用户名: 密码: 验证码:
半导体脉冲激光测距机的硬件电路设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在尝试解决现有脉冲激光测距精度较低的难题,通过提高飞行时间测量的精度来达到提高距离测量精度的目的。在理论上,分析影响飞行时间测量精度的各种因素:在激光发射方面,使用专用的激光二极管和高性能驱动芯片产生高质量的光脉冲作为测距信号;在光信号接收方面,使用对特殊波长响应度极高的低噪声的雪崩二极管作为接收器件,利用高带宽放大芯片结合高速比较器提取有用信号。在计数部分利用低频率时钟信号源作为基准,使用倍频器PLL产生高频率的ECL电平时钟信号,意在解决高频晶体振荡器作为时钟信号源稳定度不够的问题;研究利用大规模可编程逻辑期件结合时钟电路实现高时间分辨率的计数器;运用计算机并行口进行高速数据采集。
     通过制作原理样机并进行实验,对设计方案进行验证。经实验数据分析,测距精度达到±0.3m,测距的重复率稳定在10KHz,并且有良好的抗干扰能力。进一步提高脉冲激光测距机的测距性能。
In this paper ,we will attempt to solve the problem that the precision is low in the measurement of pulse LIDAR. We improve the precision by improving the precision of measurement about the TOF .In theory , we analyze the factor that influence the precision of time measurement.
    Firstly ,we generate good light pulse.This light pulse have steep and steady rising edge and narrow width.The single pulse must have adequate power,or we can not receive the echo signal ,because it has been submerged by noise.Then we design the receiving mode using APD and amplifier and comparer.
    Secondly ,We learn that the clock benchmark's stability is a key factor for the counter. In the hardware, we study the high stabilization and frequency ECL circuit and use it as the clock benchmark.
    Lastly, we programme using VHDL Language,implement counting and controlling and get last count results and output them through parallel port.
    After the experimentation, we analyze the data and find that the precision has reached our request, 0.3m. It will expand the application range of pulse LIDAR, such as the measurement of terrain and physiognomy, trace and test of aim. Using the technology of miniaturization, we can apply it to weaponry system.
引文
1.杨培根,美国激光雷达的发展.美国军事,2003,4(3).
    2.陈千颂,杨成伟,潘志文,霍玉晶.激光飞行时间测距关键技术进展.激光与红外,2002,2:32(1).
    3.林溪波.激光技术应用综述.上海航天,1996,2:48-52.
    4.钟声远,程平.双波长激光测距系统及精度的研究[J].激光与红外,1992,22(6):53-56.
    5.霍玉晶,陈千颂,潘志文.脉冲激光雷达的时间间隔测量综述[J].激光与红外,2001,31(3):53-56.
    6.卢葱葱,赵长明,昊克瑛.利用微失调扭转模腔产生双频激光[J].北京理工大学学报,1994,343-347.
    7.孙晓明,马军山,强锡富.半导体激光器自混合干涉绝对测量理论研究,仪器仪表学报,1998,19(3):274-278.
    8.冷长奎,王建新.数字电路与逻辑设计,南京理工大学,1992,9.
    9.卢毅,赖杰.VHDL与数字电路设计,科学出版社,2001.
    10.江月松,阎平,刘振玉.光电技术与实验,北京理工大学出版社 2000,9:35-57,280-303,324-326.
    11.(美)安格森.并行端口大全,中国电力出版社,2001.
    12.张智尧,尤皓正,孙力力,梁忠义,张在宣.用于高重复率激光测距系统的环状传递延世式数码转换器,光电子-激光,2000,6:11(3).
    13.卢泽民.时间间隔测量系统用于激光测距及其误差浅析,红外与激光工程,2002.2:30(1).
    14.章正宇,眭晓林.激光测距弱信号数字相关检测技术的研究和仿真,中国激光,2002,7:29(7).
    15.郭冠军,李树楷.利用硅雪崩二极管检测激光脉冲信号,中国激光,2002,6:29(6).
    16. Avalanche Photodiodes: A User's Guide,PerkinElmer.
    17. Different Video Amplifiers, Texas Instrument, 2000, 3.
    18. SY89430 Frequency Synthesis Application Note.
    19. T Araki. Optical distance meter using a short pulse width laser diode and a fast avalanche photodiode[J]. Rev. Instrum, 1995, 66(1): 43-47.
    20. P Palorvi,T Ruotsalainen,J Kostamovara. A new approach to avoid walk error in pulsed laser rangefinding[J]. IEEE.Interm.Sympos. on Circu.and System
    
    Pro. 1999, I-258-I-261.
    21. W A Kielek. Random error in timing using weak light pulse,photomultiliier, and thresholdcrossing detection[J]. IEEE. Trans. Inst. And Mega., 1998,47(2):543-550.
    22. M L Simposon, M J Paulus. Discriminator design considerations for time-interval measurement circuits in collider detector systems. [J]. IEEE Trans. Nuel. Sci., 1998,45(1): 98-104.
