用户名: 密码: 验证码:
激光成像雷达地面遮蔽目标检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地面目标检测是空地探测、精确打击领域及自动目标识别技术中的重要研究课题。地面目标容易受各种人工或自然物的遮蔽,这时传统的二维成像探测系统难以获取有效的目标信息。激光成像雷达的波束较窄、方向性好,在一定程度上可以穿透遮蔽物获取部分目标信息,提供反映目标场景几何结构信息的距离像和三维点云数据。虽然激光成像雷达在信息获取上为遮蔽目标探测提供了便利,但遮蔽环境下的成像数据较为复杂,噪声、数据缺失、地物杂波等因素的干扰给遮蔽目标检测提出了挑战。本文针对上述应用背景,按照“数据获取——数据预处理——目标检测”的总体思路,分别从全波形激光成像雷达建模与仿真、激光雷达数据噪声抑制、数据配准和地面遮蔽目标检测算法四个方面展开研究,旨在解决激光成像雷达遮蔽目标检测中的诸多问题,为相关应用奠定基础。
     绪论部分阐述研究背景和选题意义,总结分析激光成像雷达技术的发展与应用、目标检测技术、遮蔽目标检测方法等领域的研究与发展现状,明确论文的研究内容与思路、结构安排和主要工作。
     第二章研究全波形激光成像雷达的建模与仿真,解决数据获取问题,为课题相关算法研究提供数据支持。首先阐述全波形激光成像雷达的基本探测原理,明确全波形回波信号的形成过程。然后针对建模与仿真中存在的问题,对仿真系统中的三个主要部分:激光束在目标场景中投影点的获取方法、激光雷达信号与目标场景的作用过程、接收机噪声与距离选通模式,进行重点研究。针对投影点获取过程中存在的大量光线求交运算和传统算法执行效率慢的问题,提出了一种基于激光束空间边界的光线求交快速算法。紧接着设计仿真系统的总体结构、具体实现步骤和系统仿真流程,完成了全波形激光成像雷达仿真系统的构建,可获取多种条件下的成像数据。最后采用理论分析与仿真实验相结合的方法,从全波形回波波形特征、距离选通模式、数据噪声特性三个方面对仿真系统的可信度进行了分析和检验。
     第三章研究激光成像雷达距离反常噪声抑制算法,为后续处理保障数据质量。首先在分析激光雷达数据各种噪声分布特性的基础上,指出距离反常的影响最大,并结合距离像和三维点云数据中的不同表现形式,分别开展距离反常抑制算法研究。针对距离像数据,依据正常像素在其邻域内至少存在少量的距离相似像素的特点,提出一种基于邻域像素检测的距离反常抑制算法。针对三维点云数据,根据距离正常点和反常点在空间邻域点数量上存在明显的差异性,提出一种基于空间邻域点数量检测的反常点抑制算法。实验验证了所提两种算法在多种条件下的距离反常抑制能力和目标区域数据保护能力,且兼顾去噪性能与执行效率。
     第四章研究激光雷达数据配准算法,解决遮蔽条件下的数据缺失问题,为实现遮蔽目标检测奠定基础。首先通过对背景需求和多视角拼接算法研究现状的分析总结,得出两视角配准是基础,迭代最近点(Iterative Closed Point,ICP)算法是关键算法的结论。然后结合遮蔽环境下的数据特点,对ICP算法主要步骤的应用策略进行分析和改进,提出了一种基于改进ICP算法的两视角配准算法。在完成两视角配准基础上,提出一种基于积累已配准相邻帧数据的多视角配准算法,该算法在序列配准策略基础上通过合并积累已配准的相邻帧数据来提高待配准数据之间的重叠区域,进而提高配准精度。实验验证了所提两种算法在不同重叠区域、不同配准初值误差条件下均具有较强的鲁棒性和较高的配准精度。最后通过原理与实验分析相结合的手段,对改进ICP算法进行影响因素分析,结果表明配准数据的视角间隔、成像模式影响较大,载体定位、定姿误差影响较小。
     第五章研究地面遮蔽目标检测算法,实现感兴趣区域(Regions of Interest, ROI)数据的分割提取。在分析遮蔽场景下各种地物空间分布特性的基础上,重点研究了三种空间滤波方法,逐步剔除地物杂波干扰。(1)基于地面数字高程模型(DigitalElevation Model, DEM)估计与高程分割的滤波方法:通过改进形态开运算,提出一种改进的渐进多尺度数学形态学滤波算法,有效实现DEM估计,剔除地面和较高地物上的杂波数据。(2)基于主分量分析法的三维点局部空间分布特性分类检测算法:提取体素邻域内数据的主分量及其贡献率,根据点分布状态与主分量贡献率的关系,实现杂散点、线状点和面状点的分类检测。(3)基于地面阴影分析的目标区域检测算法:利用感兴趣目标对于激光束的不可穿透性和在地面上形成较大面积阴影区域的固有物理特性,通过检测大面积阴影区域来检测目标区域,剔除较小、零散阴影区域内的杂波数据,其中重点推导了算法主要参数与感兴趣目标几何尺寸的关系。在空间滤波基础上,依次采用基于最近距离阈值的谱系聚类法、基于最小外接矩形位置关系的聚类分析法将各个疑似目标区域聚类为各个点集,并结合目标的几何结构信息进一步剔除虚警,实现了ROI数据的分割提取。最后总结出一种基于空间滤波和聚类分析的地面遮蔽目标检测方法的总体框架,为进一步的目标分类、识别提供了基础和条件。
     第六章总结论文的研究工作及创新性成果,指出存在的问题和后续研究方向。
Ground target detection is an important research topic in the field of air-to-groundreconnaissance, precision striking and automatic target recognition. Ground targets arelikely to be obscured by various artificial or natural objects, and it is difficult fortraditional2-D imaging systems to obtain effective target information. The beam ofimaging laser radar (ladar) is narrow and directional. As a result, it can penetrate theoccluder to detect a fraction of the target surface to a certain extent, and obtain the rangeimage and3-D point cloud data which reflect the geometric structure of the target scene.The imaging ladar facilitates information acquisition for obscured target detection, butthe imaging data is more complex in the obscure environment. Therefore, it becomes atechnical problem how to extract target due to the interference of noise, clutter and lackof data. Based on this application background, this dissertation adopts ‘data acquisition,data preprocessing, target detection’ as the overall line of thought, and studies datamodeling and simulation, noise suppression, data registration, and detection algorithm,with the goal to solve the problems of obscured target detection of imaging ladar, andprovides foundation for related applications.
