用户名: 密码: 验证码:
超超临界汽轮发电机组气流激振机理分析及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着超超临界汽轮机技术的发展,汽轮发电机组蒸汽参数不断地提高以及负荷不断增加,气流激振对汽轮机转子的影响日益突出,严重影响了汽轮机安全稳定的运行。由于超超临界汽轮机组内部流场十分复杂,气流激振对转子的作用力含有严重的非线性因素,因此对气流激振机理分析存在一定的困难。在国家自然科学基金重点项目:“超超临界汽轮发电机组转子系统的若干非线性动力学问题”的资助下,本文应用流体计算动力学(CFD)分析方法和通过转子-密封系统动力学实验,研究了密封中气流激振力对转子的影响。并应用相关非线性动力学的方法,从理论上分析了超超临界汽轮发电机组轴端密封中气流激振的机理。本论文的主要研究内容如下:
     针对超超临界汽轮发电机组轴端密封建立了二维流场模型和全三维流场模型,基于CFD计算模拟了密封流场的内部结构,并分析了密封流场特性。进一步研究了转子相对偏移量、转速和进出口压比对密封流场的影响,得到了气流激振力与这些参数的非线性关系。根据CFD技术计算得到的密封流场结果,对Muszynska气流激振力模型中的经验参数和实验参数进行系统辨识,解决了模型中相关经验参数和实验系数难以确定的问题,得到了适用于超超临界汽轮发电机组轴端密封气流激振力模型的相关系数,为超超临界汽轮发电机组转子-密封系统非线性动力学分析奠定了基础。
     随后利用辨识经验系数和实验系数,对转子-密封系统进行幂级数展开得到了系统幂级数模型,先根据Hopf分岔定理和稳定性理论,研究了超超临界汽轮机组转子-密封自治系统在平衡点失稳的机理,结果表明当系统转速达到临界值时,系统开始出现Hopf分岔,并进入周期涡动状态。并进一步研究了转子存在不平衡质量时系统的非线性动力学特性,应用多尺度法计算得到了超超临界汽轮机组转子-密封非自治系统1:2亚谐共振的分岔方程,对分岔方程进行了奇异性分析,研究了转子-密封系统1:2亚谐共振的工程开折问题,得到了奇异性参数空间上的转迁集,并根据转迁集划分的不同参数区域分别计算了系统分岔曲线。结果表明:超超临界汽轮机组系统在不同的参数区域上存在超临界Hopf分岔和亚临界Hopf分岔现象。之后并通过计算Floquet乘子来研究超超临界汽轮机组转子-密封系统周期解的稳定性。
     为了更好的研究在参数取值范围内,超超临界汽轮机组转子-密封系统的非线性动力学特性,对系统进行了全局分岔研究。利用系统1:1主共振,1:2亚谐共振和1:3亚谐共振幅频方程实数解的存在条件构造出系统的Arnold舌头解析曲线,根据Arnold舌头是否存在叠加来判断系统出现混沌的可能性。并通过数值计算研究了Arnold舌头叠加区域与非叠加区域内系统动力学行为,研究结果表明:当转子-密封系统的参数处于Arnold舌头叠加区域内时,系统会出现多倍周期,拟周期以及混沌等动力学特性。并应用最大Lyapunov指数进一步判断了系统是否出现混沌现象。
     本文设计并建立了哈尔滨工业大学转子-密封系统实验台,进一步研究密封中气流激振的机理。在现有的实验室条件下,通过流场计算和理论分析设计了转子-密封实验台的结构参数。实验密封结构采用了哈尔滨汽轮机厂超临界汽轮机组轴端密封结构,自主设计了径向间隙可调的密封机械结构,实现了在同一转子实验台上进行不同密封间隙的测量工作。应用影响系数法对实验台转子进行了高精度的动平衡,使得转子系统可以稳定运行在高转速下。并测试了系统在不同进气压力以及在不同径向密封间隙下的振动数据,并观测到了密封中气流激振力对转子的影响。
With development of ultra-supercritical steam technology, the parameters andthe load of steam turbine unit have been continuously improved, and gas exctingforce is increasingly prominent, which influences the stablility of the steam turbineseriously. Since the flow flied of the steam turbine are complex and the gas exctingforce on the rotor has much nonlinear factors, it is difficult to reseach the gasexciting force of the turbine. The paper is supported by the National Natural Sciencefoundation of key projects,“some nonlinear dynamics problems ofultra-supercritical turbine generator rotor system”. The effect of the gas flow in theseals for the rotor is researched by Comutational Fluid Dynamics (CFD) technologyand the experimemtal study of the rotor-seal system. By nonlinear dynamicsmethods, the mechnanism of the gas exciting force in the seal for the steam tubineunite are studied. The main content and conclusions of the paper are as follows:
     The two-dimension model and three-dimension model of the seals on the shaftare established. Based on the calculation of interior flow field of the seals using theCFD method, the charateristics of the seals are analyzed. And then, the paperresearches the effect of relative eccentricity, rotating speed of the rotor and thepressure ratio of the seal on the gas exciting force, which shows the nonlinearrelationship between the gas exciting force and the paramters. Lastly the empiricalparameters and experimental parameters of the Muszynska gas exciting force modelare identified to solve the problem that the parameters of the model are difficult todetermine. The identified coefficients of the shaft seal model on the steam turbineunit are suitalbe. The results mentiond above provide the basis for the nonlineardynamic analysis of the rotor-seal system.
