1):1-6.
    刘艳伟,朱仲元,吴云.2010.浑善达克沙地天然植被蒸散量两种计算方法的比较.农业机械学报,41(11):84~88.
    刘国琴.2000.果树对水分胁迫的生理响应.西南农业学报,13(1):104~106
    刘钰.1997.参照腾发量的新定义及计算方法对比.水利学报,6:27~33.
    刘昌明,陈志恺.2001.中国水资源现状评价和供需发展趋势分析.北京:中国水利水电版
    刘玉洁,罗毅.2010.FAO-56土壤水分胁迫指数计算方法试验研究.资源科学,32(10):1902~1909.
    刘晓敏,张喜英,王慧军.2011.太行山前平原区小麦玉米农艺节水技术集成模式综合评价.中国生态农业学报,19(2):421~427.
    李养志.1996.陕西省红枣生产现状概述。陕西林业科技,05,28~29
    李新.2002.中国华北和西北地区水量短缺对农业的压力及对策.干旱区地理,25(4):290~295.
    李驾三.1990.中国资源概述.北京:科学出版社,483~493
    李佩成.1993.论发展节水型农业.干旱地区农业研究,02:57~63
    李远华.1999.节水灌溉理论与技术.武汉:武汉水利电力大学出版社,114,135
    李绍华.1993..果树生长发育、产量和果实品质对水分胁迫反应得繁感期及节水灌溉.植物生理学通讯.29(1):10~16
    李援农.2000.保护地节水灌溉技术.北京:中国农业出版社,55~63
    李广敏.2001.作物抗旱生理与节水技术研究.北京.:气象出版社,73~90.
    李震,Wang Ning,洪添胜等.2010.农田土壤含水率监测的无线传感器网络系统设计[J].农业工程学报,26(2):212~217.
    李琴,陈曦,Frank Veroustraete.2010.干旱半干旱区土壤含水量反演与验证.水科学进展,21(2):201~207.
    罗桂仙.2006.攀枝花市芒果节水微灌灌水制度研究.节水灌溉,04:16
    卢振民.熊勤学.1991.冬小麦根系各种参数垂直分布实验研究.华北农学报,02:73~75
    马耀光等.2004.旱地农业节水技术.北京:上海化学工业出版社:108
    马福生,康绍忠.2006.调亏灌溉对温室梨枣树水分利用效率与枣品质的影响.农业工程学报,26(1):37~43
    孟平,张劲松,王鹤松.2005.苹果树蒸腾规律及其与冠层微气象要素的关系.生态学报,25(5):1075~1081.
    彭世彰,朱成立.2003..节水灌溉的作物需水量试验研究.灌溉排水学报,22(2):21~25.
    彭世彰,索丽生.2004.节水灌溉条件下作物系数和土壤水分修正系数试验研究.水利学报,27(1):17~21.
    齐述华,李子忠,龚元石.2002.应用农田水量平衡原理计算三种蔬菜的需水量和作物系数[J].中国农业大学学报,7(1):71~76.
    钱蕴壁,李英能,杨刚.2002.节水农业新技术研究.郑州:黄河水利出版社,8~10.
    任树梅.2002..重力滴灌条件下山区果园土壤水分动态与果树灌溉制度的初步研究.中国水利水电,1:20~22
    山仑,徐萌.1991.节水农业及其生理生态基础.应用生态学报,01:8~14
    山仑,黄占斌,张岁岐.2000.节水农业.南京:暨南大学出版社,38
    水利部发展研究中心形势分析课题组.2008.对2020年我国水资源供需形势的初步判断.水利发展研究,05:5~7.
    水利部农村水利司,2001.农业节水探索.北京:中国水利水电出版社,44
    粟晓玲,石培泽,杨秀英.2005.石羊河流域干旱沙漠区滴灌条件下苹果树耗水规律研究.水资源与水工程学报.16(1):19~23.
    史海滨.1997.参考作物腾发量计算方法及其适用性评价.灌溉排水,16(2):50~54.
