用户名: 密码: 验证码:
可见光CCD的激光致眩现象与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可见光CCD已被广泛应用于科研、生产、生活及国防等各大领域,在探测、识别、鉴定、照相、跟踪、遥感和侦查等方面发挥了重大作用。然而,在可见光CCD受到激光辐照时,它的图像传感性能将会暂时下降或丧失,这就是可见光CCD的激光致眩效应。发掘激光致眩现象并深入剖析其机理有助于正确认识可见光CCD因受强光辐照而输出的失真图像;有助于对可见光CCD进行防护;还有助于对它进行主动干扰。
     本文基于对可见光CCD基本结构、工作原理和常用技术的理解,主要对其激光致眩现象和机理进行了一系列研究。研究内容如下:
     1.基于体沟道CCD包含信号电荷状态的一维解析模型,给出了耗尽层尺寸随信号电荷量变化的函数关系。利用该函数给出了沟道电势和表面电势等重要参量随信号电荷量的变化公式。利用这些公式,分析了体沟道CCD电荷处理容量的有限性。
     2.根据线性工作状态下光强正比于其图像灰度值的设计思想,建立了一种获取精确的CCD图像饱和阈值的方法。在此基础上,给出了测量CCD芯片在强光区间(下限高于图像饱和阈值)内光强响应曲线和利用该曲线确定CCD芯片饱和阈值的方法。分析给出了CCD强光响应曲线中芯片饱和区域仍缓慢上升的原因。
     3.发现了CCD视频中两个关于串扰的新现象:串扰线缺口和非对称的传统串扰线。利用一种新的串扰机制解释了这两种现象的成因。将这种新的串扰机制和传统串扰机制分别称为第一类和第二类串扰。基于第一类串扰机制,指出了在某些特定条件下,在激光开始或停止照射的场图像中存在光斑单侧串扰线的现象,并通过实验对此进行了验证。实验复现了两种由前人发现但未经解释的串扰现象:均匀串扰线和漂移小光点现象。利用第一类串扰机制对它们进行了解释。文中将这种漂移光点称为次光斑,给出了次光斑距离公式和移动方向判定条件公式,距离公式计算结果与实验结果一致。
     4.发现了可见光CCD的过饱和效应。实验发现了CCD过饱和效应的特征图像和特征波形。揭示了过饱和效应产生的内在机制。建立了CCD检测电荷的等效电路,并根据所提出的过饱和内在机制,利用等效电路对过饱和波形进行了仿真;给出了过饱和效应光强阈值的量级估算方法。
     5.发现了三种由CCD常用技术或工作体制所引起的特殊激光致眩现象:光斑振荡现象、线阵CCD旁光斑现象和TDI-CCD视频条纹现象。研究确认了与这三种特殊致眩现象相关的技术和工作体制;给出这些现象产生的具体原因。对于条纹现象,本文还给出了条纹宽度、间距宽度和可见度的计算分析公式,条纹宽度及间距公式的计算结果及可见度公式分析结果与实验结果一致。结合CCD黑体基准技术,给出了面阵CCD基于串扰的一种暂时性全黑屏机制。给出了光斑所在背景图像全部丢失现象的产生原因。
Visible light CCD is widely used in many scopes such as scientific research,production,living and national defense etc. It plays an important role in many aspects such as detection, recognition, identification, taking pictures, tracking, remote sensing, and inspection, etc. However, when irradiated by intense light,for example laser, its performances will temporarily decline or loss. This is named as laser dazzling effect. To discover the phenomena of the laser dazzling effect and study its mechanism can help us to understand the distortion picture of CCD, prevent the CCD from being dazzled by intense light, and disturb the enemy CCD.
     On the basis of knowing enough about the basic structures, work processes and normal technology of CCD camera, this dissertation gives a series of study mainly on its laser dazzling phenomena and mechanisms. The contents of work are introduced briefly as follows:
     (1)Based on one dimensional analytical model of body-channel CCD containing charge package, relational expression between depletion layer dimension and quantity of signal charge had been given, by which the voltages in channel and surface were expressed. Using them, the thresholds of signal charge that could be manipulated by CCD had been analyzed.
     (2)According to the proportional relation between the light density and grey value under the linear state, a method to measure light density exact threshold of CCD video saturation was built, on the basis of which, the methods to measure the intense light response curve of CCD chip and to determine the light density saturation threshold of CCD chip using the curve were built. The reason of slow rise in the saturation scope of the response curve was given.