     The power series model of the rotor-seal system of the ultra-supercritical steamturbine are obtained by Taylor expansion. According to Hopf bifurcation theory andstability theory, the paper researches the mechanism of the instability of therotor-seal autonomous system of the ultra-supercritical steam turbine on theequilibrium position. The results shows that system has the Hopf bifurcationphenomenon at the sloved theshold speed, and have the periodic orbit after the Hopfbifurcation. The multiple scale method are used to obtain the bifurcation equationsof the rotor-seal non-autonomous system of the ultra-supercritical steam turbine, forstudying the effects of the rotor’s imbalance excitation on the nonlinear dynamiccharacteristic of the system, in the1:2subharmonic resonance case. Through thesingularity analysis of the1:2subharmonic resonance bifurcation equations, the paper studied engineering unfolding problems of the rotor-seal system. Thetransition sets and the local bifurcations diagrams of the system parameter space areobtained. The results show that system has the supercritical Hopf bifurcation andsubcritical Hopf bifurcation in the different parameters regions. Lastly, Floquetmultiplier is applied to the study on the stabilities and dynamic behaviors of theperiodic solutions of the systems by shooting method.
     According to the real solution conditions of the bifurcation equations in the1:1main resonance,1:2subharmonic resonance and1:3subharmonic resonance, theArnold tongue are constructed to study the global bifurcation of the system by theanalytical method. Then the paper studies the dynamic characteristics of the systemin the Arnold tongues overlap and non-overlap. The results show that when thesystem parameters are in the Arnold tongues overlap region, the system appearmulti-times cycle motion and chaotic motion for the coexistence of the resonancesolutions. And the chaotic motion is confirmed by the largest Lyapunov exponent.
     Finally, the dynamic testing rig of the rotor-seal system are designed and builtin the Harbin Institute of Technology for further studying the effect of the gasexcitation on the rotor-seal system. According to the current condition of experiment,the structure parameters of the rig are confirmed by CFD calculation and theoreticalanalysis. The seal structure simulates the current structure of the steam turbines ofHarbin steam turbine factory, and independent seal facility with adjustable clearanceis designed to achieve the dynamic tests of the system with the different clearancesin the same rig. By using effect coefficient method, the dynamic balance of the rotorreaches a good level and the rotor can work at high rotating speed. The vibrationtests of the rotor are done when the input pressure is zero and different values, tostudy the influence of the gas excitation.
引文
[1]史进渊,杨宇,孙庆.超超临界汽轮机技术研究的新进展[J].动力工程,2003,23(2):2252-2257.