    孙宏勇,张喜英,邵立威.2009.调亏灌溉在果树上应用的研究进展.中国生态农业学报,17(6):1288-1291
    孙景生,刘祖贵,张寄阳.2002.风沙区参考作物需水量的计算.灌溉排水,21(2):17~24
    孙小平,荣丰涛.2004.作物优化灌溉制度的研究.山西水利科技,5(2):39~41.
    宋世德,郭满才.2002.数学试验.北京:高等教育出版社,101
    申海林,温景辉,邹利人.2007.我国果树设施栽培研究进展.吉林农业科学,32(2):50-54
    上官周平,邵明安,薛增召.2001.旱地作物需水量预报决策辅助系统.农业工程学报,17(2):42~46.
    吴普特.2006.中国节水农业战略思考与研发重点.科技导报,05:86~88
    吴普特,高建恩.2006.黄土高原水土保持新论[M].郑州:黄河水利出版社:56
    吴普特,高建恩.2008.黄土高原水土保持与雨水资源化.中国水土保持科学,6(1):107~111.
    吴景社,李之生,李英能.2000.21世纪节水农业中的高新技术重点研究领域.农业工程学报.01:19-21
    吴强盛,夏仁学,张琼华.2003.果树对水分胁迫反应研究进展(综述).亚热带植物科学研究,32(2):72-76
    武阳,王伟,雷廷武.2012.调亏灌溉对滴灌成龄香梨果树生长及果实产量的影响.农业工程学报,28(11):118-124.
    汪志农.2000.灌溉排水工程学.北京:中国农业出版社:8
    王洪源,李光永.2010.滴灌模式和灌水下限对甜瓜耗水量和产量的影响.农业机械学报,41(5):47-51
    王文焰.2001.我国北方旱作节水灌溉技术的研究与发展.河北高等专科技术学校学报,12(4):1~5
    王万里.1981.植物对水分胁迫的反应.植物生理学通讯,17(5):55~67
    王宇,魏征.2012.基于投影寻踪分类模型的烤烟节水灌溉模式评价.节水灌溉,08:75~80.
    谢应忠.2000.宁夏南部黄土丘陵沟壑区生态农业建设实践与研究.生态学杂志,19:12.
    谢贤群.1990.测定农田蒸发的试验研究.地理研究,9(4):94~102.
    解焱.2002.恢复中国的天然植被.北京:中国林业出版社,13.
    徐国郎.1990.节水型农业灌溉技术.北京:气象出版社,78
    徐祝龄,王汶,衣纯真.1995.作物水分胁迫监测的国内外研究进展.中国农业气象,04:34~36
    徐呈样.2000.苹果对水分胁迫的反应特点及节水灌溉研究.南京农专学报,l6(2):15~22
    许迪,龚时宏,李益农.2010.农业水管理面临的问题及发展策略.农业工程学报,26(11):1~7.
    肖娟,雷廷武,李光永.2004.西瓜和蜜瓜咸水滴灌的作物系数和耗水规律.水利学报,35(06):119~123.
    肖新,赵言文,胡锋.2008.南方丘陵季节性干旱区节水稻作模式综合效益评价体系研究.浙江大学学报(农业与生命科学版),34(4):439~446.
    于城.2012.调亏灌溉在农业中的应用.农业工程,2(4):42-46.
    余开德.1991.节水灌溉发展中若干问题的思考.灌溉排水,04:1~8
    姚崇仁.1993..对节水灌溉的再思考.灌溉排水,01:12~15
    杨文治.2001.黄土高原土壤水资源与植树造林.自然资源学报,16(5):433~438.
    袁志发,周静芋.2000.试验设计与分析.北京:高等教育出版社,99.
    苑文昌.1998.灌溉制度对作物产量的调控作用.河北水利水电技术,2:13~14.