     (3)In experiment, we two new phenomena about crosstalk: the gap on crosstalk line and nonsymmetric traditional crosstalk line. We used a new crosstalk mechanism to explain the two phenomena. This new mechanism and traditional crosstalk mechanism were separately named as the first and second crosstalk. Based on the first crosstalk, the unilateral crosstalk line in some special situation was predicted and confirmed in experiment. The even crosstalk line and small moving spots phenomena were reproducted in experiment and were explained using the first crosstalk mechanism. These moving spots were named as subordinate sopts. Their distance formula and the moving direction determinant formula were given. The distance formular was confirmed by experiment results.
     (4)We discovered the excessive saturation effect of visible light CCD. In experiment, the characteristic video and waveform of excessive saturation effect had been discovered. Its intrinsic mechanism had been given. The equivalent circuit of CCD charge measurement was built. Using it, based on the mechanism, the characteristic waveform had been simulated. And based on the intrinsic mechanism, the method to estimste the order of light intensity threhold of excessive saturation effect of CCD had been given.
     (5)We discovered three special laser dazzling effects that are induced by the usual technology and operation manner used in CCD system: spots vibration of planar CCD, side spots of linear CCD and fringes of TDI-CCD. We cognized the technologies related to the special dazzling phenomena and gave the detailed reasons of the phenomena. About fringes phenomenon, the formulas of their width, space width and visibility have been given.These formulas have been confirmed by experiment results.Combining a black reference technology, we gave the reason of temporary blank screen caused by crosstalk in planar CCD. The reason of background image loss except spots was given.
引文
[1]W.S.Boyle, G.E.Smith.Charge Coupled Semiconductor Devices[J].The Bell System Technical Journal,1970,(4):587~593.
    [2]G.F.Amelio, M.F.Tompsett, G.E.Smith.Experimental Verification of the Charge Couled Device Concept [J].The Bell System Technical Journal,1970,(4):593~600.
    [3]M.Tompsett, G.Amelio and G.Smith.Charge Coupled 8-bit Shift Register[J]. Appl.Physics Ltrs.17(3),1970:111~115
    [4]M.F.Tompsett, et al. Charge Coupled Semiconductor Devices: Experimental Result s [J].IEEE Trans. Electron Devices, Vol.ED-18, No.11, 1971:992~996
    [5]W.F.Kosonocky, J.E.Carnes.Charge-Transfer Devices [J].ISSCC Dig. Tech. Papers, 1972:132~133
    [6]Walden R.H., Krambeck R.H., Strain R.S. et al. The Buried Channel Charge Couled Device [J]. The Bell System Technical Journal,51(7)1972:1635~1640
    [7]L.Esser. Peristaltic Charge Coupled Device: A New Type of Charge Tansfer Device [J].Electron Lett. Vol.8,1972:620~621
    [8]C.Kim, J.Early and G.Amelio.Buried Channel Charge Coupled Devices[C]. Conf.proc.NEREM, 1972:161~164
    [9]W.Boyle, G.Smith.Buried Channel Charge Coupled Devices [P].U.S.Patent, 3792322, issued Feb.12, 1974
    [10]W.F.Kosonocky, J.G.Carens.Charge-Coupled Digital Circuits [J].ISSCC Dig. Technical Papers,1971:162~163
    [11]M.H.White. Characterization of Surface Channel CCD Image Arrays at Low Light Levels [J].IEEE J. Solid-State Circuits, Vol.SC-9, No.1, 1974:1~12
    [12]越智成之.インタ一ライン型CCD撮像装置[p].特許登録第1522884号
    [13]寺西信一,ほか.P+nP-構造フォトダイオ一ドを用いたIL-CCDの残像特性,テレビジヨン学会全国大会予稿集,1981:45~46
    [14]N.Teranishi. No Image Lag Photodiode Structure in the Interline CCD Image Sensor [J]. IEDM Tech. Dig.1982:324~327
    [15] Y.Ishhara, K.Tanigaki.A High Photosensitivity IL-CCD Image Sensor with Monolithic Resin Lens Array [J]. IEDM Tech.Dig.1983:497~500
    [16]米本和也,ほか.固体撮像装置[P].特許第2026040号.
