用户名: 密码: 验证码:
毛细管放电的X光激光若干特性及极紫外光刻光源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极紫外光的波长越短,与软X射线的谱区重叠越多。在波长重叠的区域内,由于光束相干性的缘故,同样波长的辐射有时称为极紫外光,有时称为软X射线激光,这可能源于人们的习惯。无论称谓如何,这些短波长光源的获得主要来自于高温高密度等离子体的辐射。毛细管放电装置将电能直接转化成等离子体的辐射能,能量转换效率较高。
     软X射线激光的波长短,获得软X射线激光需要很高的泵浦能量;软X射线激光很容易被物质吸收,建立激光谐振腔几乎不太可能。这些不利因素长期制约着软X射线激光器的研制,特别是小型、台式、高效、经济、实用的软X射线激光器。毛细管放电软X射线激光装置的建立和成功运行,打破了禁锢其发展的坚冰,有望建成真正实用的小型高效软X射线激光器。本文在介绍X射线激光基本理论的基础上,利用实验室已出光的毛细管放电软X射线激光装置,在前期研究工作的基础上,进一步深化了软X射线激光研究。开展了预-主脉冲延时对激光输出的影响、低气压下产生激光的主脉冲电流阈值、46.9nm激光谱线的辨认等实验。发现了产生激光的预-主脉冲延时范围和最佳延时段,并揭示了预-主脉冲延时与气压的关系;在28~46Pa的氩气气压下,找到了产生激光的主脉冲电流阈值为~19kA;成功辨认了毛细管放电类氖氩46.9nm激光谱线。通过改变主开关结构,研究了主开关电感对激光输出的影响。主开关支座改进后,电感下降了15%,主脉冲电流平均提高了4%,激光平均输出提高了31%,同时继承了改进前的高耐压性和出光稳定性。毛细管放电检测转接室设计将不仅能够同步检测激光能量和激光谱线,而且有可能大大提高检测的准确性。
     极紫外光刻技术是目前国际上的研究热门之一,使用波长很短的极紫外光将掩模板上的电路图形缩小成像在光致抗蚀剂上,不用借助分辨率增强技术,即可获得30nm以下的分辨率,有望替代ArF浸没式光刻而成为下一代光刻技术的主流。毛细管放电极紫外光源具有较高的输出功率及能量转换效率,是极紫外光刻的首选曝光光源之一。本文对毛细管放电极紫外光源的重要参数和放电条件进行了定性计算,以便为毛细管放电极紫外光源演示装置的研制提供参考。之后作者全程参与了毛细管放电极紫外光源装置的设计、安装、调试、验收及开展的气体介质放电极紫外辐射研究等工作。通过对真实负载的放电试验,预脉冲电源的放电电压~7kV,电流40~60A,可单次和1~200Hz重复频率工作;主脉冲电源的放电电压~30kV,电流20~40kA,也可单次和1~200Hz重复频率工作,各项放电参数达到了设计标准。在整套装置验收合格的基础上,利用已经标定的罗兰园谱仪,开展了毛细管放电极紫外光谱实验研究,观察到Ar7+、He+离子30nm左右的极紫外光辐射。最终证实:已建成的毛细管放电极紫外光源演示装置安全可靠、运行稳定,等离子体辐射光谱基本位于极紫外目标区,可以开展进一步的极紫外光输出实验。
     国际上有很多科研小组或团体进行极紫外光刻光源的研究,随着研究的深入,极紫外光刻光源的输出功率不断增大,目前已经达到了应用标准。但高功率光源的获得依赖于极高的重复工作频率,单次输出功率并不高。高重复频率工作对光刻过程及环境有很高的要求,这不仅增大了光刻过程的难度,而且提高了生产成本。本文提出了毛细管放电三束等离子体极紫外环带光源的设计,正是为了解决光刻光源单次输出功率小的问题。通过对毛细管放电三束等离子体形成环带光源的过程进行受力分析,定性计算了环带光源的输出参量等比较全面的设计、论证。结果表明:在相同放电总电流条件下,三束等离子体环带光源的发光体积是常用毛细管的~10倍,光源的最佳收集角提高了~60%,能量转换效率提高了~5倍。这些定性结果预示着毛细管放电三束等离子体极紫外环带光源将有着很大的研发潜力,基础预研还有待继续深化。
     本论文理论、装置和实验并重,在已出光的毛细管放电软X射线激光装置上开展了进一步的实验研究;参与建立了国内首台毛细管放电极紫外光刻光源演示装置;提出了毛细管放电三束等离子体高功率(单次工作)极紫外环带光源的设计方案。这些成果为今后毛细管放电极紫外光源的深入研究奠定了坚实的基础。
The wavelength of extreme ultraviolet (EUV) radiation is so short that it overlaps with soft X-ray spectral band. Within the overlap band, due to its coherence effect, the radiation with the same wavelength is sometimes called as EUV light, but at some occasion as soft X-ray laser, which maybe owing to people’s oral habit. Whatever name it is, the short wavelength source comes mainly from emission of high-temperature and high-density plasma. It is the capillary discharge setup which produces higher conversion efficiency of energy that directly transforms electric power to plasma emission energy.
     A great deal of pumped energy has to be used in obtaining soft X-ray laser emission with short wavelength. It is almost impossible to build resonance chamber for soft X-ray laser because of intense reabsorption by materials. These adverse factors have restricted the development of soft X-ray laser for a long time, especially those lasers with advantages such as small-size, tabletop, high-efficiency, cost-effective and practicability. However, Establishment and successful operation of capillary discharge soft X-ray laser device smashed the developmental durance, which could hopefully realize truly-applied and small-sized and high-efficient soft X-ray laser. In this dissertation, based on the introduction of elemental theory of X-ray laser, the experimental work concerning extensive research on the basis of prophase working uses the capillary discharge soft X-ray laser equipment at our laboratory. The experiment includes studying effect of time delay of mainpulse current on laser output, probing the mainpulse current threshold with lasing at low Ar pressure and identifying 46.9nm laser spectrum. It is discovered from experimental data that there exists a good time delay range corresponding to lasing in which includes an optimal range corresponding to larger lasing. In the meantime, The experimental result also illustrates the relationship between the time delay and Ar pressure, finds out the mainpulse current threshold of ~19kA with lasing at Ar pressure of 28~46Pa and identifies the 46.9nm laser spectrum in capillary discharge. By modifying the main-switch support, impact of the main-switch inductance on lasing is investigated. After its modification, the main-switch inductance decreases by 15%, the average mainpulse current increases by 4%, the average laser output improves by 31%, and at the same time it inherits the high-voltage endurance and lasing stability before modification. As a supplement, the dissertation provides the design plan for measurement and detection shifting chamber in capillary discharge which will not only survey laser energy and spectrum, but possibly improve experimental precision greatly as well.