    [2]曹树谦,陈予恕.现代密封转子动力学研究综述[J].工程力学,2009,26(2):68-79
    [3]匡江红,陈端雨.1000MW级火电机组锅炉发展综述[J].动力工程.2003,23(1):2127-2134.
    [4] Dimarogonas A D, Gomez-Mancilia J C. Flow-Excited Turbine Rotor Instability[J]. International Journal of Rotating Machinery,1994,1(1):37-51.
    [5] Thomas H J. Unstable Oscillations of Turbine Rotors Due to Steam Leakage inthe Clearance of the Sealing Glands and the Buckets[J]. Bulletin Scientifique.A. J. M.1958,71:1039-1063.
    [6] Landzberg A H. Stability of a Turbine-Generator Rotor Including the Effects ofCertain Types of Steam and Bearing Excitation[J]. ASME TransactionsJournal of Applied Mechanics Septmeber1960,27(3):410-416.
    [7] Alford J S. Protecting Turbomachinery from Self-excited Rotor Whirl[J]. ASMETransactions Journal of Engineering for Power,1965,87(4):333-343.
    [8] Gash R. Stabiler Lauf von Turbinenrotoren[J]. Konstruction,1965,17:11.
    [9] Kraemer E. Selbsterregte Schwingungen[J]. Brennstoffe-Waerme-Kraft,1968,2:7.
    [10] Vogel D H. The Stability of Turbomachine Rotors on Journal Bearings[D].Technical University of Munich,1970.
    [11] Dimarogonas A D. A Linear Rotor Stability Analysis[R]. NewYork, GeneralElectric Technical Information Series, DF-72-LS-32, Schenectady,1972.
    [12] Black H F. Lateral Stability and Vibrations of High Speed Centrifugal PumpRotors[C]. Berlin: IUTAM Symposium on Dynamics of Rotors,1974.
    [13]丁学俊,陈文,冯慧雯.叶轮间隙气流激振力的计算公式与验证[J].流体机械,2004,32(2):24-27.
    [14] Black H F. Effects of Hydraulic Forces in Annular Pressure Seals on theVibration of Centrifugal Pum Rotors[J]. Journal of Mechanical EngineeringScience,1969,11(2):206-213.
    [15] Childs D W, Nelson C E, Nicks C et al. Theory Versus Experiment for theRotordynamic Coefficients of Annular Gas Seals: Part1—Test Facility andApparatus[J]. ASME Transaction Journal of Tribology,1986,108(3):426-432.
    [16] Childs D W. Dynamic Analysis of Turbulent Annular Seals Based on HirsLubrication Equation[J]. Journal of Lubrication Technology,1983,105(3):429-436.
    [17] Muszynska A. Whirl and Whip Rotor-Bearing Stability Problems[J]. Journal ofSound and Vibration,1986,110(3):443-462.
    [18] Muszynska A. Rotordynamics[M]. NewYork: Marcel Dekker Inc,2005:214-246.
    [19] Black H F, Jensen D N. Dynamic Hybrid Properties of Annular PressureSeals[J]. Journal of Mechanical Engineers,1970,113:353-361.
    [20] Iwatsubo T. Evaluation of Instability Forces of Labyrinth Seals in Turbines orCompressors[C]. Texas A&M University: Proceedings of the Rotordynamic.Instability Problems in High-Performance Turbomachinery,1980:139-167.
    [21] Dursun E, Jacob Y K. Air Flow in Cavities of Labyrinth Seals[J]. InternationalJournal of Engineering Science,1995,33(15):2309-2326
    [22] Scharrer J K. Rotordynamic Coefficients for Stepped Labyrinth Gas Seals[J].Journal of Tribology,1989,111(1):101-107.