    张志新.2007.滴灌工程规划设计原理与应用.北京:中国水利水电出版社:74
    张岁岐,山仑,邓西平.2002..小麦进化中水分利用效率的变化及其与根系生长的关系.科学通报,47(7):1327~1331
    张岳.1995.中国水利发展战略文集.北京:中国水利水电出版社,291~360
    张继澍.1999.植物生理学.上海.世界图书出版公司:101~102
    张巨俭.1994.缺水地区旱作物灌溉生产函数与经济用水灌溉定额的确定方法探讨.四川水利,15(5):19~22.
    张步翀,黄高宝.2008.干旱环境下春小麦最优调亏灌溉制度确定.灌溉排水学报,27(1):
    69-72
    张振华,蔡焕杰,杨润亚.2004.沙漠绿洲灌区膜下滴灌作物需水量及作物系数研究.农业工程学报,20(5)::97~100.
    张文辉,刘国斌.2007.黄土高原植被生态恢复评价、问题与对策.林业科学,43(1):102~106.
    郑健,蔡焕杰,王健,王燕.2011.温室小型西瓜调亏灌溉综合效益评价模型.农业机械学报,42(7):124~129.
    赵艳霞,王馥棠,刘文泉.2003.黄土高原的气候生态环境、气候变化与农业气候生产潜力.干旱地区农业研究,21(4):142~146.
    赵燕东,聂铭君.2011.双针结构土壤水分传感器探针最优长度分析与试验.农业机械学报,2011,42(11):39~43.
    赵世昌,魏占民,徐冰,郭克贞.2012.西藏高寒牧区草地灌溉工程综合效益评价初步研究.节水灌溉,09:63~66.
    周立三.2000.中国农业地理.北京:科学出版社,21.
    周维博.1997.西北地区水资源开发方略与发展高效节水农业途径.西北水资源与水程,04:1~6
    朱元生.2002.水资源开发与管理的时代性.科技导报,12:55~59.
    中国科学院自然区域委员会.1959.中国自然区划.北京:科学出版社,26.
    翟志平,武肃香.2008.如何提高果树产量。果农之友,07,13~14
    Assaf.R, Levin.I, Bravdo B.1982. Apple fruit growth as a measure of irrigation control.HortScience,17(1):59~61.
    Allen.R.G et al.1989. Operrational estimates of reference evapotranspiration.Agron,81:650~662.
    Allen R G, Pereira L S.2009. Estimating crop coefficients from fraction of ground cover andheight. Irrigation Science,28(11):17~34.
    Chalmers D J, Mitchell P,Heek L.1981.Control of peach tree growth and productivity by regulatedwater supply, tree density,and summer pruning. J Amer Sol Sci,106(3):307~302.
    Costagli G., Gucci R., Rapoport H.F.2003.Growth and development of fruits of olive ‘Frontoio’under irrigation and rainfed conditions.The Journal of Horticultural Science andBiotechnology,78:119~124
    Castel J.R., Buj A.1990. Response of salustiana oranges to high frequency deficit irrigation.Irrigation Science,11:121~127
    Costello MJ, Patterson WK.2012. Regulated Deficit Irrigation Effect on Yield and Wine Color ofCabernet Sauvignon in Central California. Hortscience,47(10):1520~1524.
    Cotrim CE, Coelho MA, Coelho EF, et al.2011. Regulated deficit irrigation and tommy atkinsmango orchard productivity under microsprinkling in brazilian semi arid. EngenhariaAgricola,31(6):1052~1063.
    Damiano Remorini,Rossano Massai.2003. Comparision of water status indicators for youngpeach trees. Irrigation Science,22:39~46.
    D.A.Goldhamer,Elias Fereres.2001.Irrigation scheduling protocols using continuously recordedtrunk diameter measurements. Irrigation Science.20:115~125.
    D.A.Goldhamer,E.Fereres.2004..Irrigation scheduling of almond trees with tunk diameter sensor.Irrigation Science,23:11~19.
    Dell'Amico J, Moriana A, Corell M, et al.2012. Low water stress conditions in table olive trees(Olea europaea L.) during pit hardening produced a different response of fruit and leaf waterrelations. Agricultural Water Management,114(SI):11~14.
    Essafi, B.1983. A recursive volume balance model for surge flow irrigation. In: Thesis presentedto Utah State University. Utah: Academic Press:8~9.