     Introduction describes the background and significance of the topic considered.The study status of the development and application, target detection technology, andobscured target detection methods for imaging ladar are summarized and surveyed. Ourwork and organization of the dissertation are introduced at last.
     Chapter2studies the modeling and simulation methods for the full-waveformimaging ladar, which aims at solving the problem of data acquisition and provides datasupport for the related algorithms. Firstly, the basic principle of the full-waveformimaging ladar is described, and the formation process of full-waveform echo signal isrealized. Secondly, focusing on problems in modeling and simulation, we study andmodel the three major components of a simulation system, which are the method ofobtaining projection points of the laser beam in the target scene, the action processbetween the ladar signal and target scene, and the receiver noise and range-gated mode.There are many ray-intersection operations in the obtaining process of projection points,and traditional algorithms are inefficient. To solve this problem we propose a novelray-intersection fast algorithm based on the space boundary of the laser beam. Thirdly,we introduce the overall structure, specific steps and flow chart of the simulation system,and construct a simulation system of full-waveform imaging ladar. The system canprovide imaging data under a variety of conditions. Finally, combining theoreticalanalyses and simulation experiments, we analyze and verify the reliability of thesimulation system from three aspects, which are waveform characteristics of thefull-waveform echo signal, range-gated mode, and noise characteristics of the imaging data.
     Chapter3studies the noise suppression algorithm of ladar data to provide highquality data for subsequent processing. Firstly, based on analysis of the distributioncharacteristics of all kinds of noise in the ladar data, we point out that the effect of rangeanomaly is the most important factor. Then combining different behaviors of rangeanomaly in the range image and3-D point cloud data, the suppression algorithms arestudied separately. For the range image, we propose a range anomaly suppressionalgorithm based on neighborhood pixels detection, according to the fact that there are atleast a small amount of range-similar pixels in the neighborhood of the normal pixel.For the3-D point cloud data, there are significant differences in the number of points inspace neighborhood (NPSN) between the normal and anomalous point, and ananomalous point suppression algorithm based on NPSN detection is proposed. Wevalidate the range anomaly suppression performance and the capability of protectingtarget data of the two proposed algorithms by experiments, taking into account theirdenoising performance and implementation efficiency.