    [17]黒田隆男,ほか.FIT-CCD撮像素子[C].テレビジヨン学会全国大会予稿集,1982:2~8
    [18]T.Kinugasa, et al.Electronic Image Stabilizer for Video Camera Use [J].IEEETrans. On Consumer Electronics, Vol.36, No.3,1990:520~525
    [19]A.Kobayashi, et al.A 1/2-in 380k-pixel Progressive Scan CCD Image Sensor [J]. ISSCC Dig.Tech.Papers,1993:192~193
    [20]B.Oke. Seyfert Galaxies and Quasars [J].J.of the Royal Astronomical Soc.of Canada, Vol.72, No.3, 1978:121~137
    [21]名雲文男.創立50周年記念特集1.映像情報メデイァのランドマ一ヶ1-4CCDビデオカメラ[J],映像情報ラデイァ学会誌,Vol.54,No.4,2000:486~492
    [22] T.Kumesawa, et al. High-resolution CCD Image Sensors with Reduced Smear [J].IEEE Trans. Electron Devices, Vol.ED-32, No.8, 1985:1451~1456
    [23]W.Kosonocky, J.Carnes, M.Kovac , et al. Control of Blooming in Charge-Coupled Imagers[J]. RCA Rev. Vol.35, 1974:3~24
    [24]Y.Ishihara, E.Oda, H.Tanigawa et al. Interline CCD Image Sensor with an Antiblooming Structure [J].ISSSCC Dig.Tech.Papers, 1982:168~169,314
    [25]J.Hynecek. Electron-hole Recombination Antiblooming for Virtual Phase Imager [J]. IEEE Trans.Elec.Devices, Vol.ED-30, No.8, 1983: 941~948
    [26]M.Vande Steeg, H.Peek, J.Bakker. A Frame Tansfer CCD Color Imager with Vertical Antiblooming [J].IEEE Trans.Elec.Devices, Vol.ED-32, No.8, 1985:1430~1438
    [27]S. L. Kosman, E. G. Stevens, J. C. Cassidy, et al.A Large Area 1.3-Megapixel Full-Frame CCD Image Sensor with a Lateral-Overflow Drain and a Transparent Gate Electrode[C]. 1990 IEDM Tech. Digest, Dec. 1990: 287
    [28]E.G.Stevens, S.L.Kosman, J.C.Cassidy, et al.A Large Format 1280×1024 Full Frame CCD Image Sensor with a Lateral Overflow Drain and Transparent Gate Electrode[C].Proc.SPIE,Vol.1147,1991:274~282
    [29]E. G. Stevens, T-H. Lee, B. C. Burkey.Antiblooming Structure for Solid-State Image Sensor [P]. U. S. Patent5130774, issued July 14, 1992.
    [30]J.Janesick. Prevent Blooming in CCD Images [J].NASA Tech.Briefs Vol.16, No.7, 1992:20
    [31]A.Theuwissen, H.Peek, M.van de Steeg,et al. A 2.2-m Pixel FT-CCD Imager According to the Eureka HDTV Standard [J].IEEE Trans.Elec.Devices, Vol.40, No.9, 1993:1621~1629
    [32]E.K.Banghart, E.G.Steven.Lateral Overflow Drain, Anti-blooming Structure for CCD Devices Having Improved Breakdown Voltage [P].U.S.Patent 6624453, issued September 23, 2003.
    [33]Edmund K.Banghart, Eric G.Stevens, Hung Q.Doan et al. An LOD with Improvd Breakdown Voltage in Full-Frame CCD Devices[C].Proc. SPIE-IS&T Electronic Imaging, Vol.5678, 2005:34~47
    [34]E. G. Stevens, E. K. Banghart, H. Q. Doan, et al. 8.3MP, 4/3" Full-Frame CCD with Scaled LOD and Micro Optics[C].IEEE CCD & AIS Workshop, Japan 2005:250~253
    [35]Eric J. Meisenzahl, Edmund K. Banghart, David N. Nichols, et al. 31 Mp and 39 Mp full-frame CCD image sensors with improved charge capacity and angle response[C].http://www.kodak.info/global/plugins/acrobat/en/business/ISS/supportdocs.
