用户名: 密码: 验证码:
中央扣对大跨径自锚式悬索桥地震反应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自锚式悬索桥正向着大跨度、复杂体系发展,对抗震性能的要求更加突出,但目前对于超过适用范围的大跨度桥梁的抗震设计尚缺乏完善的技术体系,因此系统地开展大跨桥梁地震响应研究,确保其抗震安全显得尤为必要。
     主缆和加劲梁在主跨跨中设置中央扣联结是提高悬索桥刚度的有效措施之一,目前国内只有少数几座大跨径地锚式悬索桥应用,在大跨径自锚式悬索桥中的应用和研究较少。以某主跨406m的自锚式悬索桥为依托工程,利用Midas/Civil程序建立其未设中央扣、设置刚性和柔性中央扣和的三种有限元模型,研究不同形式中央扣对大跨径自锚式悬索桥地震反应的影响。为大跨径自锚式悬索桥抗震设计、中央扣的使用提供参考依据,主要研究内容如下:
     (1)对大跨度自锚式悬索桥、中央扣、地震反应分析理论的发展研究现状进行了回顾总结,阐述非线性时程分析中采用的Newmark-β积分方法、Rayleigh阻尼模型、考虑行波效应时使用的相对运动法;介绍了模型建立时的处理原则,并建立自锚式悬索桥的三种模型,对其动力特性进行了分析,分别得出前180阶的自振频率和振型并进行对比。
     (2)在一致激励地震反应分析中,同时考虑纵横竖三个方向上地震作用,对三种模型先进行E1地震作用下的弹性阶段的反应谱分析;然后在E2地震作用下,采用典型的过去强震记录进行弹塑性阶段的时程分析。分别得出塔顶位移、加劲梁端部位移、主缆位移、主塔底部弯矩及剪力、跨中受力及位移和边跨跨中弯矩并进行对比。
     (3)在对模型地震特性深入研究中,对三种模型同时考虑纵横竖三个方向上地震作用。在考虑行波效应时,选用典型的强震记录进行弹性阶段的时程分析;然后采用等效嵌固模型考虑桩—土—结构相互作用,重新修改三种模型,分别得出前180阶的自振频率和振型并进行对比;并选用典型的过去强震记录进行弹塑性阶段的时程分析,分别得出塔顶位移、加劲梁端部位移、主缆位移、主塔底部弯矩及剪力、跨中受力及位移和边跨跨中弯矩并进行对比。
Self-anchored suspension bridge towards the development of large span, complex system and deeper, the seismic requirements become more prominent. But there is still a lack of a consummate theoretical guidance for the seismic design of large-span bridges over scope, so to carry out the study of the self-anchored suspension bridge's seismic response systematically is particularly necessary.
     Setting central buckle connections between the main cable and stiffening beams in the mainspan across is one of the effective measures to improve the stiffness of the suspension bridges. Only a few applications in several long-span suspension bridges in domestic, since nevertheless the application and study in large-span self-anchored suspension are race. This article in conjunction with a main cross-406m of the self-anchored suspension bridge engineering examples, using the Midas/Civil procedures to establish its three finite element models of no central buckle, rigid and flexible central buckle, to study the seismic response of long-span self-anchored suspension bridges with different forms of central buckles. Aims to provide certain guiding significances to the seismic analysis for long-span self-anchored suspension bridges and the use of central buckle. The main contents are as follows:
     (1) Review and summarize the development of the long-span self-anchored suspension bridge, central buckle, the seismic response analysis theory. Elaborate the Newmark-β integration method used in the nonlinear time history analysis、Rayleigh damping model、 relative motion method when considering the effect of the traveling wave. Introduces the established principles of the model, and establish the three models of the self-anchored suspension bridges dynamic characteristics analysis.in addition obtain and compare the natural vibration characteristics are analyzed and calculated before the180order natural vibration frequency and vibration type.
     (2) In uniform excitation seismic response analysis, taking into account the vertical、 horizontal and vertical earthquakes at the same time. Firstly carried through the elastic stage response spectrum analysis of the three models under E1earthquake; then carried through the elastoplastic stage time history analysis under E2earthquake with using the typical last strong earthquake records. Come to and contrast the top of the tower displacement, stiffening beam end displacement, the main cable displacement, moment and shear of the bottom of the main tower, cross in the force and displacement and side spans span moment.
     (3) In the depth study of the seismic properties of the three models, also taking into account the vertical、horizontal and vertical earthquakes at the same time. When considering traveling wave effect, carried through the elastic stage time history analysis with choosing the typical last strong earthquake records. Then used the equivalent embedded solid model to consider the pile-soil-structure interaction, and reproduced modify the three models, respectively, to obtain and compare the natural vibration characteristics are analyzed and calculated before the180order natural vibration frequency and vibration type; then carried through the elastoplastic stage time history analysis with using the typical last strong earthquake records. Come to and contrast the top of the tower displacement, stiffening beam end displacement, the main cable displacement, the bottom of the main tower bending moments and shear, mid-span of the force and displacement and side spans span moment.