     Extreme ultraviolet lithography (EUVL) technology is one of the popular researches at present, which reduces the circuit pattern in the mask onto photoresist layer by using very short wavelength EUV light. It can obtain resolution width below 30nm by no help of resolution factor enhancement technology, which will be the possible candidate for replacing ArF immersion lithography and become the mainstream of next generation lithography technology. It is the capillary discharge EUV source that exhibits higher output power and conversion efficiency of energy. In this paper, some qualitative calculation of the important parameters and operating condition of capillary discharge EUV source are made in order to provide references to its establishment. After that, the author participates in the work of designing, installation, debugging and checking of the setup and later engages experimental research for EUV emission with gas medium. By discharging to real load, it is discovered that the voltage and current of prepulse source attain ~7kV and 40~60A respectively, and those of mainpulse source attain ~30kV and 20~40kA respectively. Furthermore, both of them can work at one time or at repetition rate of 1~200Hz, which manifests that all kinds of discharge parameters conform to the designing standard. When the setup is completed, the EUV spectrum in capillary discharge by calibrated Rowland circle spectrometer is studied, and the EUV emission of Ar7+ and He+ ions around 30nm are found from experimental result. The experimental data confirms that the plasma emission spectrum lies in the EUV objective zone and the built-up capillary discharge EUV demonstrative setup works safely and stably which can be used to perform the next experiment with EUV output.
     There are many research groups and organizations of the world working on EUVL source research. With development of investigation, the output power of EUV source increases gradually, and have attained the standard for application. However, the high power source depends mostly on very high repetition rate while the single output energy is not big enough. Still more, the extremely high frequency of operation makes lithographic process difficult and environment rigid which gives rise to cost of ownership. In this dissertation, the design scheme of capillary discharge three-plasma EUV loop source is brought forward so as to solve the problem of the singly less output power of lithographic source. By analysis of force in the process of loop source formation of three-plasma in capillary discharge, the output parameters, comparatively comprehensive design and demonstration, are calculated qualitatively. The result demonstrates that, under the same total current condition, the emission volumn of three-plasma loop source increases as ~10 times big as normal capillary, and the optimal collection angle of it enlarges by ~60% and conversion efficiency of power enhances ~5 times. These qualitative result indicate that capillary discharge three-plasma loop source exhibits great investigative potential but the basic research needs to be continue.
     The dissertation pays equal attention to the theory, setup and experiment. It is known from the paper that more detail experimental study are carried out with the lasing capillary discharge soft X-ray laser equipment, the first new capillary discharge EUVL source demonstrative setup is made, and the design scheme of capillary discharge three-plasma high-power (single operation) EUV loop source is put forward. These productions set a solid base on thorough research of capillary discharge EUV source in the future.
引文
1 J. C. Solem. Imaging Biological Specimens with High-Intensity Soft X- Rays. J. Opt. Soc. Am. B. 1986, 3: 1551~1556
    2 R. A. London, M. D. Rosen and J. E. Trebes. Wavelength Choice for Soft X-ray Laser Holography of Biological Samples. Appl. Optics. 1989, 28: 2397~3404
    3 L. B. Da Silva, T. W. Barbee, Jr. R. Cauble, P. Celliers, D. Ciario, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber. Electron Density Measurements of High Density Plasmas Using Soft X-Ray Laser Interferometry. Phys. Rev. Lett. 1995, 74: 3991~3994
    4彭惠民,王世绩,邱玉波,李家明,赵钧,马国彬,王建国. X射线激光.国防工业出版社. 1997: 89~93
    5 D.阿特伍德著,张杰等译.软X射线与极紫外辐射的原理和应用.科学出版社. 2003.9
    6 D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, and T. A. Weaver. Demonstration of a Soft X-Ray Amplifier. Phys. Rev. Lett. 1985, 54(2): 110~113
    7 J. Zhang, A. G. MacPhee, J. Nilsen, J. Lin, T. W. Barbee, Jr. C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, R. M. N. O’Rourke, G. J. Pert, R. Smith, G. J. Tallents, J. S. Wark, and E. Wolfrum. Demonstration of Saturation in a Ni- like Ag X-Ray Laser at 14 nm. Phys. Rev. Lett. 1997, 78(20): 3856~3859
    8 J. A. Koch, B. J. MacGowan, L. B. Da Silva, D. L. Matthews, J. H. Underwood, P. J. Batson, and S. Mrowka. Observation of gain-narrowing and saturation behavior in Se x-ray laser line profiles. Phys. Rev. Lett. 1992, 68(22): 3291~3294
    9 P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnurer, I. Will, and W. Sandner. Short Pulse X-Ray Laser at 32.6 nm Based on Transient Gain in Ne-like Titanium. Phys. Rev. Lett. 1997, 78(14): 2748–2751