     Chapter4studies the ladar data registration algorithm, which is to solve theproblem of data insufficiency in the obscure environment and provides foundation forobscured target detection. Firstly, through analyzing and summarizing the backgroundrequirements and the study status of multi-view registration algorithm, we find that thetwo-view data registration is fundamental and the iterative closest point (ICP) algorithmlies in the core. Secondly, combining the data characteristic in the obscure environment,we analyze and improve the application strategies of the ICP's main steps, and propose atwo-view data registration algorithm based on improved ICP. Thirdly, a multi-view dataregistration algorithm based on aggregating the adjacent frames which are alreadyregistered is proposed. Based on the sequence registration strategy, it increases theoverlap region between the pending registration frames by aggregating, and furtherimproves the registration accuracy. Experiment results validate that the two proposedalgorithms have greater robustness and higher registration accuracy under conditions ofdifferent overlap regions and initial errors. Finally, we analyze the impact factors of theimproved ICP through the means of a combination of theoretical and experimentalanalysis. The results show that the effect of view-interval and imaging mode of theregistration data is more significant, and the effect of the carrier position and attitudeerrors is less.
     Chapter5studies the ground obscured target detection algorithm for segmentingand extracting the data in the region of interest (ROI). Based on the analysis of spatialdistribution characteristics of various ground-objects in the obscure environment, wefocus on three spatial filtering methods to filter out the clutter data step by step. Firstly,we study a filtering method based on the estimation of ground digital elevation model(DEM) and segmentation by elevation threshold to filter out the clutter data on the ground and higher objects. To reliably estimate the DEM, a filter based on improvedprogressive multi-scale mathematic morphology is proposed by improvingmorphological opening operation. Secondly, we propose a classification-detectionalgorithm of the local spatial distribution characteristics of3-D point based on theprincipal component analysis (PCA). It extracts the principal component andcontribution rate of the data in voxel neighborhood, then classifies and detects thescattered points, linear points and planar points according to the relationship of pointdistribution state and contribution rate of principal component. Thirdly, we propose amethod of target region detection based on ground shadow analysis to filter out theclutter data of interference objects which cannot form ground shadow of a large area.According to the inherent physical characteristics of the targets of interest that they arenot penetrable to laser beam and can form ground shadow of a large area, the targetregion is detected by detecting the ground shadow of a large area. We derive therelationship of the algorithm’s main parameters and the geometrical dimensions of thetarget of interest. Based on the spatial filtering results, the sets of data points for eachsuspected target region are obtained by orderly using the hierarchical clustering methodbased on closest distance threshold and clustering analysis method based on positionalrelationship of minimum bounding rectangle. By combining with the priori geometryinformation of target, false alarms are further removed, and the3-D point cloud data ofROI is obtained. Finally, we sum up a general framework of the detection method forground obscured target, to provide a foundation for the subsequent target classificationand identification.
     Chapter6summarizes the research work and innovative achievements of thedissertation. The shortcomings and future work are also included.
引文
[1]杨志国.基于ROI的UWB SAR叶簇覆盖目标鉴别方法研究[D].长沙:国防科技大学,2007.
    [2]乔榕.美军发展植被穿透成像雷达[EB/OL]. http://www.defence.org.cn/article-13-29399.html,2004-11-24/2012-12-15.
    [3]黄涛,胡以华,李磊,等.基于激光遥感的遮蔽目标探测技术研究[J].红外与激光工程,2010,39(增刊):129~133.
    [4]黄涛,胡以华.激光雷达反遮蔽探测技术研究[J].光电工程,2011,38(3):46~51.
    [5]陈华杰,张渝,曾亮,等.伪装网遮蔽目标多波段多极化SAR图像融合检测[J].光电工程,2011,38(7):106~118.
    [6]韩智力,张玉钧,李宏斌,等.激光成像雷达探测隐身目标[J].电子测量与仪器学报,2008,22(z2):265~269.
    [7]张子静. GM-APD啁啾幅度调制激光雷达对遮蔽目标的成像研究[D].哈尔滨:哈尔滨工业大学,2011.
    [8] Letalick D, Ahlberg J, Andersson P, et al.3-D imaging by Laser Radar andApplications in Preventing and Combating Crime and Terrorism[R]. Sweden:FOI-Swedish Defence Research Agency,2004.