    [36]P.V.Dressendorfer.Radiation-hardening Technology[M].John Wiley&Sons, 1989: 334
    [37]F.Wulf, M.Heyns, P.Debenest, I.Debusschere, A.Kelleher.Optimizing and Controlling the Radiation Hardness of a CCD Process[C].Proc. of the RADECS Conf., Montpellier (F), 9-12, Sept.1991:362~367
    [38]A. Simone, I. Debusschere, A. Alaerts, etc. Ionizing Radiation Hardening of a CCD Technology [J].IEEE Transactions on Nuclear Science, Vol. 39, No.6, 1992:1964~1973
    [39]Sophie Caranhac, Jean-Louis Coutures, etc.Comparative Evolution of Various CCD Image Sensors Hardening Techniques with Ionizing Radiation [C]. Proc.of IEEE, RADECS 93,1993:396~400
    [40]Niu Yanxiong, Yao Jianquan, Wang Yuefeng etc. Reaseach on the laser disturbing and damage of TV tracking system [J].SPIE , Vol.4914, 2002, 247~252
    [41]周建民,付有余,郭劲,等.电视制导武器的激光干扰及其效果评估[J].长春理工大学学报,Vol.26,No.4,2003:108~110
    [42]巨养锋.高重频激光器在光电对抗中的作用[J].航天电子对抗,Vol.21, No.5, 2005:26~27,31
    [43]黄峰,汪岳峰,王金玉等.高重频固体激光器在光电对抗中的应用研究[J].红外与激光工程, 2003, 32(5):465~467
    [44]卢杰,韩力,曹延生. CCD激光测距实验[J].物理实验,Vol.23,No.6, 2003:35~36,47
    [45]张冬梅,尚春民,乔彦峰. CCD激光自准直系统测光电经纬仪车载平台变形[J].光电工程,Vol.33,No.2,2006:25~28
    [46]张冬梅,尚春民,乔彦峰.提高CCD激光自准直测量系统精度的一种方法[J].电光与控制,Vol.13, No.2,2006:38~40
    [47]李文华,罗余庆,唐文.激光-线阵CCD技术的热轧机辊形检测系统[J].辽宁工程技术大学学报,Vol.22,No.3,2003:397~399
    [48]王玉田,崔立超,葛文谦,等.基于激光-线阵CCD技术的轧辊磨损度检测系统[J].计量学报,Vol.27,No.3,2006:224~227
    [49]赵育良,许兆林.基于CCD的微缝宽激光测量系统的改进[J].红外与激光工程,Vol.35, No.1,2006:75~77,97
    [50]贾光明,张贵忠,向望华.用全固态激光器和一维CCD测定微粒粒径[J].光子学报,Vol.35,No.9,2006:1293~1295
    [51]石成英,朱满林,姜勤波.CCD激光微位移测量系统的测量头设计[J].激光杂志, Vol.22, No.2, 2001:40~41
    [52]石成英,姜勤波,王少龙. CCD激光微位移测量头在应用中的问题及对策[J].激光杂志,Vol.25,No.3,2004:78~79
    [53]赵育良,张忠民.基于CCD激光干涉微位移测量系统准确度分析[J].传感器技术, Vol.12,No.7,2002:35~37
    [54]赵育良,许兆林,李开端.基于CCD的激光微位移测量系统研究[J].激光技术,Vol.27,No.1,2003:73~75
    [55]邹万军,朱国力,吴学兵.基于面阵CCD的激光角度测量系统的研究[J].光电工程,Vol.33, No.10,2006:91~95
    [56]张尧禹,张明慧,乔彦峰.一种高精度CCD激光自准直测量系统的研究[J].光电子激光,Vol.14,No.2,2003:168~170
    [57]徐秀芳,胡晓东,陈良益.高精度激光自准直经纬仪CCD电子测量技术[J].电子测量技术,No.3,2001:1~3
    [58]陈明君,赵清亮,姜承宾,等.双路激光-CCD零件尺寸动态检测仪的研制[J].压电与声光,Vol.26,No.3,2004:182~185
    [59]陈明君,谢大纲,李旦,等.双路激光-CCD零件尺寸动态检测中的关键技术[J].光电工程,Vol.31,No.3,2004:33~36,40
    [60]丁苏红,付辉,王会生.高速钻床颈跳的激光衍射CCD测量系统的研究[J].测控技术,Vol.24,No.2,2005:71~72
    [61]何社阳,董庆伟,黄晓东.基于激光CCD技术的动态倾角测试系统[J].微计算机信息,Vol.23,No.3-1,2007:165~166,172
    [62]张东梅,尚春民,乔彦峰. CCD激光自准直旋转靶标轴系跳动测量系统[J].测试技术学报,Vol.20,No.5,2006:407~411
    [63]敖磊,谭久彬,崔继文,等.一种快速高精度激光CCD自准直仪圆目标中心的定位方法[J].光学学报,Vol.27,No.2,2007:253~258
    [64]敖磊,谭久彬,崔继文,等.激光CCD自准直仪圆目标中心抗噪声精确定位方法[J].中国激光, Vol.33,No.12,2006:1609~1614
    [65]胡铁军,王克争,陈新征,等.半导体激光器在CCD焊缝跟踪系统中的应用[J].电焊机,Vol.32,No.3,2002:25~27,44
    [66]何平,吕楠,赵玉珊,等.基于CCD激光千分尺的新型铁路列车轮对轴颈检测系统[J].铁道车辆,Vol.42, No.11, 2004: 27~29
    [67]陈明君,姜承宾,李旦.激光-CCD器件在自动化精密测量中的应用[J].压电与声光, 23(6),2001:415~418.