    23. Y Araki, S Yokoyama, N Suzuki. Simple optical diatance meter using an intermode-beat modulation of a He-Ne laser and an electrical-heterodyne technique[J]. Rev. of Sci, Instru., 1994,65(6): 1883-1888.
    24. K Seta,T O'ishi. distance meter utilizing the intermode beat of a Hr-Ne laser[J]. App. Opt., 1990,29(3):354-359.
    25. K Seta,T Oh'ishi. Distance measurement using a pulse train emitted from a laser diode[J]. J. App. Phy.,1987,26(10):L1690-L1692.
    26. M Lescure,T Bosch,A Dziadowiee. An electro-optical frequency doubling method to remove electrical noise in laser rangefinding[J].IEEE Trans. on Instru. and Meas., 1991,IM-40(60): 1046-1047.
    27. I Fujima, S Iwasaki,K Seta. High-resolution distance meter using optical intensity modulation at 28 GHz[J]. Meas. Sci. Technol., 1998,9: 1049-1052.
    28. K Nakamura,T Hara,M Yoshida,et al. Optical frequency domain ranging by frequency-shifted feedback laser[J]. IEEE J. of Quantu. Elec.,200,36(3):305-316.
    29. S F Collins,M M Murphy, K T V Grattan,et al. A simple laserdiode ranging scheme using an intensity modulation FWCM approach[J]. Meas. and Tech.,1993,4: 1437-1439.
    30. G Mourat,N Servagent,T Bosch. Distance measurement using the self-mixing effect in a three-electrode distributed bragg reflector laser diode[J]. Opt. Eng. 2000,39(3):738-743.
    31. An Yu-ying. Principle of Photoelectric Detection [M]. Xi'an:Xidian Uninersity publishing Company, 1995.89-90 (in Chinese).
    32. Jhon J. Degnan,Jan F.MeGarry.SLR2000: Eyesafe and automomous single photoelectrotron satellite laser at Kilohertz rates[C]. SPIE,1997,3218:68-74.
    33. Zhang Cheng-quan. Manual of Frequency Militray Laser Instrument [M]. Beijing: Weapon Industry Publishing Compay, 1989,30-32(in Chinese).
    34. Sheng Zhou,Xie Shi-qian.Pan Cheng-yi. Probability and Stati-onary [M]. Beijing:High Education Publishing Company. 1995,350-352.
    
    
    35. Stephen M. Hannon,J. Alex Thomson, Sammy W. Henderson ,et al.Agile multiple pulse coherent lidar for range and microdopper mea-surement [C]. SPIE, 1998,3380: 260-264.
    36. Cheng Gui-ming,Zhang Ming-zhao,Qi Hong-yu.Using Matlab for Digital Signal and Imaging Processing [M]. Beijing:Science Press,2000.Chapter 5(in Chinese).
    37. Sean MeKena,John Yonder. Laser rader technology for airborne theater missile defense[C]. SPIE, 1995,2472:50-61.
    38. J J Degnan. Satelite laser ranging: current status and future prospect[J].IEEE Trans. Geosi. Remote Sensing, 1995,23(4): 398-413.
    39. M E Shawe,A G Adelman. Precision laser tracking for globe and polar motion[J]. IEEE Trans. Goesci. Remote Sensing, 1985,23(4):391-397.
    40. J D Mulholland. Scientific achievement from ten years of luner laser ranging[J]. Rev. Geophys. Space phys., 1980,18(4): 549-564.
    41. W M Kaula, G Schuber, R E lingerfelter et al. Apollo laser altimetry and inference as to luner structure[J]. Geochim. Cosmochim. Acta, 1974,38(12): 3049-3058.
    42. M K Rao,C. C. Gob. A Low-coss Near-IR Laser Radar. IEEE Photonics Technology Letter, 1990, 2(9): 683-685.
    43. P Palojarvi,K Maatta,J Kostamovaara. Intergrated Time-of-Flight Laser Radar. IEEE transactions on Instrument and Mesurement, 1997,46(4): 996-999.
    44. K Maatta,J Kostamovaara. A High_precision Time-to-Digital Convertion for Pulsed Time-of-Flight Laser Radar Application. IEEE Transactions on Instrumentation and Measurement, 1998,47(20): 521-536.
    45. K Park,J Park. Time-To-Digital Converter of Very High Pulse Stretching Ratio for Digital Storage Oscilloscopes. Review of Scientific Insreuments,1999, 71(2):1568-1574.
    46. T E Rahkonen,J Kostamovaara. The Use of Stabilized CMOS Delay Units for the Digitization of Short Time Intervals. IEEE Journal of Solid_State Circiuits, 1993,28(8): 887-894.
    47. S J Jang,S S Han,C S Kim,et al. A Compact Delay Line for High Speed Synchoronous DRAM Digest of Technical Paper 1998 Symposium on VLSI circuits,60-61.
    48. W Zhou, Z Q Xuan,J G Yu. Some New Methods for Precision Time Interval Measurement. Proceeding of 1997 IEEE International Frequency Control symposium,418-421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700