    [9] Steinvall O, Larsson H, Gustafsson F, et al. Performance of3-D Laser RadarThrough Vegetation and Camouflage[C]//Proceedings of SPIE Conference onLaser Source and System Technology for Defense and Security. Bellingham, WA,USA: SPIE,2005:129~142.
    [10] Information Dominance Panel Chairs. Technical and Tactical Opportunities forRevolutionary Advances in Rapidly Deployable Joint Ground Forces in the2015-2025Era-Volume III-Information Dominance[R]. USA: Army ScienceBoard (ASB),2001.
    [11] Matsumura J, Steeb R, Herbert T, et al. Exploring Advanced Technologies forthe Future Combat Systems Program [M]. USA: RAND,2002.
    [12]中国国防科技信息中心.美国陆军和DARPA开发新型植被穿透雷达[EB/OL]. http://mil.news.sina.com.cn/2002-11-13/93025.html,2002-11-13/2012-12-10.
    [13] Ludwig D, Kongable A, Krywick S, et al. Identifying Targets under Trees-Jigsaw3D-LADAR Test Results[C]//Proceedings of SPIE Conference on LaserRadar Technology and Applications VIII. Bellingham, WA, USA: SPIE,2003:16~26.
    [14] Vaidyanathan M, Blask S, Higgins T, et al. Jigsaw Phase III: a MiniaturizedAirborne3-D Imaging Laser Radar with Photon-counting Sensitivity for FoliagePenetration[C]//Proceedings of SPIE Conference on Laser Radar Technology andApplications XII. Bellingham, WA, USA: SPIE,2007,65500N-1~65500N-12.
    [15] Trussell C W, Barr D N, Schilling B W, et al. Multi-aspect High-resolution LadarData Collection[C]//Proceedings of SPIE Conference on Laser Radar Technologyand Applications VIII. Bellingham, WA, USA: SPIE,2003:104~111.
    [16] Marino R M, Davis W R, Rich G C, et al. High-resolution3D Imaging LaserRadar Flight Test Experiments[C]//Proceedings of SPIE Conference on LaserRadar Technology and Applications X. Bellingham, WA, USA: SPIE,2005:138~151.
    [17] Mait J N, Grossman J G. Relevancy and Risk: the U.S. Army and Future CombatSystems [J]. Defense Horizons,2002,(13):1~8.
    [18]黄涛,胡以华.遮蔽目标的激光雷达回波信号处理[J].光电技术应用,2011,26(1):27~30.
    [19] Hofton M A, Minster J B, Blair J B. Decomposition of Laser AltimeterWaveforms [J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(4):1989~1996.
    [20]黄涛,胡以华,赵楠翔,等.遮蔽目标激光雷达回波波形的建模与仿真[J].激光技术,2011,35(1):11~14.
    [21] Hauge R. LADAR Pots the Puzzle Together [J]. SPIE’s oe Magazine,2003,(4):18~20.
    [22] Vasile A N. Pose Independent Target Recognition System Using Pulsed LadarImagery [D]. Lexington, Massachusetts, USA: Massachusetts Institute ofTechnology,2004.
    [23] Tolt G, Wiklund A, Andersson P, et al. Registration and Change DetectionTechniques Using3D Laser Radar Data from Natural Environments[C]//Proceedings of SPIE Conference on Electro-Optical Remote Sending II.Bellingham, WA, USA: SPIE,2006:63960A-1~63960A-10.
    [24] Hsu S, Samarasekera S, Kumar R. Automatic Registration and Visualization ofOccluded Targets Using Ladar Data [C]//Proceedings of SPIE on Laser RadarTechnology and Applications VIII. Bellingham, WA, USA: SPIE,2003:209~220.
    [25] Steinvall O, Carlsson T, Gr nwall C, et al. Laser Based3-D Imaging NewCapabilities for Optical Sensing [R]. Sweden: FOI-Swedish Defence ResearchAgency,2003.
    [26]戴永江.激光雷达技术(下册)[M].北京:电子工业出版社,2010.
    [27]张健,张雷,曾飞,等.机载激光3D探测成像系统的发展现状[J].中国光学,2011,4(3):213~232.
    [28]孟庆季,张续严,周凌,等.机载激光3D探测成像系统的关键技术[J].中国光学,2011,4(3):327~339.
    [29]孙志慧,邓甲昊,闫小伟.国外激光成像探测系统的发展现状及其关键技术[J].科技导报,2008,26(3):74~79.