    Einhorn T,Caspari H.W.2004. Partial rootzone drying and deficit irrigation of“Gala”apples in asemi-arid climate.Acta Horticulturae.664:197~204.
    Fernandez J.E.,Diaz-Espejo A,Infante J.A.,et al.2006.Water relation and gas exchange in olivetrees under regulated deficit irrigation and partial rootzone drying. Plant soil.284:273~291.
    Green S.R., Clotrier B.E.1983.Water use of kiwifruit vines and apple trees by heat-pulse technique.Journal of Experimental Botany,39(198):115~123
    Goodwin I., Desmond M.W., David J.C.2006. Effects of tree size on water use of peach (Prunnspersica L.Batsch). Irrigation Science,24:59~68
    Goldhamer D.A.1999. Regulated deficit irrigation for california canning olives.Acta horticulturae.474:369~372.
    Hueso J.J.,Cuevas J.2008. Loquat as a crop model for successful deficit irrigation. IrrigantionScience,26:269~276.
    Hardie W.J., Considine J.A.1976. Response of grapes to water-deficit stress in particular stages ofdevelopment. American Journal of Enology and Viticulture,27:55~61.
    Heckenberger U., Schurr U., Schulze E.D.1996.Stomatal response to ABA fed into the xylem ofintact Helianthus annuus(L) plant. Experimeantal Botany,47:1405~1412
    Hossein T.2010. Evaluation of reference crop evapotranspiration equations in various climates.Water Resources Management,24(10):2311~2337.
    Inesta F,Testi L.,Goldhamer D,et al.2008. Quantifying reductions in consumptive water useunderregulated deficit irrigation in pistachio(Pistacia Veta L.). Agricultural Water Management,2008:2570~2579.
    Janik L J, Merry R H, Forrester S T,et al.2007. Rapid prediction of soil water retention using midinfrared spectroscopy. Soil Science Society Of America Journal,71(2):507~514.
    Jesen.M.E, Burman.R.D.2001. Evaluation of evapotranspiration estimation method sanddevelopment of crop-corricients for potato crop in a sub-humid region. Agricultural WaterManagement,50(1):19~25.
    John D.Valiantzas.1993. Border advance using improved volume-balance model. Journal ofIrrigating and Drainage Engineering, Vol.1:19
    Kang S Z, Gu B J, Du T S, et al.2003. Crop coefficient and ratio of transpiration toevapotranspiration of winter wheat and maize in a semi-humid region. Agriculture WaterManagement,59:239~254.
    Kramerp J.1983. Water relations of plant. London: Academic Press,35~47.
    Kipkorir E C, Raes D, Massawe B.2002. Seasonal water production functions and yield responsefactors formaize and onion in Perkerra, Kenya. Agricultural Water Management,56:229~240.
    Kimura R, Shinoda M.2012. Estimation of surface soil water content from surface temperatures indust source regions of Mongolia and China. Environmental Earth Sciences,65(6):1847~1853.
    Leib B G.,Caspri H.W.,Redulla C.A., et al.2006. Partial rootzone drying and deficit irrigationof“Fuji”apples in a semiarid climate.Irrigation Science.24:85~99.
    Lall A., Sekar V., Ogihara M., et al.2006.Data streaming algorithms for estimating entropy ofnetwork traffic. Performance Evaluation Review,34(1):145~156.
    Ludlow M.M.,Ng T. T.1974.Water stress suspends leaf aging. Plant Science Letters,3:235~240.
    Mpelasoka B.S.,Behboudian M.H.,Green S.R.2001. Water use,yield and fruit quality oflysimeter-grown apple trees:Responses to deficit irrigation and to crop load. IrrigationScience.20:107~113.
    M.Harun-ur-Rashid.1990.Estimation of Manning:Roughness Coefficient for Basinand BorderIrrigation.Agricultural Water Management,18:29~33.