    10 J. J. Rocca, D. P. Clark, J. L. A. Chilla, and V. N. Shlyaptsev. Energy Extraction and Achievement of the Saturation Limit in a Discharge-Pumped Table-Top Soft X-Ray Amplifier. Phys. Rev. Lett. 1996, 77(8): 1476~1479
    11 M. P. Kalachnikov, P. V. Nickles, M. Schnürer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis. Saturated operation of a transient collisional x-ray laser. Phys. Rev. A. 1998, 57(6): 4778~4783
    12 G. I. Peters and L. Allen. Amplified spontaneous emissionⅠ. The threshold condition, J. Phys. A, 1971, 4: 238~243; 1972, 5: 546; L. Allen and Peters. Amplified spontaneous emissionⅡ. The connection with laser theory, J. Phys. A, 1971, 4: 377~381; Amplified spontaneous emissionⅢ. Intensity and saturation, 1971, 4: 564~573
    13 Alexander G. Molchanov. Lasers in the Vacuum Ultraviolet and in the X-ray Regions of the Spectrum. Sov. Phys-Usp. 1972, 15(1): 124~129
    14 A. V. Vinogradov, I. I. Sobelman and E. A. Yukov. Sov. J. Quantum Electron. 1975, 5: 59; Kvant. Electron. 1975, 2: 105
    15 R. C. Elton. Extension of 3s-3p Ion Lasers into the Vacuum Ultraviolet Region. Appl. Opt. 1975, 14: 97~101
    16王乃彦.新兴的强激光.原子能科学出版社. 1996: 127~129
    17彭惠民,王世绩,邱玉波,李家明,赵钧,马国彬,王建国. X射线激光.国防工业出版社. 1997: 254~255, 234~247
    18 P. Hagelstein, S. Delhed. Strong Monopole Electron-Collisional Excitation in Highly Stripped Ions. Phys. Rev. A. 1988, 37: 1357~1360
    19 B. J. MacGowan. Proc. SPIE. 1986, 688: 36
    20 H. Hora. Laser Part. Beams. 1986, 4: 589
    21 T. N. Lee, E. A. McLean, R. C. Elton. Soft X-Ray Lasing in Neonlike Germanium and Copper Plasmas. Phys. Rev. Lett. 1987, 59: 1185~1188
    22淳于书泰,沈华忠,何绍堂,王世绩,陶祖聪,彭翰生,杨建国.类氖锗X光激光增益实验.强激光与粒子束. 1990, 2: 280~290
    23王世绩,顾援,傅思祖,倪元龙,周关林,余松玉,吴江,周正良,韩国强,范滇元,林尊琪,王树森,陈万年.高增益类氖锗软X光激光实验.强激光与粒子束. 1990, 2: 273~278;“双靶对接”高增益类氖锗软X光激光实验研究.中国科学A辑. 1991: 151~160
    24 Wang Shiji, Gu Yuan, Zhou Guanlin, Ni Yuanlong, Yu Songyu, Fu Sizu, Mao Chusheng, Tao Zucong, Chen Wannian, Lin Zunqi, Fan Dianyuan, Zhang Guoping, Sheng Jiatian, Yang Minglun, Zhang Tanxin, Shao Yunfeng, Peng Huimin, He Xiantu, Yu Min. Experimental Research on Saturated-Gain for Soft-X-Ray Laser from Neon-Like Germanium Plasma. Chinese Phys. Lett. 1991, 8(12): 618~621
    25王世绩,顾援,周关林,倪元龙,余松玉,傅思祖,毛楚生,陶祖聪,陈万年,林尊琪,范滇元,张国平,盛家田,张覃鑫,杨明伦,彭惠民,邵云峰,贺贤土.类氖锗等离子体中软X光激光饱和增益实验研究.光学学报. 1991, 12: 1135~1136
    26 Shiji Wang, Yuan Gu, Chusheng Mao, Zhengliang Zhou, Guanglin Zhou, Yuanlong Ni, Songyu Yu, Yuenan Xiong, Binggen Wan, Weibuo Ji, Sizu Fu, Guoqiang Han, Guanlong Huang, Dianyuan Fan, Zunqi Lin, Ximing Deng. Near Diffraction Limit Output and Gain Saturation of Soft X-Ray Laser. Chinese J. Laser. 1993, B2: 481~484
    27 D. M. O’Neil, C. L. S. Lewis, D. Neely, J. Uhomoibhi, M. H. Key, A. G. MacPhee, G. J. Tallents, S. A. Ramsden, A. Rogoyski and E. A. McLean. Characteristic of Soft X-Ray Amplification Observed in Ne-Like Germanium. Opt. Commum. 1990, 75: 408~412
    28 Y. Kato. Inst. Phys. Conf. Ser. No. 125. Section 1. 1992, 9; E. A. McLean, T. N. Lee, J. A. Stamper, C. K. Manka, and H. R. Griem. J. Opt. Soc. Am. B. 1992, 9: 350~359
    29 B. Rus, A. Carillon, B. Gauthe, P. Goedtkindt, P. Jaegie, G. Jamelot, A. Klisnick, A. Sureau, and P. Zeitoun. Observation of Intense Soft-X-Ray Lasing at the J=0 to J=1 Transition in Neon-like Zinc. J. Opt. Soc. Am. B. 1994, 11: 564~573
    30 B. J. MacGowan, S. Maxon, P. L. Hagelstein, C. J. Keane, R. A. London, D. L. Matthews, M. D. Rosen, J. H. Scofield, and D. A. Whelan. Demonstration of Soft-X-Ray Amplification in Nickel-Like Ions. Phys. Rev. Lett. 1987, 59: 2157~2160
    31 B. J. MacGowan, L. B. Da Silva, D. J. Fields, A. R. Fry, C. J. Keane, and J. A. Koch. Short Wavelength Nickel-Like X-Ray Laser Development. IPC116. X-Ray Lasers 1990. Ed. Tallents G. J. IOP Pub. Ltd. Bristol. 1991: 221~230
    32王琛,王伟,吴江.类镍钽x射线激光实验研究.物理学报. 2004, 11: 3752~3755
    33陈德应,卢兴发,夏元钦,张彬彬,王骐.圆偏振光场电离电子能量分布的计算.光学学报. 1999,19(7): 884~888
    34王骐,张杉杉,卢兴发,夏元钦,陈德应.光场电离类镍氪等离子体参数研究.光学学报. 1999, 19(2): 201~205
    35 Li. R, Xu. Z. Z. Highly Efficient Transient Collisional Excitation X-ray Laser in Ni-like Mo Ions. Journal De Physique. 2001, 11(2): 227~234
    36杨宏,张铁桥,王树峰,龚旗煌.钛蓝宝石飞秒超快光谱技术及其应用进展.物理学报. 2000, 7: 89~93
    37李玉同,张杰,陈黎明,夏江帆,腾浩,赵理曾,林景全,魏志义,江文勉,王龙.飞秒激光等离子体的光学诊断.中国科学A辑. 2000, 31(1): 85~89
    38 Zhizhan Xu, Yingsong Wang, Kan Zhai, Xuexin Li, Yaqing Liu, Xiaodong Yang, Zhengquan Zhang, Wenqi Zhang. Direct experimental evidence of Influence of ionizations on high-order harmonic generation. Optics Communications. 1998, 158(15): 89~92
    39崔大复,张杰.中红外超短脉冲的产生及其研究的最新进展.物理. 1994, 23(3): 173~178
    40杨军,孙今人,王韬,范滇元,王世绩.全面诊断X射线激光空间特性的研究.中国科学A辑. 2000, 43(11): 1011~1018
    41 K. Maschke, P. Thomas and E. O. Gobel. Fano Interference in Type-ⅡSemiconductor Quantum-Well Structures. Phys. Rev. Lett. 1991, 67: 2646~2648; J. Faist, F. Capasso, A. L. Hutchinson et al.. Suppression of Optical Absorption by Electric-Field-Induced Quantum Interference in Coupled Potential Wells. Phys. Rev. Lett. 1993, 71: 3573~3576; D. Y. Oberli, G. Bohm, G. Weimann et al.. Fano Resonances in the excitation spectra of semiconductor quantum wells. Phys. Rev. B, 1994, 49: 5757~5760
    42 P. A. Norreys and A. Djaoui. Ni-like collisional lasers using moderate power laser drivers. Phys. Plasmas, 1994, 1: 2801