    [68]CHEN Mingojun,LI Dan,JIANG Cheng-bin.On-line measurement ofTool Wear Using Laser-CCD in Ultra-precision Cutting Process[J].SPIE ,200l,4602(11):320~324.
    [69]曹坚,钱苏翔,杨世锡,等.基于激光-CCD的高精度在线测厚系统研究[J].机械设计与研究,Vol.22, No.6, 2006: 91~94, 98
    [70]栾崇林,黎源倩,杨经国. CCD阵列检测-激光诱导荧光光度法测定食品中锌[J].理化检测,Vol.39, No.6, 2003: 336~338
    [71]詹福如,徐琼,苏国峰,等.基于CCD成像的多角度激光散射探测技术[J].火灾科学,Vol.11, No.1,2002:52~56
    [72]柯杰,赵桂芝,伊哲,等.激光三维测量在牙颌模型分析中的应用——CCD与激光三维扫描装置[J].中国现代临床医学, Vol.3, No.6, 2004:56~57
    [73]王斌,张忠萍,杨福民,等.一种基于CCD的白天激光光束的监视方法[J].中国科学院上海天文台年刊, No.25, 2004: 63~68
    [74]张文涛,朱保华.利用CCD研究激光束在大气随机信道中的传输特性[J].应用光学, 25(5),2004:33~36
    [75]马景龙,马维义,周创志.利用普通视频CCD作为紫外激光和软X射线探测器的研究[J].强激光与粒子束,Vol.16, No.2, 2004:185~188
    [76]向晓燕,陈海清,吴鹏,等.基于CCD的激光束宽自适应测量算法[J].激光技术,Vol.30,No.5,2006:552~554,557
    [77]王虎,苗兴华.一种CCD辅助测量基模(TEM00)激光光斑尺寸的方法[J].光子学报, Vol.30, No.10, 2001:1286~1288
    [78]胡林亭,卢显葵,金俊坤.CCD测量激光光斑方法研究[J].激光技术,Vol.25, No.2, 2001:154~157
    [79]龚华平,吕志伟,林殿阳.激光光强分布测量中CCD数字图像的预处理[J].光电子激光,Vol.18,No.1,2007:125~127
    [80]曹一磊,高春清.基于面阵CCD的激光光束参数测量系统精度分析[J].光学技术,Vol.30,No.5,2004:583~586
    [81]高雪松,高春清,杨绍状.面阵CCD激光束参量测量系统及其实验研究[J].中国激光,Vol.32,No.7,2005:993~996
    [82]邹晶,赵圣之,杨克建,等.CCD测量LD端面抽运Nd:GdVO4固体激光器热焦距[J].激光技术, Vol.30,No.4,2006:422~424,428
    [83]肖金陵,虞瑶.基于CCD的激光切割焦点位置控制系统的设计与实现[J].光电技术应用,Vol.24,No.4,2006:42~43
    [84]雷剑波,杨洗陈,陈娟,等.激光熔池CCD测温系统的软件设计研究[J].应用激光,Vol.27,No.1,2007:5~8
    [85]朱振友,朴永杰,林涛,等. CCD摄像机像面中心的激光标定方法研究[J].激光杂志, Vol.25,No.1,2004:35~36
    [86]M. H.Crowell and E. F. Labuda.The silicon diode array camera tube [J]. Bell Syst. Tech. J. 1969, vol. 48: 1481~1528.
    [87]DAKD H. SEIB. Carrier Diffusion Degradation of Modulation Transfer Function in Charge Coupled Imagers. IEEE, Transactions on Electron Devices, Vol.ED-21, NO.3, 1974:210~217
    [88]R.H.Dyck, W.Steffe.Effects of optical crosstalk in CCD image sensors[C].in Proc.5th Int.Conf on Applications of Charge-Coupled Devices.San Diego, CA, 1978:1-55~1-61
    [89]James. P. Lavine, Win-Chyi Chang, Constantine N. Anagnostopoulos.Monte Carlo Simulation of the Photoelectron Crosstalk in Silicon Imaging Devices.IEEE Transactions on Computer-aided Design. CAD-4(4),1985:531~535
    [90]Eric G.Stevens. Photoresponse Nonlinearity of Solid-State Image Sensors with Antiblooming Protection [J].IEEE, Transactions on Electron Devices, Vol.38, No.2, 1991: 299~302
    [91]Eric G.Stevens, Yung-Rai Lee, and Bruce C.Burkey.The Effects of Smear on Antiblooming Protection and Dynamic Range of Interline CCD Image Sensors [J]. IEEE, Transactions on Electron Devices, Vol.39, No.11,1992:2508~2514
    [92]Shin’ichi Kawai, Michihiro Morimoto, Nobuhiko Mutoh, and Nobukazu Teranishi.Photo Response Analysis in CCD Image Sensors with a VOD Structure [J].IEEE, Transactions on Electron Devices,1995,42(4):652~655
    [93]Michael F.Becker, Chenzhi Zhang, Steve E.Watkins etc. Laser-induced Damage to Silicon CCD Imaging Sensors[J].SPIE Vol.1105,Materials for Optical Switches, isolators, and Limiters,1989:68~77
    [94]Michael F.Becker, Chenzhi Zhang, Ludovic Blarre etc. Laser-induced functional damage to silicon CCD sensor arrays[J].SPIE Vol.1624 Laser-Induced Damage in Optical Materials,1991:67~79
    [95]Zhang C Z, Steve E.W, Rodger M.W. et al. Laser-induced Damage to Silicon Charge-coupled imaging devices [J]. Optical Engineering, 1991,30(5):651~656
    [96]Zhang C Z,Blarre L D,Walser R M,et a1.Mechanisms for laser induced32(27):5201~5210.