    [23] Wang W Z, Liu Y Z, Chen H P, et al. Computation of RotordynamicCoefficients Associated with Leakage Steam Flow Through Labyrinth Seal[J].Archive of Applied Mechanics,2007,77(8):587-597
    [24] Yucel U, Kazakia J Y. Analytical Prediction Techniques for Axisymmetric Flowin Gas Labyrinth Seals[J]. ASME Journal of Engineering for Gas Turbines andPower,2001,123(1):255–257
    [25] Malvano R, Vatta F, Vigliani A. Rotordynamic Coefficients for Labyrinth GasSeal: Single Control Volume Model[J]. Meccanica,2001,36(6):731-744
    [26] Yilmaz D, Dursun E. Flow Calculations in Straight-Through Labyrinth Seals byusing Moody's Friction-Factor Model[J]. Mathematical and ComputationalApplications,2004,9(3):435-442
    [27] Wyssmann H R, Pham T C, Jenny R J. Prediction of Stiffness and DampingCoefficients for Centrifugal Compressor Labyrinth Seals[J]. JournalEngineering for Gas Turbines and Power.1984,106(4):920-926.
    [28] Scharrer J K. A Comparison of Experimental and Theoretical Results forLabyrinth Gas Seals[D]. Texas A&M University,1987.
    [29] Fujikawa T A. Theoretical Approach to Labyrinth Seal Forces[R].NASACP2338,1984:173-18.
    [30]鲁周勋,谢友柏,邱大谋.迷宫气体密封转子动力学特性分析[J].润滑与密封,1991,(2):10-19.
    [31]陈佐一,王继宏.流体激振的全三维数值分析系统[J].自然科学进展,1998,8(1):1-7
    [32]黄典贵,李雪松.大型旋转机械中气封间隙流激振力的分析-非定常N-S解[J].中国电机工程学报,2000,20(6):75-78.
    [33]成玫.转子-轴承-密封系统动力学特性研究[D].上海交通大学,2009.
    [34]薛自华,肖忠会,郑铁生.迷宫密封双控制体模型的改进及应用[J].计算力学学报,2009,26(2):232-238.
    [35]潘晓弘,郑水英.交错式迷宫密封的动力特性分析[J].工程热物理学报,2000,21(1):62-65.
    [36] Komeokaa T. Theoretical Approach for Labyrinth Seal Forces–Cross CoupledStiffness of a Straight Through Labyrinth Seal [R]. NASA CP2338,1984.
    [37] Athavale M M, Ho Y H, Forry J M. Simulation of Secondary Flow in GasTurbine Disc Cavities and Interaction with the Main Flow Path[C]. San Diego:AIAA95-2620,1995,1-13
    [38]叶建槐.发动机转子轴承密封系统东西特性研究[D].哈尔滨工业大学,2008.
    [39] Dietzed F J, Nordmann R. Calculating Rotordynamic Coefficients of Seals byFinite-Difference Techniques[J]. ASME Journal Tribology,1987,109(3):388-394.
    [40] Arghir M, Frene J. Rotordynamic Coefficients of Circumferentially-GroovedLiquid Seals Using the Averaged Navier-Stokes Equations[J], ASME JournalTribology,1997,119(3):556-567.
    [41] Kim N, Rhode D L. A New CFD-Perturbation Model for the Rotordynamics ofIncompressible Flow Seals[C]. Germany: ASME International Gas Turbineand Aeroengine Congress and Exposition, Munich,2000.
    [42] Xi J, Rhode D L. Rotordynamics of Turbine Labyrinth Seals with Rotor AxialShifting[J]. International Journal of Rotating Machinery,2006:1-11.
    [43] Tam L T, Przekwas A J, Muszynska A, et al. Numerical and Analytical Study ofFluid Dynamic Forces in Seals and Bearings [R]. Ohio: NASA LewisResearch Center, NASA TM-100268,1987.
    [44] Nordmann R, Dietzen F J. Finite Difference Analysis of Rotordynamic SealCoefficients for an Eccentric Shaft Position[R]. NASA CP3026.1988.
    [45] Rhode D L, Hensel S J. Guidry M J. Labyrinth Seal Rotordynamic ForcesUsing a Three-Dimensional Navier-Stokes Code[J]. ASME Journal Tribology,1992,114:683-689.