    43 M. H. Key. Reduction driver energy for collisional and recombination XUV laser using drivers of high brightness, Proceedings of the 3rd International Colloquium on X-ray Lasers, Schliersee Germany 1992, 171
    44 S. Maxon, K. G. Estabrook, M. K. Prasad, A. L. Osterheld, R. A. London, and D. C. Eder. High gain x-ray lasers at the water window. Phys. Rev. Lett. 1993, 70(15): 2285~2288
    45 Joseph Nilsen, Juan C. Moreno, Luiz B. Da Silva, and Jeffrey A. Koch. Lasing at 7.9nm in Ni-like Nd using multiple pulse illumination and other new results. SPIE. 1995, 2520: 152~156
    46 H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, H. Takabe and F. Koike. Efficient soft x-ray lasing at
    6 to 8nm with nickel-like lanthanide ions. Phys. Rev. Lett. 1995, 75: 1074~1077
    47 R. Smith, G. J. Tallents, J. Zhang, G. Eker, S. McCabe, G. J. Pert, and E. Wolfrum. Saturation behavior of two x-ray lasing transitions in Ni-like Dy. Phys. Rev. A. 1999, 59(1): R47~R50
    48 L. I. Gudzenko, L. A. Shelepin. Radiation enhancement in a recombining plasma. Sov. Phys. Dokl. 1965, 10: 147~149
    49蓝可.复合X光激光物理机制及共振光泵浦X光激光的研究.中国工程物理研究院博士论文. 1995: 2~3
    50 F. E. Irons, N. J. Peacock. Experimental Evidence for Population Inversion in C5+ in an Expanding Laser-Produced Plasma. J. Phys. B. 1974, 7: 1109~1112; A Spectroscopic Study of the Recombination of C6+ to C5+ in an Expanding Laser-Produced Plasma. J. Phys. B. 1974, 7: 2084~2099
    51 S. Suckewer, C. H. Skinner, H. Milchberg, C. Keane, and D. Voorhees. Amplification of stimulated soft X-ray emission in a confined plasma column. Phys. Rev. Lett. 1985, 55: 1753~1756
    52 C. Chenai-Popovics, R. Corbett, C. J. Hooker, M. H. Key, G. P. Kiehn, C. L. S. Lewis, G. J. Pert, C. Regan, S. J. Rose, S. Sadaat, R. Smith, T. Tomie, and O. Willi. Laser Amplification at 18.2nm in Recombining Plasma from a Laser-Irradiated Carbon Fiber. Phys. Rev. Lett. 1987, 59: 2161~2164
    53 C. L. S. Lewis, R. Corbett, D. O’Neil, C. Regan, S. Saadat, C. Chenais- opovics, T. Tomie, J. Edwards, G. P. Kiehn, R. Smith, O. Willi, A. Carillon, H. Guennou, P. Jaegle, G. Jamelot, A. Klisnick, A. Sureau, M. Grande, C. Hooker, M. H. Key, S. J. Rose, I. N. Ross, P. T. Rumsby, G. J. Pert and S. A. Ramsden. Status of soft x-ray laser research at the Rutherford-AppletonLaboratory. Plasma Phys. Control Fusion. 1988, 30: 35~44
    54 D. L. Matthews, E. M. Campbell, K. Estabrook, W. Hatcher, R. L. Kauffman, R. W. Lee, and C. L. Wang. Observation of enhanced emission of the OⅧHαline in a recombining laser-produced plasma. Appl. Phys. Lett. 1984, 45: 226~231
    55 Y. Kato, E. Miura, T. Tachi, H. Shiraga, H. Nishimura, H. Daido, M. Yamanaka, T. Jitsuno, M. Takagi, P. R. Herman, H. Takabe, S. Nakai, C. Yamanaka, M. H. Key, G. J. Tallents, S. J. Rose and P. T. Rumsby. Observation of Gain at 54.2 A on Balmer-Alpha Transition of Hydrogenic Sodium. Appl. Phys. B, 1990, 50: 247~256
    56 J. Zhang, M. H. Key, P. A. Norreys, G. J. Tallents, A. Behjat, C. Danson, A. Ddmir, L. Dwivedi, M. Holden, P. B. Holden, C. L. S. Lewis, A. G. MacPhee, D. Neely, G. J. Pert, S. A. Ramsden, S. J. Rose, Y. F. Shao, O. Thomas, F. Waish, and Y. L. You. Demonstration of High Gain in a Recombination XUV Laser at 18.2nm Driven by a 20J, 2ps Glass Laser. Phys. Rev. Lett. 1995, 74: 1335~1338
    57 Peng Huimin, Zhang Guoping and Sheng Jiatian. Computational Simulation of Soft X-Ray Laser in Recombining Laser-produced Plasma. Computational Physics, Proc. ICCP, eds. LI De Yuan, FENG Da Hsuan: 167~171, World Scientific, Singapore, 1989
    58何绍堂,沈华忠,魏晓峰,王明达,何安,淳于书泰,庄秀群,彭翰生,杨建国.类锂鋁 10.57和15.47纳米X光激光增益研究.强激光与粒子束. 1990, 3: 39~45
    59徐至展,张正泉,范品忠,陈时新,林礼煌,陆培祥,王晓芳,钱爱娣,余加进,冯贤平.软X射线激光增益实验研究.中国科学A辑. 1990, 1: 29~38
    60 P. Jeagle, G. Jamelot, A. Carillon, A. Klisnick, A. Sureau, and H. Guennou. Soft-x-ray amplification by lithium-like ions in recombining hot plasmas. J. Opt. Soc. Am. B. 1987, 4: 563~573
    61 J. C. Mereno, H. R. Griem and S. Goldsmith. Measurement of gain and line broadening in lithium-like aluminum. Phys. Rev. A. 1989, 39: 6033
    62 P. R. Herman, T. Tachi, K. Shihoyana, H. Shiraqa, Y. Kato. Soft X-RayRecombination Laser Research at the Institute of Laser Engineering. IEEE Trans. Plasma Scie. 1988, 16: 520~528
    63徐至展,张正泉,范品忠,陈时胜,林礼煌,陆培祥,余加进,王晓芳,钱爱娣,孙岚,吴敏春,冯贤平.类锂硅离子6f-3d与6d-3p软X射线激光.中国激光. 1990, 2: 42
    64 A. V. Vinogradov, I. I. Sobelman, and E. A. Yukov. Sov. J. Quantum Electron. 1975, 5(1): 59
    65 B. A. Norton, N. J. Peacock. Population Inversion in Laser-Produced Plasmas by Pumping with Opacity-Broadened Lines. J. Phys. B. 1975, 8: 989~996
    66 P. L. Hagelatein. Physics of Short Wavelength Laser Design, Ph. D. Thesis. Lawrence Livermore National Laboratory. Rep. UCRL-53100. 1981
    67 J. P. Apruzeze, J. Davis, and K. G. Whitney. Plasma Conditions Required for Attainment of Maximum Gain in Resonantly Photo-Pumped Aluminum X II and Neon IX. J. Appl. Phys. 1982, 53: 4020~4027
    68 P. L. Hagelstein. Review of Radiation Pumped Soft X-Ray Lasers. Plasma Phys. 1983, 25: 1345~1367
    69 R. H. Dixon, R. C. Elton. Spectroscopy of X-Ray Lasers. J. Opt. Soc. Am. 1984, 1: 232~238
    70 J. L. Porter, R. B. Spielman, M. K. Matzen, E. J. Matzen, L. E. Ruggles, M. F. Vargas. Demonstration of population inversion by resonant photo- pumping in a neon gas cell irradiated by a sodium Z pinch. Phys. Rev. Lett. 1992, 68(6): 796~799