引文
[1]王社良.抗震结构设计[M].武汉:武汉理工大学出版社,2007.6-7
    [2]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.1-4
    [3]邵旭东,程翔云,李立峰.桥梁设计与计算[M].北京:人民交通出版社,2007.784-786
    [4]张哲.混凝土自锚式悬索桥[M].北京:人民交通出版社,2005.6-8
    [5]龙飞.大跨度自锚式悬索桥抗风性能分析与试验研究[D].大连:大连理工大学,2010
    [6]贾丽君.大跨度悬索桥体系及其性能研究[D].上海:同济大学,2009
    [7]杜致融.独塔自锚式悬索桥极限跨度研究[D].西安:长安大学,2010
    [8]林长川,李映,凌建中.刚性索悬索桥[J].公路,2000,(09):41-45
    [9]房贞政,张超,陈永健.三塔自锚式悬索桥动力特性及影响参数分析[J].地震上程与工程振动,2010,30(04):97-102
    [10]朱朝阳.多塔自锚式悬索桥随机地震反应分析[D].武汉:华中科技大学,2009
    [11]韩立中.大跨度自锚式斜拉悬索桥分析方法与性能研究[D].大连:大连理工大学,2009
    [12]李明.分体式钢箱梁计算模型研究[D].成都:西南交通大学,2009
    [13]S. D. Kwon, S.P.Chang, Y. S. Kim, S. Y. Park. Aerodynamic stability of self-anehored double deck suspension bridge [J]. Journal of wind Engineering and Industrial Aerodynamies 54/55 1995: 25-34
    [14]Rafael Manzanarez, Marwan Nader et al.Design of the New San Franeisco-Oakland Bay Bridge[J]. Advaneed Technology in Structural Engineering:Proeeedings of Structures Congress 2000,2000, (103):67-78
    [15]Marwan Nader, SajidAbbas, and Tim Ingham. Seismic Safety Design of he New San Franeiseo - OaklandBayBridge [J]. Structures 2001
    [16]John Sun, P. E., Rafael Manzanarez, P. E., and Marwan Nader, P. ESusPension Cable Design of the New San Franeiseo - Oakland Bay Bridge [J]. JOURNAL OF BRIDGE ENGINEERING ASCE/JANUARY/FEBRUARY2004:101-106
    [17]Mawan Nader, Ph. D, Rafael Manzanarez, Man Chung Tang, Ph. D. Design of New San Franeise-Oakland Bay Bridge Self-Anehored Suspension Span[J]. GEOTECHNICAL ENGINEERING FOR TRANSPORTATION PORJECTS 2004:260-269
    [18]Ho-Kyung Kima, Myeong-Jae Lee, Sung-Pil Chang. Determination of hanger Installation procedure for a self-anchored suspension bridge [J]. Engineering Structures 28 2006:959 ~ 976
    [19]李传习,柯红军,张玉平等.几座典型自锚式悬索桥的体系转换方案[C]//王永珩,沈旺.中国公路学会桥梁和结构工程分会2008年全国桥梁学术会议论文集.北京:人民交通出版社,2008:802-811
    [20]王风霞.新颖自锚式悬索桥设计与状体施工[J].上海公路,2007,(03):23-27
    [21]文殊东,郑凯峰,黄军.“先缆后梁”施工建造自锚式悬索桥的研究[J].西南交通大学学报,2005,40(06):750-753
    [22]郑宏宇.CFRP缆索悬索桥基本性能及若干关键技术研究[D].南京:东南大学,2007
    [23]Gimsing N J. Cable Supported Bridges[M].2th ed. Eng-land:John Wiley & Sons,1997
    [24]Viola J M, Syed S, Clenance J. The New Tacoma Narrows Suspension Bridge:Construction Support and Engineering [C]//Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium. New York:Structure Engineering Institute of the America society of Civil Engineers,2005:1 ~ 12
    [25]徐勋,强士中.中央扣对大跨悬索桥动力特性和地震响应的影响研究[J].铁道学报,2010,32 (04):84-91
    [26]王浩,李爱群,杨玉冬等.中央扣对大跨悬索桥动力特性的影响[J].中国公路学报,2006,19(06):49-53
    [27]高剑,刘高,曾宇.贵州坝陵河钢桁架悬索桥中央扣设计[C]//王永珩,陈冠雄.中国公路学会桥梁和结构工程分会2007年全国桥梁学术会议论文集.北京:人民交通出版社,2007:101-106
    [28]邹科官,王浩,梁书亭.中央扣对三塔悬索桥地震特性的影响[J].建筑科学与工程学报,2009,26(04):49-53
    [29]徐勋,任伟平,强士中.影响大跨悬索桥地震响应的敏感因素[J].华南理工大学(自然科学版),2008,36(11):108-113
    [30]彭益华.大跨悬索桥连接构造与地震响应关系研究及主塔pushover分析分析[D].长沙:湖南大学,2007
    [31]朱倩.刚性索自锚式悬索桥力学性能分析[D].郑州:郑州大学,2006