    [46] Athevale M M, Przekwas A J, Hendricks R C, et al. SCISEAL: A3D CFD Codefor Accurate Analysis of Fluid Flow and Forces in Seals[C]. Huntsville:Proceedings of the Advanced ETO Propulsion Conference, NASA CP3282,NASA Marshall Space Flight Center,1994:337-345.
    [47] Moore J J. Three-dimensional CFD rotordynamic analysis of gas labyrinthseals[J]. Journal of vibration and Acoustics,2003,125(10):427-433.
    [48] Toshio H, Guo Z L, Kirk R G. Application of fluid dynamics analysis forrotating machinery-part Ⅱ: labyrinth seal analysis[J]. Journal of Engineeringfor Gas Turbine and Power,2005,127(4):820-826.
    [49]徐悦,田爱梅.基于CFD的涡轮泵转子密封流体激振研究进展[J].火箭推进,2005,31(1):8-13.
    [50]刘晓锋,陆颂元.汽轮机转子涡动汽流激振力分析与CFD数值模拟[J].热能动力工程,2007,22(3):245-249.
    [51]张旭,杨建刚.转子轴向偏移对交错齿迷宫密封动力特性的影响[J].动力工程,2009,29(1):36-39.
    [52]李志刚,郎骥,李军等.迷宫密封泄漏特性的试验研究[J].西安交通大学学报,2011,45(3):48-52.
    [53]孙婷梅,郑水英.基于FLUENT迷宫密封动力特性分析[J].流体机械,2008,36(8):24-28.
    [54]叶建槐,刘占生.高低齿迷宫密封流场和泄漏特性CFD研究[J].汽轮机技术,2008,50(2):81-84.
    [55]丁学俊,黄来,黄丕维.迷宫密封中可压流体流场的数值模拟[J].润滑与密封,2007,32(5):28-30.
    [56]姜旭东,李蔚,彭浩宇.超超临界机组汽流激振力计算模型的研究进展[J].电站系统工程,2008,24(5):24-26.
    [57] Childs D W,Dressman J B.Testing of Turbulent Seals for RotordynamicCoefficients[C]. Texas A&M University: NASA. Proceedings of a Workshop,Rotordynamic Instability Problems in High-Performance Turbomachinery,1980:121-138.
    [58] Childs D W. Final report for NASA Grant NAG3-181(RF4502-0)[R]. NASACR-197679,1995.
    [59] Childs D W, Wade J. Rotordynamic-Coefficient and Leakage Characteristics forHole-Pattern-Stator Annular Gas Seals—Measurements Versus Predictions[J].ASME Journal of Tribology,2004,126(2):326-333.
    [60] Smalley A J, Camatti M, Childs D W, et al. Dynamic Characteristics of theDiverging Taper Honeycomb-Stator Seal[J]. ASME Journal ofTurbomachinery,2006,128(4):717-724.
    [61] Shapiro W, Colsher R. Rotor Whirl in Turbomachinery: Mechanisms, Analysisand Solution Approaches[C]. Atlanta: ASME Winter Annual Meeting,1977:89-98.
    [62] Urlichs K.Clearance Flow Generated Transverse Force at the Rotor of ThermalTurbo-Machinery[C].Translated as NASA, TM77292,1983.
    [63] Wohlrab R.Experiments Determination of Gas Flow Conditioned Force atTurbine Stages and Their Effects on the Running Stability of SimpleRotor[C].Translated as NASA TM77293,1983.
    [64] Benckert H, Wachter J. Flow Induced Spring Coefficients of Labyrinth Sealsfor Applications in Turbomachinery[R]. Rotordynamics. Instability Problem.In High-Performance Turbomachinery. NASA. Lewis Res. Center.1980:189-212.
    [65] Kwanka K, Sobotzik J, Nordmann R. Dynamic Coefficients of Labyrinth GasSeals a Comparison of Experimental Results and Numerical Calculations[C].Germany: ASME International Gas Turbine and Aeroengine Congress andExposition, Munich,2000.
    [66] Wagner N G. Reliable Rotor Dynamic Design of High-Pressure CompressorsBased on Test Rig Data[J]. ASME Journal of Engineering for Gas Turbinesand Power,2001,123(4):849-856.