    [97]Flora M. Li, Nixon O, and Arokia Nathan.Degradation behavior and damage mechanisms of CCD image sensor with deep-UV laser radiation [J]. IEEE Transactions on Electron Devices, Vol. 51, No. 12, 2004:2229~2236
    [98]N.Machet, C.Hubert-Habart, V.Baudinaud.Study of the mechanism of electronic diffusion in a CCD camera subject to intense laser illumination[C].RADECS 1997, 97: 417~423
    [99]P.G.Chua, Y.Tanaka, M.Takeda, and T.Kurokawa.Infrared Image Detection with Si-CCD Image Sensor due to Two-Photon Absorption [C].Process.4th Pacific Rim Conference on Lasers and Electro-Optics[A], vol.1,2001:pp.I-482~I-483
    [100]Matthias Loch, Ralf Widenhorn and Erik Bodegom, Infrared Response of Charge-coupled Devices[A].proc of SPIE[C],2005,5677:201~208
    [101]Anne Durécu*, Pierre Bourdon, Olivier Vasseur.Laser-dazzling effects on TV- cameras: analysis of dazzling effects and experimental parameters weight assessment [C]. Proc. of SPIE Vol.6738, 2007:67380L -1~67380L-6
    [102]Anne Durécu*, Olivier Vasseur, Pierre Bourdon.Assessment of laser-dazzling effects on TV-cameras by means of pattern recognition algorithms [C].Proc. of SPIE, Vol. 6738, 2007: 67380J-1~67380J-9
    [103]Anne Durécu*, Olivier Vasseur, Pierre Bourdon.Quantitative assessment of laser-dazzling effects on a CCD-camera through pattern-recognition-algorithms performance measurements[C].Proc. of SPIE Vol. 7483, 2009:74830N-1~74830N - 11
    [104]刘泽金,陆启生,蒋志平.CCD的强光饱和效应与热效应的实验研究,1991年激光的热与力学效应学术会议,上海
    [105]刘泽金,陆启生等,激光辐照成像CCD局部引起饱和效应的实验研究,1992年激光的热与力学效应学术会议,绵阳
    [106]刘泽金,陆启生,蒋志平,等.激光辐照CCD图像传感器局部的破坏效应研究[J].激光技术,1994,18(6):344~347.
    [107]刘泽金,陆启生,蒋志平,等.面阵CCD图像传感器的点破坏机理研究[J].应用激光,1995,15(2):86~88.
    [108]钟海荣等.连续波氧碘激光辐照线阵CCD探测器局域的破坏效应研究[C].1995年全国激光的热和力学效应学术交流会文集,无锡
    [109]钟海荣,陆启生,文铁峰,等.激光辐射CCD的破坏机理分析[J].强激光与粒子束,1998,10(4):537~542.