    [32]张元凯,肖汝诚,金成棣.自锚式悬索桥的概念设计[J].公路,2002,(11):46-48
    [33]王莹,王灿.国内外桥梁抗震设计规范的发展及对比研究[J].现代交通技术,2012,09(04):31-34
    [34]范立础,王君杰.桥梁抗震设计规范的发展及发展趋势[J].地震工程与振动,2001,21(02):70-77
    [35]铁道部.GB5011-2006.铁路工程抗震设计规范[S].北京:中国计划出版社,2009
    [36]交通部.JTG/T B02-01-2008.公路桥梁抗震设计细则[S].北京:人民交通出版社,2008
    [37]Abdel-Ghaffar A. M. and Rubin L. I.. Suspension Bridge Response to Multiple-Support Excitation, J. Engrg. Mech., ASCE,1982,108(2),419-435
    [38]A. M. Abdel-Ghaffar, L. I. Rubin, Lateral Earthquake Response of Suspension Bridges ASCE Journal of Structural Engineering,1983.3,109
    [39]A. M. Abdel-Ghaffar, R. G. Stringfellow(1984), Response of Suspension Bridges to Travelling Earthquake Excition:Part I-Vertical Response. Soil Oyn. and Earthquake Eng.1984(3),62-72
    [40]A. M. Abdel-Ghaffar, R. G. Stringfellow(1984), Response of Suspension Bridges to Travelling Earthquake Excition:Part I-Vertical Response. Soil Dyn. And Earthquake Eng.,3, 73-81
    [41]Yamamura N. Tanaka H. Response analysis of flexible MDF systems for multiple-support seismic excitations [J]. Earthquake Engineering & Structural Dynamics,1990,19(3):345~357
    [42]Harichandran R S., Hawwari A, Sweidan B N. Response of long-span bridges to spatially varying ground motion[J]. Journal of Structural Engineering,1996,122(5):476-1484
    [43]YongGao, WanehengYuan, MiZhou, Xinjian Cao, Seismic Analysis and Design Optimiz-ation of a Self-Anehored Suspension Bridge [J]. Lifeline Earthquake Engineering in a Mul-tihazard Environment 2009:153-164
    [44]范立础.桥梁抗震[M].上海:同济大学出版社,1997.169-174
    [45]徐斌,於亚辉,张飞等.中央扣对悬索桥地震反应的影响[J].工程与建设,2011,25(04):498-500
    [46]R. W. Clough, and J. Penzien. Dynamics of structures. New York:McGraw-Hill Inc., analysis.1993.94~99
    [47]王猛.大跨度自锚式悬索桥空间地震反应分析[D].大连:大连理工大学大学,2009
    [48]蔡长青,沈建文.人造地震动的时域叠加法和反应谱整体逼近技术.地震学报[J].2000,19(1): 71-78
    [49]肖岱.大连金州湾二桥地震反应分析[D].大连:大连理工大学大学,2008
    [50]屈铁军,王前信.多点输入地震反应分析研究的进展.世界地震工程[J],1993(1):30-36
    [51]于海丰,张耀春.地震动输入方法研究[C]//崔京浩.第17届全国结构工程学术会议论文集.北京:《工程力学》杂志社,2008:252-257
    [52]Wilson E L, Kiureghian A D. A replaeement for the SRSS method in seismic Engineering and Structural Dynamics。1981(9):187-192
    [53]P. Leger, LM. Ide and PPaultre, Multiple-support Seismic Analysis of Large Structures[J], Computers&Structures,1990(36):152-158
    [54]A. Der kiureghian and A. Neuenhofer, Response Spectrum Method for Multi-Support Seismic Excitations[J], Earthquake Engng struct. Dynam.1992(21),713-740
    [55]周国良,离校均,刘必灯等.大质量法在多点机理分析中的应用、误差分析与改进.工程力学[J],2011,28(1)48-54
    [56]MIDAS IT(Beijing)Corporation. MIDAS/CIVIL Analysis for Civil StmctIlres(联机手册).2004
    [57]吴东.多点激励下大跨度桥梁的地震反应分析[D].成都:西南交通大学,2006
    [58]罗尧治,王荣.索穹顶结构动力特性及多维多点抗震性能研究.浙江大学学报[J],2005,39(1):39-45
    [59]邱顺东.桥梁工程软件midas civil应用工程实例[M].北京:人民交通出版社,2011.308-309
    [60]刘伟岸.大型高桩承台基础的地震反应分析[D].上海:同济大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700