    71 J. Peyraud and N. J. Peyraud. Population Inversion in Laser Plasmas. J. Appl. Phys. 1972, 43: 2993
    72 Yutaka Nagata, Katsumi Midorikawa, Shoich Kabodera, Minoru Obara, Hideo Tashiro, and Koichi Toyoda. Soft-X-Ray Amplification of the Lyman- Transition by Optical-Field-Induced Ionization. Phys. Rev. Lett. 1994, 71: 3774~3777
    73 B. E. Lemoff, G. Y. Yin, C. J. GordonⅢ, C. P. J. Barty, and S. E. Harris. Demonstration of a 10-Hz Femtosecond-Pulse-Driven XUV Laser at 41.8nm in XeⅨ. Phys. Rev. Lett. 1995, 74: 1574~1577
    74 David Attwood, Gary Sommargren, Raul Beguiristain, Khanh Nguyen,Jeffrey Bokor, Natale Ceglio, Keith Jackson, Masato Koike, and James Underwood. Undulator radiation for at-wavelength interferometry of optics for extreme-ultraviolet lithography. Appl. Opt. 1993, 32(34): 7022~7031
    75 C. K. Rhodes. Generation of extreme ultraviolet radiation with excimer lasers. AIP Conf. Proc. 1982, 90: 112~116
    76 Zenghu Chang, Andy Rundquist, Haiwen Wang, Margaret M. Murnane, and Henry C. Kapteyn. Generation of Coherent Soft X Rays at 2.7nm Using Hish Harmonics. Phys. Rev. Lett. 1997, 79: 2967~2970
    77 T. Ditmier, J. K. Crane, H. Nyugen, L. B. Da Silva, and M. D. Perry. Energy-yield and conversion-efficiency measurements of high-order harmonic radiation. Phys. Rev. A. 1995, 51: R902~R905
    78 Andy Rundquist, Charles G. DurfeeⅢ, Zenghu Chang, Catherine Herne, Sterling Backus, Margaret M. Murnane, Henry C. Kapteyn. Phase-Matched Generation of Coherent Soft X-rays. Science. 1998, 280(5368): 1412~1415
    79 J. J. Macklin, J. D. Kmetec, and C. L. GordonⅢ. High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 1993, 70: 766~769
    80 D. Strickland and G. Mourou. Compression of Amplified Chirped Optical Pulses. Opt. Comm. 1985, 56: 219~221
    81 P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou. Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quantum Electronics. 1988, 24: 398~403
    82 M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V, Yanovsky. Petawatt Laser Pulses. Optics Letters. 1999, 24(3): 160~162
    83 Peter Amendt, David C. Eder, Richard A. London, and Mordecai D. Rosen. Plasma dispersion in ultrashort-pulse x-ray lasers. Phys. Rev. A. 1993, 47(2): 1572~1575
    84 P. B. Corkum and N.H. Burnett. in“Short Wavelength Coherent Radiation: Generation and Applications”, OSA, North Falmouth, MA, edited by R.W. Falcone and J. Kirz. 1988, vol. 2: 225
    85 N. H. Burnett and P. B. Corkum. Cold-Plasma Production forRecombination Extreme Ultra Violet Lasers by Optical-Field-Induced Ionization. J. Opt. Soc. Am. B. 1989, 6(6): 1195~1199
    86 E. Fill, S. Borgstrom, J. Larsson, T. Starczewski, C. -G. Wahlstrom, and S. Svanberg. xuv spectra of optical-field-ionized plasmas. Phys. Rev. E. 1995, 51(6): 6016~6027
    87 G. Pretzler and E. E. Fill. X Rays from Optical-Field Ionized Plasmas at Low Density. Opt. Lett. 1997, 22(10): 733~735
    88 S. M. Hooker and S. E. Harris. Femtosecond-Pulse-Driven Electron-Excited XUV Lasers in Be-like Ions. Optics Letter. 1995, 20(10): 1994~1997
    89 S. Sebban, R. Haroutunian, Ph. Balcou, G. Grillon, A. Rousse, S. Kazamias, T. Marin, J. P. Rousseau, L. Notebaert, M. Pittman, J. P. Chambaret, A. Antonetti, D. Hulin, D. Ros, A. Klisnick, A. Carillon, P. Jaegle, G. Jamelot, and J. F. Wyart. Saturated Amplification of a Collisionally Pumped Optical- Field-Ionization Soft X-Ray Laser at 41.8 nm. Phys. Rev. Lett. 2001, 86(14), 3004~3007
    90 Stephane Sebban, Tomas Mocek, R. Haroutunian, Bedrich Rus, Philippe Balcou, David Ros, G. Grillon, Antoine Rousse, S. Kazamias, T. Marin, J. P. Rousseau, L. Notebaert, M. Pittman, Jean-Paul Chambaret, Andre Antonetti, Daniele Hulin, Annie Klisnick, Antoine Carillon, Pierre Jaegle, Gerard Jamelot, and J. F. Wyart. Collisional optical-field ionization soft x-ray lasers. Proc. SPIE. 2001, 4505(12): 195~203
    91 S. Jackel, R. Burris, J. Grun. Channeling of Terawatt Laser Pulses by Use of Hollow Waveguides. Opt. Lett. 1995, 20(10):1086~1088
    92 D. V. Korobkin, C. H. Nam, S. Suckewer. Demonstration of Soft X-Ray Lasing to Ground state in Li III. Phys. Rev. Lett. 1996, 77: 5206~5209
    93 A. Butler, A. J. Gonsalves, C. M. McKennal. Demonstration of a Collisionally Excited Optical-Field-Ionization XUV Laser Driven in a Plasma Waveguide. Physical Review Letter. 2003, 91(20): 205001-1~ 205001-4
    94 P. Amendt, D. C. Eder and S. C. Wilks. X-ray lasing by optical-field- induced ionization. Phys. Rev. Lett. 1991, 66: 2589~2592
    95 D. C. Eder, P. Amendt and S. C. Wilks. Optical-field-ionization plasma x- ray lasers. Phys. Rev. A. 1992, 45: 6761~6772
    96 B. M. Penetrante and J. N. Bardsley. Residual energy in plasmas produced by intense subpicosecond lasers. Phys. Rev. A. 1991, 43: 3100~3113
    97 C. D. Macchietto, B. R. Benware and J. J. Rocca. Generation of millijoule- level soft-X-ray laser pulse at a 4-Hz repetition rate in a highly saturated tabletop capillary discharge amplifier. Opt. Lett. 1999, 24(16): 1115~1117
    98 J. J. Rocca, D. C. Beethe, and M. C. Marconi. Proposal for soft-x-ray and XUV lasers in capillary discharges. Opt. Lett. 1988, 13(7): 565~567