    [110]许晓军,曾交龙,陆启生,等.连续波YAG激光辐照对面阵CCD探测器成像质量影响的研究[J].激光与红外, Vol.28,No.1,1999:36~39
    [111]侯静,陆启生,舒伯宏.CCD探测器的视场内与视场外饱和效应[C].全国激光热和力学效应学术交流会文集.合肥,1999
    [112]Jing Hou, Qisheng LU, Bohong Shu. Saturation of Charge-coupled Devices Irradiated by Laser out of the Field of View[C].SPIE, Vol.3862,1999:577~581
    [113]曾雄文,陆启生,赵伊君,刘泽金. CCD的光电特性研究[J].强激光与粒子束.1999, 11(1):47-51
    [114]王金宝.激光辐照可见光面阵Si-CCD探测器实验研究[D].长沙:国防科学技术大学,2003
    [115]王金宝,程湘爱,郭少锋等.长脉冲激光对可见光CCD破坏作用的研究[C].第七届全国激光科学技术青年交流会论文集,2003.8
    [116]张震.可见光CCD的激光辐照效应实验研究[D].长沙:国防科学技术大学, 2005
    [117]张震,程湘爱,李文煜等.激光造成线阵CCD横向饱和机理分析[J].强激光与粒子束, 2005, Vol.17,No.s1:48~52
    [118]李文煜,王金宝,程湘爱,等.激光对面阵CCD器件破坏的一种新机理[J].强激光与粒子束, 2005, 17(10):1457~1459.
    [119]王飞.单元光伏型碲镉汞探测器及可见光CCD的激光损伤机理研究[D].长沙:国防科学技术大学, 2006
    [120]郭少锋,程湘爱,傅喜泉.高重复频率飞秒激光对面阵CCD的干扰和破坏[J].强激光与粒子束.2007,19(11):1783~1786
    [121]罗群.宽光谱光源对可见光CCD的干扰效应研究[D].长沙:国防科学技术大学,2008
    [122]罗群,程湘爱等,超连续谱光源辐照可见光面阵CCD的干扰效应研究,第九届全国物理力学会议,2008年9月
    [123]江天.激光辐照3CCD的饱和干扰效应及效果评估研究[D].长沙:国防科学技术大学,2009
    [124]江天,罗群,程湘爱.连续激光对3CCD系统的饱和阈值测量[J].中国激光, Vol.36,光电技术专刊,2009:203~205
    [125]江天,程湘爱.激光辐照3CCD规则分布亮点的研究[J].激光技术, Vol.34, No.2, 2010:168~169,213
    [126]倪晓武,陆建,贺安之,激光对CCD器件破坏时几种阈值的测量,激光技术,1994年6月,Vol.18,No.3:153~156
    [127]Xiao-Wu Ni, Jian Lu, Zhen-hua Lin et al. Measurement of Kinds of Thresholds during the Interaction berween the Laser Beam and the CCD[J].SPIE,Vol.2415:250~254
    [128]倪晓武,陆建,贺安之.激光对电荷耦合器件硬破坏机理研究[J].物理学报,1994,43(11):1795~1802.
    [129]倪晓武,陆建,贺安之.高功率激光与MNOS型电荷耦合器件相互作用过程的等离子体诊断[J].科学通报,Vol.40, No.12,1995:1077~1079
    [130]Xiao-Wu Ni, Jian LU, An-Zhi He.Diagnosis of Plasma in CCD Damage Process Induced by Laser [J].SPIE, Vol.2005:272~276
    [131]陈德章,卿光弼,张承铨,等.激光对CCD固体摄象器的饱和干扰效应[J].激光技术, Vol.21,No.3,1997:146~148
    [132]蔡德芳,史晓华,文建国,等. CCD探测器的饱和阈值的光谱特性研究[J].激光杂志,Vol.21,No.3,2000:14~15
    [133]王世勇,付有余,郭劲.脉冲激光辐照CCD面阵探测器系统局部的干扰效应研究.应用激光. Vo l. 21, No. 5, 2001: 317-318and 298
    [134]王世勇,付有余,郭劲.激光辐照面阵CCD探测器系统局部的干扰效应[J].半导体光电, Vol.23, No.2, 2002:106~108,135
    [135]王世勇,付有余,郭劲,等.脉冲激光对CCD图像跟踪系统干扰效果评估[J].激光与红外,Vol.32, No.1, 2002:20~22
    [136]周建民,付有余,郭劲.脉冲激光对CCD的软损伤技术研究[J].激光杂志, 2005, 26(2): 20-21
    [137]张雷,安源,孙小伟.地面反射太阳光对CCD探测系统影响的研究[J].半导体光电,2006,27(5):645-658
    [138]孙守红,郭立红,王立军.808nm激光对可见光面阵CCD的干扰损伤研究[J].长春理工大学学报(自然科学版).2008,31(1):19~21
    [139]赵帅.半导体激光器干扰CCD传感器实验研究[J].光机电信息, No.12, 2008:26~29
    [140]王思雯,郭立红.半导体激光器干扰CCD光电探测器的实验研究[J].激光杂志, Vol.30, No.1, 2009:28~29
    [141]王思雯,郭立红.激光对卫星探测器的干扰技术研究[J].半导体光电, 2009, Vol.30, No.4,2009:622~625
    [142]张大勇,赵剑衡,王伟平,等. 1.319μm连续YAG激光束对可见光面阵CCD系统的干扰研究[J].强激光与粒子束,2003,15(11):1050~1052.