    [67] Seifer B A. Measurements Versus Predictions for Rotordynamic Coefficientsand Leakage Rates for a Novel Hole-Pattern Gas Seal[D]. Taxes: Taxes A&MUniversity,2005.
    [68] Zutavern Z S, Childs D W. Identification of Rotordynamic Forces in a FlexibleRotor System Using Magnetic Bearings[J]. ASME Journal of Engineering forGas Turbines and Power,2008,130(2):1-6.
    [69]龚汉声,何毅,孙庆.大型汽轮机的蒸汽振荡问题[C].全国第二届转子动力学学术讨论会论文集,1989.
    [70]魏统胜,郝点.迷宫密封气流激振效应对转子振动效应对转子振动响应影响的实验研究[J].石油大学学报,2000,24(3):70-72.
    [71]王炜哲,刘应征,叶春等.迷宫密封-转子系统动力学特性的试验测量和数值模拟[J].机械工程学报,2007,43(3):22-27.
    [72]王炜哲,刘应征,叶春.汽轮机轴封-转子系统动力学特性的数值分析[J].动力工程,2007,27(6):845-849
    [73]张万福,杨建刚,曹浩.偏心密封内切向气流力及其对稳定性影响的理论与试验研究[J].机械工程学报,2011,47(17):92-98.
    [74] Muszynska A.Improvements of Lightly Loaded Rotor Bearing and Rotor/SealModels[J].Journal of Sound and Vibration, Acoustics Stress and Reliability inDesign,1988,110:129-136.
    [75] Iwatsubo T, Fukumoto K, Mochida H. An Experimental Study of DynamicCharacteristics of Labyrinth Seal[R]. NASA cp-3239,1993:219-238.
    [76] Kim C H, Lee Y B. Test Results for Rotor-Dynamic Coefficients of Anti-SwirlSelf-Injection Seals[R]. NASA cp-3239:1994:65-74.
    [77] Iwatsubo T, Matooka N, Kawai R. Flow Induced Force And Flow Pattern ofLabyrinth Seal [C]. NASA Proceeding of the Rotordynamic InstabilityProblems in High Performance Turbomachinery. Texas A&M University,1982:205―222.
    [78] Nordmann R, Massmann H. Identification of Dynamic Coefficients of AnnularTurbulent Seals [C]. Ohio: NASA Lewis Research Center,1985.
    [79] Muszynska A, Bently D E. Frequency-swept rotating input perturbationtechniques and identification of the fluid force models in rotor/bearing/sealsystems and fluid handling machines[J]. Journal of Sound and Vibration,1990,143(1):103-124.
    [80] Li J M, Aguilar R, Andres S L, et al. Dynamic Force Coefficients of aMultiple-Blade, Multiple-Pocket Gas Damper Seal: Test Results andPredictions[J]. ASME Journal of Tribology,2000,122(1):317-322.
    [81]潘永密,郑水英.迷宫密封气流激振及其动力系数的研究[J].振动工程学报,1990,3(2):48-58.
    [82]沈庆根,李烈荣,潘永密.迷宫密封中的气流激振及其反旋流措施[J].流体机械,1994,22(7):7-12.
    [83]曹浩,杨建刚,郭瑞.密封动力特性系数试验识别方法及影响因素分析[J].机械工程学报,2011,47(9):85-89.
    [84] Poincare H, Magini R.Les Methodes nouvelles dela mecaniue celeste [J].IlNuovo Cimento,1899,10(1):128-130.
    [85]周纪卿,朱因远.非线性振动[M].西安:西安交通大学出版社.1998:4-15.
    [86]陈立群,刘延柱.振动力学发展历史概述[J].上海交通大学学报,1997,31(7):132-136
    [87] Nayfeh. A. H. Nonlinear Oscillations [M]. New York: Wiley Interscience,1979:1-10.
    [88]陈树辉.强非线性振动系统的定量分析方法[M].北京:科学出版社.2007:169-174.