    [30]罗振坤,王秋华.化学/生物战剂激光雷达探测技术[J].医疗卫生装备,2011,32(1):81~84.
    [31]人民网.导弹及其技术控制制度(MTCR)[EB/OL]. http://world.people.com.cn/GB/8212/60991/60992/4254942.html,2006-3-30/2012-12-15.
    [32] Missile Technology Control Regime (MTCR) Annex Handbook [EB/OL]. http://www.mtcr.info/english/MTCR_Annex_Handbook_ENG.pdf,2012-12-15.
    [33] List of Dual-use Items and Technology [EB/OL]. http://trade.ec.europa.eu/doclib/html/140595.htm,2012-12-15.
    [34] Brandt J R, Steiner T D, Mandeville W J, et al. Long-range Imaging Ladar FlightTest [C]//Proceedings of SPIE on Applied Laser Radar Technology II. Orlando,FL, USA: SPIE,1995:114~117.
    [35] Broome K W, Carstens A M, Hudson J R, et al. Demonstration of AdvancedSolid State Ladar (DASSL)[C]//Proceedings of SPIE on Laser Radar Technologyand Applications II. Orlando, FL, USA: SPIE,1997:148~157.
    [36] Savage J C, O’Neal J K, Brown R A. Powered Low Cost Autonomous AttackSystem: Cooperative, Autonomous, Wide-area-search Munitions with Capabilityto Serve as Non-traditional ISR Assets in a Network-centric Environment[C]//Proceedings of SPIE on Laser Radar Technology and Applications X. Orlando,FL, USA: SPIE,2005:61~69.
    [37]李洪儒,吴甲生,马洪忠.低成本自主攻击系统的先进技术浅析[J].飞航导弹,2007,(7):8~11.
    [38]丛敏. LOCAAS完成人在回路中飞行试验[J].飞航导弹,2006,(6):7~8.
    [39] Savage J C, O’Neal J K, Brown R A. Powered Low Cost Autonomous AttackSystem: A Network-centric Munition Concept Demonstration[C]//Proceedings ofSPIE on Defense Transformation and Network-Centric Systems. Bellingham,WA, USA: SPIE,2006:62490B-1~62490B-11.
    [40]李洪儒,吴甲生,马洪忠.成像激光雷达及其在小型弹药上的应用[J].飞航导弹,2007,(5):47~49.
    [41]蔡喜平,于长滨,陈雷,等.三维成像激光雷达的发展动态[J].光机电研究论坛,2008,(7):31~35.
    [42]美国《每日防务》.洛·马公司正在测试激光雷达的监视能力[EB/OL]. http://info.laser.hc360.com/2005/12/14090023187.shtml,2005-12-14/2012-12-15.
    [43]美国工业时报.洛·马公司研发“掠夺者”成像激光雷达[EB/OL]. http://www.dsti.net/Information/News/32853,2006-6-15/2012-12-15.
    [44]刘菊艳.先进桨扇发动机巡航导弹[J].飞航导弹,1991,(8):1~6.
    [45]马超杰,吴丹,刘正清.用于激光雷达的激光器辐射源技术进展[J].航空科学技术,2007,(3):16~19.
    [46] Wikipedia. AGM-129ACM [EB/OL]. http://en.wikipedia.org/wiki/AGM-129_ACM#cite_ref-5,2008-1-10/2012-12-15.
    [47] AGM-129Advanced Cruise Missile [ACM][EB/OL]. http://www.globalsecurity.org/wmd/systems/acm.htm,2012-12-15.
    [48] Layartebian Missiles [EB/OL]. http://iiwiki.com/wiki/Layartebian_Missiles#AGM-129_Advanced_Cruise_Missile_.28ACM.29,2012-11-28/2012-12-15.
    [49] Sackos J T, Nellums R O, Lebien S M, et al. A Low-cost, High-resolution,Video-rate Imaging Optical Radar[R]. USA: Sandia National Laboratory,1998.
    [50]慕金龙,王骐,李琦,等.长波红外主被动复合成像中目标检测仿真研究[J].红外与激光工程,2006,35(5):634~638.
    [51]潘洪涛.红外/激光双模制导中激光雷达技术研究[D].哈尔滨:哈尔滨工业大学,2009.
    [52]况耀武.红外/激光双模导引头光学系统设计研究[D].哈尔滨:哈尔滨工业大学,2009.
    [53]徐洪波,王广君,田金文,等.基于成像激光雷达的地形辅助导航研究[J].电波科学学报,2005,20(4):476~481.