    Maroco J.P., Pereira J.S., Chaves M.M.1997.Stomatal responses to leaf-to-air vapour pressuredeficit in sahelian species. Australian Journal of Plant Physiology,24:381~387
    N.H.Rao,P.B.S.Sarma et al.1988.Irrigation Seheduling undera Limited Water Supply.AgrieultureWater Management,15:65~175
    N.H.Rao,R.B.S.Sarma et al.1992.Real-time adaPtive irrigation seheduling under a limited watersupply.Agrieulture water Management.20:267~279
    Perez-Pastor A, Domingo R, Torrecillas A, et al.2009. Response of apricot trees to deficitirrigation strategies. Irrigation Science,27(3):231~240
    Perez-Sarmiento F, Alcobendas R, Mounzer O, et al.2010. Effects of regulated deficit irrigationon physiology and fruit quality in apricot trees. Spanish Journal of Agricultural Research,8(2):86~94.
    Robertson M J, Inman-Bamber N G, Muchow R C, etc.1999. Physiology and productivity ofsugarcane withearly and mid-season water deficit. Field Crops Reseach,64:211~227.
    R.K.Panda,S.K.Behera,P.S.Kashyap.2003.Effective management of irrigation water for wheatunder stressed conditions.Agrieultural Water Management,63:37~56
    Robert S.R., Drske, Ebel R.G., et al.1993. Regulated deficit irrigation may alter apple maturity,quality and storage life. HortScience,28(2):141~143
    Riga P., Vartanian N.1999. Sequential expression of adoptive mechanism is responsiblefordrought resistance in tobacco. Australian Journal of Plant Physiology,26:211~220.
    Robert C.Ebel,Edwatd L.Probsting,and Tobert G.Evans.1995.Deficit irrigation to control vegetablgrowth in apple and monitoring fruit growth to schedule irrigation. HortScience,30(6):1229~1232.
    Singh K B, Gajri P R, Arora V K.2010. Modeling the effects of soil and water managementpractices on the water balance and performance of rice. Agric. Water Man,49:77~95
    Sumner D M, Jacobs J M.2005. Utility of Penman-Monteith, Priestley-Taylor, referenceevapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration.Journal of Hydrology,308(12):81~104
    Srinivas-K.1996.Plant water relations, yield, and water use of PaPaya (Cariea Papya L) at differentevaporation-replenishment rates under drp irrigation.Tropical Agrieulture,73(4):264~269.
    S.Alexandris,P.Kerkides.2003.New empirical formula for hourly estimations of referecesevapotranspiration.Agricultural Water Management,60:157~180
    Sakamoto A., Murata N.2000.Genetic engineering of glycinebetaine synthesis in plants: currentstatus and implications for enchancement of stress tolerance. Journal of ExperimentalBotany,51:81-88.
    Tiago P.S.,Carlos M,Rodrigues M.L.,et al.2007. Effects of deficit irrigation stategies on clustermicroclimate for improving fruit composition of Mosscatel field-grown grapevines. ScientiaHorticulturae,112:321~330.
    Turner N.C.1997.Further progress in crop water relations.Advances in Agronomy,58:293~337.
    Thomas W L, Robert G S, Richard R T, et al.1994. Soil water monitoring&measurement.Washington: A Pacific Northwest Publication:24~25.
    Vijayakumar-KR; Dey-S.K; chandrasekhar,-T.R; Devakumar,-A.S; Mohankrishna,-T;Sanjeeva-Rao-P; sethuraj,-M.R.1998。 Irrigation requirement of rubber trees (Heveabrasiliensis) in the subhumid tropics. Agricultural Water Management.35(3):245~259.
    Wright J L.1982. New evapotranspiration crop coefficients. J. Irrig. Drain. Div. ASCE,108(2):57~74.
    Werban U, AI-Hagrey S A, Rabbel W.2008. Monitoring of root-zone water content in thelaboratory by2D geoelectrical tomography. Journal Of Plant Nutrition And Soil Science,171(6):927-935.
    Yehoshua S, Igal F, Andrew H.P, et al.1999. Carbon isotope ratio in cotton varies with growthstage andplant organ. Plant Science,142:47-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700