    99 J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortazar, D. Hartshorn, and J. L. A. Chilla. Demonstration of a Discharge Pumped Table-Top Soft-X- Ray Laser. Phys. Rev. Lett. 1994, 73(16): 2192~2195
    100 F. G. Tomasel, J. J. Rocca, V. N. Shlyaptsev, and C. D. Macchietto. Lasing at 60.8nm in Ne-like sulfur ions in ablated material excited by a capillary discharge. Phys. Rev. A. 1997, 55: 1437~1440
    101 M. Frati, M. Seminario and J. J. Rocca. Opt. Lett. 2000, 25: 1022
    102 J. J. Rocca, O. D. Cortazer, B. Szapiro, K. Floyd, and F. G. Tomasel. Fast- discharge excitation of hot capillary plasma for soft-x-Ray amplifier. Phys. Rev. E. 1993, 47(2): 1299~1304
    103 J. J. Rocca, O. D. Cortazer, F. G. Tomasel, and B. T. Szapiro. Efficient generation of highly ionized calcium and titanium plasma columns for collisionally excited soft-x-ray laser in a fast capillary discharge. Phys. Rev. E. 1993, 48(4): R2378~R1304
    104 J. J. Rocca, F. G. Tomasel, M. C. Marconi, V. N. Shlyaptsev, J. L. A. Chilla, B. T. Szapiro, and G. Giudice. Discharge-pumped soft-x-ray laser in neon- like argon. Phys. Plasma. 1995, 2(6): 2547~2554
    105 J. J. Rocca, C. H. Moreno, B. R. Benware. New Results in the Development of the Table-Top Capillary Discharge Soft X-Ray Lasers: Demonstration of High Average Power and realization of First Application. X-ray Laser. 1998, 1999 IOP Publishing Ltd: 9~16
    106 Seonge Ho Kim, Dong-Eon Kim, Tong Nyong Lee. Soft X-ray Spectroscopic Study of a Gas-Puff Z-Pinch Argon plasma. IEEE Transactions on Plasma Science. 1998, 26(4): 1108~1113
    107 William E. S. Rosenfeld, Remi Dussart, Sven Gotze, Christophe Cachoncinlle, Dunpin Hong, Jean-Michel Pouvesle, and Claude Fleurier.Development of a Blumlein generator dedicated to a fast-capillary discharge XUV source. Proc. SPIE. 1999, 3776: 193~201
    108 Amit Ben-Kish, Ron A. Nemirovsky, Moshe Shuker, Amnon Fisher, Arza Ron, and Jean L. Schwob. Parametric investigation of capillary discharge experiment for collisional excitation x-ray lasers. Proc. SPIE. 1999, 3776: 166~174
    109 Gohta Niimi, Yasushi Hayashi, Mitsuo Nakajima, Masato Watanabe, Akitoshi Okino, Kazuhiko Horioka and Eiki Hotta. Observation of multi- pulse soft x-ray lasing in a fast capillary discharge. J. Phys. D: Appl. Phys. 2001, 34: 2123~2126
    110 Karol A. Janulewicz, Jorge J. Rocca, Fulvia Bortolotto, Wolfgang Sandner and Peter V. Nickles. Collisionally pumped hybrid soft X-ray laser in Ne- like sulphur. C. R. Acad. Sci. Paris. Series IV-Physics. 2000, 1(8): 1083~1092
    111 R. King and G. J. Pert. Modelling of Short Pulse X-ray Laser Experiments. C. R. Acad. Sci. Paris. Series-IV. 2000: 1093~1104
    112李艳秋.浸没式ArF光刻最新进展.电子工业专用设备. 2006(3): 27~35
    113 M. A. Klosner. Intense Capillary Discharge Plasma Extreme-ultraviolet Sources for EUV Lithography and Other EUV Imaging Applications. Dissertation applied for doctoral degree of University of Central Florida. 1998: 8~9, 24~25
    114 M. Watanabe, I. H. Song, Y. Hayashi, A. Okino, K. Yasuoka, K. Horioka, E. Hotta. Experimental study of capillary Z-pinch discharge plasma for EUV lithography. 31st EPS Conference on on Plasma Phys. London, 28 June-2 July 2004 ECA Vol. 28G, P-5.007
    115 M. A. Klosner, H. A. Bender, and W. T. Silfvast. Intense plasma discharge source at 13.5nm for extreme-ultraviolet lithography. Opt. Lett. 1997, 22(1): 34~36
    116 T. Boboc, R. Bischoff and H. Langhoff. Emission in the Extreme Ultravioleted by Xenon Excited in a Capillary Discharge. J. Phys. D: Appl. Phys. 2001, 34: 2512~2515
    117 Yusuke Teramoto, Zenzo Narihiro, Daiki Yamatani, Takuma Yokayama, Kazunori Bessho, Yuki Joshima, Takahiro Shirai, Shinsuke Mouri, TakahiroInoue, Hiroshi Mizokoshi, Gohta Niimi, Tomonao Hosokai, Hironobu Yabuta, Kohkan C. Paul, Tetsu Takemura, Toshio Yokota, Kiyoyuki Kabuki, Koji Miyauchi, Kazuaki Hotta, and Hiroto Sato. Development of Sn-fueled high-power DPP EUV source for enabling HVM. Proc. of SPIE. 2007, Vol. 6517: 65173R-1~65173R-9
    118 Marc Corthout, Rolf Apetz, Jesko Brudermann, Gunther Derra, Oliver Franken, Jurgen Klein, Felix Kupper, Arnaud Mader, Hans Scheuermann, Guido Schriever, Max Schurmann, Erik Wagenaars, Peiter van de Wel, Masaki Yoshioka, Peter Zink and Oliver Zitzen. Sn DPP source-collector modules: status of alpha sources, beta developments and the scalability to HVM. Proc. of SPIE. 2008, Vol. 6921: 69210V-1~69210V-12
    119 F. G. Tomasel, V. N. Shlyaptsev, J. J. Rocca. Enhanced Beam Characteristics of a Discharge-Pumped Soft-X-Ray Amplifier by an Axial Magnetic Field. Phys. Rev. A. 1996, 54(3): 2474~2478
    120 Jorge J. Rocca, Mario C. Marconi, Yong Wang, Bradley M. Luthur, Francesco Pedacci, Michael Grisham, Georgiy Vaschenko, Carmen S. Menoni, Jorge Filevich, Libor Juha, Yu. P. Pershin, E. N. Zubarev, D. L. Voronov, V. A. Sevryukova, V. V. Kondratenko, Vyacheslav V. Shlyaptsev, Alexander Vinogradov, Igor Artioukov. Recent result in capillary discharge soft x-ray laser research. Proc. of SPIE. 2003, Vol. 5197: 174~183
    121 B. M. Luther, Y. Wang, M. C. Marconi, J. L. A. Chilla, M. A. Larotonda, and J. J. Rocca. Guiding of Intense Laser Beams in Highly Ionized Plasma Columns Generated by a Fast Capillary Discharge. Phys. Rev. Lett. 2004, Vol. 92, No. 23: 235002-1~235002-4