    [89]武际可.力学史[M].重庆:重庆出版社.2000:277-279
    [90]陆启韶.分岔与奇异性[M].上海:上海科技教育出版社,1995:1.
    [91] Arnold V I. Singularity Theory[M]. London: Cambridge University Press,1981.
    [92]Chen Y S, Leung A Y T. Bifurcation and Chaos in Engineering [M]. New York:Springer,1998:1-5.
    [93]刘延彬.强非线性动力系统的若干分岔与混沌问题研究[D].哈尔滨工业大学,2011.
    [94]陈予恕,黄文虎,高金吉等.机械装备非线性动力学与控制的关键技术[M].北京:机械工业出版社,2011:7-28.
    [95]刘素华.三维和四维非线性系统Hopf分岔反馈控制[D].湖南大学,2008
    [96] Jerrold E M, Marjorie M C. The Hopf Bifurcation and its Applications[M].New York: Springer-Verlag,1976:19-27
    [97] Ding Q, Cooper J E, Leung A Y T. Hopf Bifurcation Analysis of a Rotor/SealSystem[J]. Journal of Sound and Vibration,2002,252(5):817-833
    [98]陈予恕,唐云等.非线性动力学中的现代分析方法[M].北京:科学技术出版社,1992:16-43.
    [99] Chow S N, Hale J. Methods of Bifurcation Theory [M]. New York: SpringerVerlag,1982:3-12.
    [100]张锦炎,冯贝叶.常微分方程几何理论与分支问题[M].北京:北京大学出版社,2000:12-60.
    [101] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems andBifurcations of Vector Fields [M]. New York: Springer-Verlag,1983:5-61.
    [102] Golubitsky M, Schaeffer D. Singularities and Groups in Bifurcation Theory
    [M]. New York: Springer-Verlag,1985:2-40.
    [103] Chen Y S and Langford W F.The Subharmonic Bifurcation Solution ofNonlinear Mathieu’s Equation and Euler Dynamically Buckling Problem[J].Acta Mechanica Sinica.1988,4(4):359-362.
    [104] Chen Y S, Mei L T. Bifurcation Solutions of General Resonant Cases ofNonlinear Mathieu Equations [J]. Science in China (Series A).1990,33(12):1469-1476.
    [105]陈予恕,丁千.C-L方法及其在工程非线性动力学问题中的应用[J].应用数学与力学,2001,22(2):127-134.
    [106]叶敏,陈予恕,张伟.非线性振动系统的亚谐分叉及物理参数条件[J].天津大学学报,1996,29(1):23-29.
    [107]李韶华,杨绍普.一种非线性汽车悬架的亚谐共振及奇异性[J].振动工程学报,2007,20(2):168-173.
    [108]徐鉴,刘隆.时滞微分方程特征值的近似求解方法[J].振动与冲击,2010,29(5):31-34.
    [109]吴志强,郝颖,郭凯.双线性双滞后环系统非线性振动[J].振动与冲击,2011,30(11):1-3.
    [110]唐云.分叉理论方法及在化学反应器研究中的应用[J].数学的实践与认识,1992,3:71-81.
    [111]秦志英,陆启韶.非光滑分岔的映射分析[J].振动与冲击,2009,28(6):79-81.
    [112] Chen F Q, Zhou L Q, Chen Y S. Chaotic motions of the L-mode to H-modetransition model in tokamak [J]. Applied Mathematics and Mechanics(EnglishEdition),2009,30(7):811-820.
    [113]张伟,杨绍普,徐鉴等.非线性系统的周期振动和分岔[M].北京:科学出版社.2002:1-24.
    [114] Qin Z H, Chen Y S. Singularity analysis of Duffing-van der Pol system withtwo bifurcation parameters under multi-frequency excitations [J].AppliedMathematics and Mechanics(English Edition),2010,31(8):1019-1026.
    [115] Liu Y,BI Q S,Chen Y S. Phase synchronization between nonlinearly coupledR ssler systems [J]. Applied Mathematics and Mechanics(English Edition),2008,29(6):697-704.