    [143]江继军,罗福,陈建国.CCD在fs激光辐照下的损伤研究[J].强激光与粒子束, 2005, 17(4):515-517
    [144]王德臣,余云周,刘京郊.激光对面阵CCD系统干扰损伤效果研究[C].中国电子学会电子对抗分会第十三届学术年会论文集,桂林,2003:874~878
    [145]黄绍艳,张永生,唐本奇等.500fs超短脉冲激光对CCD探测器的破坏效应[J].强激光与粒子束,2005,Vol.17,No.10:1445~1448
    [146]马连英,于力,安晓霞,等. XeF(C-A)蓝绿激光对可见光面阵CCD软损伤的实验研究[J].激光杂志, Vol.30. No.6,2009:15~16
    [147]蔡越.可见光面阵Si-CCD的超短脉冲激光辐照效应实验研究[D].西安:西北核技术研究所,2009
    [148]郭占斌,尚卫东,冯光,等.两种不同脉宽的激光对CCD的干扰试验分析[J].电光系统, No.1,2007:51~52,55
    [149]林均仰,舒嵘,黄庚华,等.激光对CCD及CMOS图像传感器的损伤阈值研究[J].红外与毫米波学报,Vol.27, No.6, 2008:475~478
    [150]姜楠,张雏,牛燕雄等.脉冲激光辐照CCD探测器的硬破坏效应数值模拟研究[J].激光与红外,2008,38(10):1004~1007
    [151]沈洪斌,沈学举,周冰. 532nm脉冲激光辐照CCD实验研究[J].强激光与粒子束.2009,21(10):1449-1454
    [152]胥杰,赵尚弘,侯睿,等.光纤组束激光对可见光硅CCD的有效干扰距离分析[J].光学技术, Vol.34, No.5, 2008:758~760,763
    [153]胥杰,赵尚弘,侯睿,等.强激光对典型激光制导光电探测器的干扰效应研究[J].光学技术, Vol.38, Suppl. 2008:80~82
    [154]Xu jie, Zhao Shanghong, Hou Rui, et al.Laser-jamming Analysis of Combined Fiber Lasers to Imaging CCD [J].Optics and Lasers in Engineering, 2009:800~806
    [155]牛翀,王海晏等.连续激光辐照CCD探测器饱和阈值研究[J].微计算机信息.Vol.25, No.11-1, 2009:160~162
    [156]张晓飞,裴少婷,曹林平,等.脉冲激光辐照CCD探测器仿真研究[J].弹箭与制导学报, Vol.30, No.1, 2010:245~247
    [157]黄昆.固体物理学[M].北京:高等教育出版社,1988
    [158]Robert F.Pierret.半导体器件基础[M].黄如,等译.北京:电子工业出版社,2004:21~22
    [159]W.C.Dash, R.Newman.Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77oK and 300oK [J].Physical Review, 1955, Vol.99, No.4: 1151~1155
    [160]G. E. Jellison, Jr. and F. A. Modine.Optical absorption of silicon between 1.6 and 4.7 e Vat elevated temperatures. Appl. Phys. Lett. 1982, Vol.41. No.2:180~182
    [161]A.M.Mohsen, R.Bower, T.C.McGill, etc.Overlapping Gate Charge Coupled Devices[J].Electronics Lett,9(17),1973:396~398
    [162]C.H.Sequin, M.F.Tompsett. Charge Transfer Devices[M]. Academic PressInc., 1975:59~66
    [163]王以铭.电荷耦合器件原理与应用[M].北京:科学出版社.1987:23~28
    [164]M.J.Howes, D.V.Morgan.Charge-Coupled Devices and Systems[M]. John Wiley & Sons, 1979:47~53
    [165]周祖成,茅于海.电荷耦合器件在信号处理图象传感中的应用[M].清华大学出版社,1991:18~23
    [166]James R.Janesick. Scienfific Charge-Coupled Devices[M].Bellingham, Was- hington USA: SPIE PRESS, 2001:61~92
    [167]米本和也. CCD/CMOS图像传感器基础与应用[M].北京:科学出版社,2006:112~114
    [168]W.H.KENT. Charge Distribution in Buried-Channel Charge-Coupled Device- s[J]. The Bell Syetem Technical Journal, Vol.52, No.6, July-August, 1973:1009~1024
    [169]苏毅,万敏.高能激光系统[M].北京:国防工业出版社,2004:16~17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700