    122 M. C. Marconi, J. L. A. Chilla, C. H. Moreno, B. R. Benware, and J. J. Rocca. Measurement of the Spatial Coherence Buildup in a Discharge Pumped Table-Top Soft X-Ray Laser. Phys. Rev. Lett. 1997: 1~4
    123 B. M. Luther, Y. Wang, M. Berrill, D. Alessi, M. C. Marconi, M. A. Larotonda, and J. J. Rocca. Highly Ionized Ar Plasma Waveguides Generated by a Fast Capillary Discharge. IEEE Transactions on Plasma Science, 2005, Vol. 33, No. 2:582~583
    124 J. J. Rocca, C. H. Moreno, M. C. Marconi, and K. Kanizay. Soft-x-ray laser interferometry of a plasma with a tabletop laser and a Lloyd’s mirror. Opt.Lett. 1999, 24(6): 420~422
    125 J. Filevich, K. Kanizay, M. C. Marconi, J. L. A. Chilla, and J. J. Rocca. Dense plasma Diagnostics with an Amplitude-division Soft X-ray Laser Interferometer Based on Diffraction Gratings. Opt. Lett. 2000, 25(5): 356
    126 H. A. Bender III, S. E. Grantham, M. C. Richardson, W. T. Silfvast, V. N. Shlyaptsev, and J. J. Rocca. High Resolution Temporal & Spatial Mapping of the Electron Density in a Capillary Discharge Pumped Soft X-ray Laser Amplifier Using Sub-ps optical Interferometry. X-ray Lasers 1998. 1999 IOP Publishing Ltd: 167~170
    127 C. H. Moreno, M. C. Marconi, K. Kanizay, J. J. Rocca, Yu. A. Uspenskii, A. V. Vinogradov, Yu. A. Pershin. Soft-x-ray laser interferometry of a pinch discharge using a tabletop laser. Phys. Rev. E. 1999, 60(1): 911~917
    128 M. C. Marconi, C. H. Moreno, J. J. Rocca, V. N. Shlyaptsev, and A. L. Osterheld. Dynamics of a microcapillary discharge plasma using a soft x-ray laser backlighter. Phys. Rev. E. 2000, 62(5): 7209~7218
    129 Maria G. Capeluto, Georgiy Vaschenko, Michael Grisham, Mario C. Marconi, S. Luduena, L. Pietrasanta, Yunfeng Lu, Bruce Parkinson, Carmen S. Menoni, and J. J. Rocca. Nanopatterning With Interferometric Lithography Using a Compactλ=46.9-nm Laser. IEEE Transactions on Nanotechnology 2006, 5(1): 3~7
    130 M. A. Liberman, J. S. De Groot, A. Toor, R. B. Spielman著,孙承纬译.高密度Z箍缩等离子体物理学.国防工业出版社. 2003: 20~21
    131杜世刚编,王乃彦审校.等离子体物理.原子能出版社. 1998: 84~88
    132 N. A.克拉尔, A. W.特里维尔皮斯著.郭书印译.等离子体物理学原理.原子能出版社. 1983: 83~86
    133 B. R. Benware, C. H. Moreno, D. J. Burd, and J. J. Rocca. Operation and Output Pulse Characteristics of an Extremely Compact Capillary-Discharge Tabletop Soft-X-Ray Laser. Opt. Lett. 1997, 22(11): 796~798
    134栾伯晗.毛细管放电等离子体状态研究及低气压X光激光输出.哈尔滨工业大学博士论文. 2007: 22~31
    135卢兴发. OFI类镍氪系统X射线激光参数计算及实验系统研制.哈尔滨工业大学博士论文. 2000: 38~44
    136刘鹏.毛细管放电泵浦X光激光装置及荧光谱实验研究.哈尔滨工业大学博士论文. 2002: 28~32
    137程元丽.毛细管放电类氖氩46.9nm软X射线激光研究.哈尔滨工业大学博士论文. 2006: 28~30, 35~39
    138 N. A. Babrova, S. V. Bulanov, T. L. Razinkova, P. V. Sasorov. Dynamics of a Pinch Discharge in Capillaries. Plasma Physics Reports, 1996, 22: 387~402
    139 Lan Ke, Zhang Yuquan, Zheng Wudi. Theoretical Study on Discharge- Pumped Soft X-Ray Laser in Ne-Like Ar. Phys. Plasma. 1999, 6(11): 4343~4348
    140郑无敌,彭惠民.毛细管放电类氖氩X光激光中的准稳态增益.强激光与粒子束. 2002, 14(1): 1~5
    141 Lan Ke, Zheng Wudi, Zhang Yuquan. Study on time-dependent coupled rate equations in non-LET plasmas. Chinese Journal of Lasers. 2000, B10: 131~140
    142 L. B. Dasilva, B. J. MacGowan, S. Mrowka, J. A. Koch, R. A. London, D. L. Matthews, and J. H. Underwood. Power measurements of a saturated yttrium x-ray laser. Opt. Lett. 1993, 18(14): 1174~1176
    143 R. A. London. Beam Optics of Exploding Foil Plasma X-Ray Lasers. Phys. Fluids. 1988, 31:184~192
    144王骐,刘鹏,赵永蓬,杨大为.毛细管的阻抗特性研究.中国激光. 2003, 30(6): 497~500
    145程元丽,赵永蓬,肖亦凡,刘鹏,王骐,杨大为.毛细管快放电中的管壁烧蚀.中国激光. 2004, 31(5): 538~542
    146李思宁,程元丽,赵永蓬,王骐.毛细管放电条件下类氖序列原子参量计算与分析.光学学报. 2004, 24(11): 1581~1584
    147赵永蓬,李岩,谢耀,栾伯晗,朱秋石,程元丽,王骐,杨大为.毛细管放电装置主开关结构对产生软X射线激光的影响.中国激光. 2006, 33(9): 1176~1179
    148栾伯晗,赵永蓬,程元丽,李岩,王骐.毛细管放电软X光激光的稳定输出.中国激光. 2006, 33(s): 163~165
    149栾伯晗,赵永蓬,吴寅初,程元丽,王骐.毛细管放电抽运软X光激光产生条件的实验研究.中国激光. 2005, 32(9): 1189~1192
    150 A. Ritucci, G. Tomassetti, A. Reale, F. Flora, and L. Mezi. Coherence properties of a quasi-Gaussian submilliradiant divergence soft-x-ray laserpumped by capillary discharges. Phys. Rev. A, 2004, 70: 023818-1~023818-5
    151 Yasushi Hayashi, Yifan Xiao, Nobuhiro Sakamoto, Hidekazu Miyahara, Gohta Niimi, Masato Watanabe, Akitoshi Okino, Kazuhiko Horioka and Eiki Hotta. Performances of Ne-like Ar Soft X-ray Laser using Capillary Z-Pinch Discharge. Jpn. J. Appl. Phys. 2003, Vol. 42: 5285~5289
    152 A. Ben-Kish, M. Shuker, R. A. Nemirovsky, A. Fisher, A. Ron, and J. L. Schwob. Plasma Dynamics in Capillary Discharge Soft X-ray Lasers. Phys. Rev. Lett. 2001, 87: 015002-1~015002-4
    153 Yongpeng Zhao, Yuanli Cheng, Bohan Luan, Yinchu Wu and Qi Wang. Effects of capillary discharge current on the time of lasing onset of soft x- ray laser at low pressure. J. Phys. D: Appl. Phys. 2006, 39: 342~346
    154 Tohuyuke Honda, Yasuhiro Kishikawa, Toshinobu Tokita, Hiroshi Ohsawa, Miyoko Kawashima, Akinori Ohkubo, Minoru Yoshii, Koji Uda, and Akiyoshi Suzuki. ArF Immersion Lithography: Critical Optical Issues. Proc. of SPIE. 2004, Vol. 5377: 319~328
    155 Fei Zhang, Yangqiu Li. The Fluctuation of high-order aberration’s sensitivity in ArF Immersion Lithography. Proc. of SPIE. 2006, Vol. 6034: 60341O-1~60341O-9
    156 Akihiro Yamada. ArF Immersion Lithography for 45nm and beyond. Proc. of SPIE. 2007, Vol. 6607: 66071G-1~66071G-10