    [116]周良强,陈予恕,陈芳启.一类自治离心式调速器系统的Hopf分岔与混沌[J].机械强度,2012,34(2):165-169.
    [117]郭树起,杨绍普.三分之一固有频率谐激励下干摩擦振子的双Stop粘滑运动[J].振动冲击.2009,28(4):81-85.
    [118]成玫,孟光,荆建平.非线性“转子-轴承-密封”系统动力分析[J].振动工程学报,2006,19(4):519-524.
    [119]王保国,蒋洪德,马晖扬.工程流体力学(上册)[M].北京:科学出版社,2011:74-77.
    [120]李进良,李承曦,胡仁喜等.精通FLUENT6.3流场分析[M].化学工业出版社,2009:41-46.
    [121] Xi J X, Rhode D L. Rotordynamics of Turbine Labyrinth Seals with RotorAxial Shifting[J]. International Journal of Rotating Machinery,2006:1-11.
    [122] Athavale M M, Hendricks R C. A Small Perturbation CFD Method forCalculation of Seal Rotordynamic Coefficients[J]. International Journal ofRotating Machinery,1996,2(3):167-177.
    [123] Meagher J, Wu X, Lencioni C.Response of a warped flexible rotor with a fluidbearing[J]. International Journal of Rotating Machinery,2008,2008(1):1-9.
    [124] Jacob J S, Bently D E, Yu J J.A hydrostatic bearing with compressible fluidfor broad application[C]. New Orleans: ASME TURBO EXPO2001,2001.
    [125] Cheng M, Meng G, Jing J P.Numerical and experimental study of arotor–bearing–seal system[J]Mechanism and Machine Theory,2007,42(8):1043-1057.
    [126]李松涛,许庆余.迷宫密封-滑动轴承-转子系统的非线性动力稳定性[J].航空学报,2003,24(3):226-229
    [127] Ding Q, Leung A Y T. Numerical and Experimental Investigations on FlexibleMulti-bearing Rotor Dynamics[J]. Journal of Vibration and Acoustics,2005,127(4):408-415.
    [128]丁千,陈予恕.非线性转子-密封系统的亚谐共振失稳机理研究[J].振动工程学报,1997,10(4):404-412.
    [129]张文.转子动力学理论基础[M].北京:科学出版社,1990:190-197.
    [130] Bently D E, Muszynska A. Perturbation Tests of Bearing/Seal for Evaluationof Dynamic Coefficients, Symposium on Rotor Dynamical Instability[C].Housion Texas: Summer Annual Conference of the ASME Applied MechanicsDivision,1983.
    [131] Tam L T. Numerical and Analytical Study of Fluid Dynamical Forces in Sealsand Bearing[J]. ASME Journal of Vibration Acoustics Stress and Reliability inDesign,1988,110(3):315-325.
    [132] Muszynska A, Bently D E. Fluid-generated Instabilities of Rotors[J]. Orbit,1989,10(1):6-14
    [133]黄文虎,夏松波,焦映厚.旋转机械非线性动力学设计基础理论与方法[M].北京:北京科学出版社,2006:195-228.
    [134]郑勇,李明,王永庆等.大型汽轮机汽流激振故障的分析处理[J].陕西电力,2009,37(02):68-70.
    [135]王孝武,方敏,葛锁良等.自动控制理论[M].北京:机械工业出版社,2009:83-88.
    [136] Golubistky M, Schaeffer D G. Singularities and groups in bifurcation theoryVol. Ⅰ [M]. New York: Springer-Verlag,1985:117-156.
    [137]陈予恕.非线性振动系统的分岔与混沌理论[M].北京:高等教育出版社,1993:148-172.
    [138] Arnold V I. Small Denominators I: Mappings of the Circumference ontoItself[J]. Am. Math. Soc. Transl. Series,1965,2(46):213-284
    [139]迪克森(著),黄缘芳(译).代数方程式论[M].哈尔滨:哈尔滨工业大学出版社,2011:3-6.
    [140]钟一谔,何衍宗,王正等.转子动力学[M].北京:清华出版社,1987:224-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700