    157 Nobuji Matsumura, Norihiko Sugie, Kentaro Goto, Koichi Fujiwara, Yoshikazu Yamaguchiet, Hirokazu Tanizaki, Katsushi Nakano, Tomoharu Fujiwara, Shinya Wakamizu, Hirofumi Takeguchi, Hiroshi Arima, Hideharu Kyoda, Kosuke Yoshihara and Junichi Kitano. Process Development for High Scan ArF immersion Lithography. Proc. of SPIE. 2008, Vol. 6923: 69230D-1~69230D-10
    158 Takahito Kumazaki, Toru Suzuki, Satoshi Tanaka, Ryoichi Nohdomi, Masaya Yoshino, Shinichi Matsumoto, Yasufumi Kawasuji, Hiroshi Umeda, Hitoshi Nagano, Kouji Kakizaki, Hiroaki Nakarai, Takashi Matsunaga, Junichi Fujimoto and Hakaru Mizoguchi. Reliable High Power Injection Locked 6kHz 60W Laser for ArF Immersion Lithography. Proc. of SPIE. 2008, Vol. 6924: 69242R-1~69242R-10
    159 C. H. Zhang, S. Katsuki, H. Akiyama and D. G. Xu. Extreme ultraviolet source radiated from pinch plasma for semiconductor manufacturing. Micro & Nano Letters. 2006, online No. 20065062: 99~102 ~79
    160 Tiberio Ceccotti. EUV Lithography development in Europe: present status and perspectives. Proc. of SPIE. 2004, Vol. 5196: 57~70
    161 Brian Jurczyk, Robert Stubbers, Darren A. Alman, Josh L. Rovey, Matthew D. Coventry. Experimental results for an addressable xenon microdischarge EUV source array for HVM lithography. Proc. of SPIE. 2007, Vol. 6517, 65173G-1~65173G-9
    162 A. Hassanein, V. Sizyuk, V. Tolkach, V. Morozov. Heights initial simulation of discharge produced plasma hydrodynamics and radiation transport for extreme ultraviolet lithography. J. Microlith., Microfab., Microsyst., 2004, Vol. 3 No. 1: 130~138
    163 Maria G. Capeluto, Georgiy Vaschenko, Michael Grisham, Mario C. Marconi, S. Luduena, L. Pietrasanta, Yunfeng Lu, Bruce Parkinson, Carmen S. Menoni and J. J. Rocca. Nanopatterning With Interferometric Lithography Using a Compactλ=46.9-nm Laser. IEEE Transactions on Nanotechnology, 2006, Vol. 5, No. 1: 3~7
    164 Yusuke Teramoto, Zenzo Narihiro, Daiki Yamatani, Takuma Yokoyama, Kazunori Bessho, Yuki Joshima, Takahiro Shirai, Shinsuke Mouri, Takahiro Inoue, Hiroshi Mizokoshi, Gohta Niimi, Tomanao Hosokai, Hironobu Yabuta, Kohkan C. Paul, Tetsu Takemura, Toshio Yokota, Kiyoyuki Kabuki, Koji Miyauchi, Kazuaki Hotta, and Hiroto Sato. Development of Sn-fueled high-power DPP EUV source for enabling HVM. Proc. of SPIE. 2007, Vol. 6517: 65173R-1~65173R-9
    165 Vivek Bakshi, Rainer Lebert, Bernhard Jagle, Christian Wies, Uwe Stamm, Juergen Kleinschmidt, Guido Schriever, Christian Ziener, Marc Corthout, Joseph Pankert, Klaus Bergmann, Willi Neff, Andre Egbert, Debbie Gustafson. Status Report on EUV Source Development and EUV Source Applications in EUVL. Proc. of SPIE. 2007, Vol. 6533: 653315-1~653315-11
    166 Martin C. Richardson, Kazutoshi Takenoshita, Tobias Schmid. Tin inventory for HVM EUVL sources. Proc. of SPIE. 2007, Vol. 6517: 65170S-1~65170S-8
    167 Taiichi Furukawa, Takanori Kishida, Takashi Miyamatsu, Kazuo Kawaguchi, Kinji Yamada, Tetsuo Tominaga, Mark Slezak, Katsuhiko Hieda. High Refractive Index Material Design For ArF Immersion Lithography. Proc. of SPIE. 2007, Vol. 6519: 65190B-1~65190B-10
    168 Kazuya Matsumoto, Elizabeth Costner, Isao Nishimura, Mitsuru Ueda, C. Grant Willson. High Index Resists for 193nm Immersion Lithography. Proc. of SPIE. 2008, Vol. 6923: 692305-1~692305-9
    169 Keita Sakai, Yuichi Iwasaki, Sunao Mari, Akihiro Yamada, Makoto Ogusu, Keiji Yamashita, Tomofumi Nishikawara, Takatoshi Tanaka, Noriyasu Hasegawa, Shin-ichi Hara, and Yutaka Watanabe. Immersion exposure system using high-index materials. Proc. of SPIE. 2008, Vol. 6924: 69242H-1~69242H-12
    170 Shuji Nakao, Shinroku Maejima, Yuko Mitarai, Takuya Hagiwara, Sachiko Ogawa, Tetsuro Hanawa and Kazuyuki Suko. Application of Super-Diffraction-Lithography (SDL) for Advanced Logic. Proc. of SPIE. 2008, Vol. 7028: 70283G-1~70283G-9
    171 Kentaro Matsunaga, Tomoya Oori, Hirokazu Kato, Daisuke Kawamura, Eishi Shiobara, Yuichiro Inatomi, Tetsu Kawasaki, Mitsuaki Iwashita and Shinichi Ito. LWR Reduction in low k1 ArF immersion lithography. Proc. of SPIE. 2008, Vol. 6923: 69231E-1~69231E-9
    172 Kazutoshi Takenoshita, Simi A. George, Tobias Schmid, Chiew-Seng Koay, Jose Cunado, Robert Bernath, Christopher Brown, Moza M. Al-Rabban, William T. Silfvast and Martin C. Richardson. Characterization of the Tin-doped droplet laser plasma EUVL sources for HVM. Proc. of SPIE. 2007, Vol. 6517: 65173O-1~65173O-9
    173 A. Egbert, B. Mader, B. Tkachenko, A. Ostendorf, C. Fallnich, B. N. Chichkov. Compact electron-based extreme ultraviolet source at 13.5nm. J. Microlith., Microfab., Microsyst., 2003, Vol. 2 No. 2: 136~139
    174 Masaki Yochioka, Denis Bolshukhin, Guido Hergenhan, Jurgen Kleinschmidt, Vladimir Korobochko, Guido Schriever, Max. C. Schurmann, Chinh Duc Tran, Christian Ziener. Progress on Xe-DPP source development for Alpha phase. Proc. of SPIE. 2008, Vol. 6921: 69210U-1~69210U-6
    175 Takaharu Miura, Katsuhiko Murakami, Kazuaki Suzuki, Yoshiaki Kohama, Kenji Morita, Kazunari Hada, Yukiharu Ohkubo. Nikon EUVL development progress update. Proc. of SPIE. 2007, Vol. 6517: 651707-1~651707-10
    176黄宗琳,王欲知.毛细管放电着火特性的研究.电子学报. 1985, 13(1): 72~80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700