    [54]殷蔚明,柳健,田金文.机载前下视激光雷达成像仿真[J].计算机仿真,2002,19(4):14~18.
    [55]王广君,田金文,柳健.激光成像雷达前视成像仿真及障碍物识别方法研究[J].红外与激光工程,2001,30(6):462~465.
    [56]程华,田金文,马杰,等.基于双近邻模式和最近距离的三维地形匹配区选择[J].宇航学报,2008,29(2):631~636.
    [57]王广君,田金文,柳健.激光成像雷达在飞行器蔽障过程中的应用[J].电波科学学报,2001,16(2):249~251.
    [58]余涛,马杰,龚俊斌,等.一种基于激光成像雷达的特征矢量匹配方法[J].红外与激光工程,2007,36(5):742~746.
    [59]刘清.基于激光雷达的三维目标检测[D].湖北,武汉:华中科技大学,2011.
    [60]赵季,马杰,田金文.使用特征匹配的三维目标识别技术[J].华中科技大学学报(自然科学版),2012,40(10):1~4.
    [61] Wellfare M, Holmes T, Pohlman S. Identification of Vehicle Target fromLow-cost Laser Seeker Imagery[C]. SPIE,1996,2748:272~282.
    [62] Wellfare M, Norris-Zachery K. Characterization of Articulated Vehicles UsingLadar Seekers[C]//Proceedings of SPIE on Laser Radar Technology andApplications II. Orlando, FL, USA: SPIE,1997:244~254.
    [63] Vasile A N, Marino R M. Pose-independent Automatic Target Detection andRecognition Using3D Laser Radar Imagery [J]. Lincoln Laboratory Journal,2005,15(1):61~78.
    [64] Carmichael O, Hebert M.3-D Cueing: A Data Filter for Object Recognition[C]//Proceedings of IEEE International Conference on Robotics and Automation.Detroit, Michigan, USA: IEEE,1999,2:944~950.
    [65] Dudgeon D E, Verly J G, Delanoy R L. An Experimental Target RecognitionSystem for Airborne Laser Radar Imagery[C]//Proceedings of IEEE InternationalConference on Systems Engineering. IEEE,1990:478~481.
    [66] Verly J G, Delanoy R L. Model-based Automatic Target Recognition (ATR)System for Forwardlooking Groundbased and Airborne Imaging Laser Radars(LADAR)[J]. Proceedings of the IEEE,1996,84(2):126~163.
    [67] Verly J G, Delanoy R L, Lacoss R T. Progress Report on the Development of theAutomatic Target Recognition System for the UGV/RSTA LADAR [R].Lexington, Massachusetts, USA: Massachusetts Institute of Technology,1995.
    [68] Cook T D. Results of Ladar ATR Captive Flight Testing Experiments [C]//Proceedings of the SPIE Conference on Automatic Target Recognition XI.Bellingham, WA, USA: SPIE,2001:78~85.
    [69] Keller J M, Gader P, Krishnapuram R, et al. A Fuzzy Logic Automatic TargetDetection System for LADAR Range Images [C]//Proceedings of IEEE WorldCongress on Computational Intelligence. IEEE,1998,1:71~76.
    [70]马超杰,杨华,李晓霞,等.复杂场景下应用成像Ladar的自动目标识别[J].光学精密工程,2009,17(7):1714~1721.
    [71]马超杰,杨华,李晓霞,等.复杂场景多传感器图像的多目标分割算法[J].光电工程,2009,36(1):47~51.
    [72]马超杰,李晓霞,杨华,等.基于形态学和直方图分析的多源图像目标分割算法[J].航空兵器,2009,(4):33~37.
    [73] Mahalanobis A, Vijaya Kumar B V K, Song S, et al. Unconstrained CorrelationFilter [J]. Applied Optics,1994,33(17):3751~3759.
    [74] Mahalanobis A, Vijaya Kumar B V K, Sims S R F. Distance ClassifierCorrelation Filters for Multi-class Automatic Target Recognition [J]. AppliedOptics,1996,35(17):3127~3133.
    [75] Mahalanobis A, Vijaya Kumar B V K, Sims S R F. Distance ClassifierCorrelation Filters for Distortion Tolerance, Discrimination, and ClutterRejection[C]//Proceedings of the SPIE Conference on Photonics for Processors,Neural Networks, and Memories. San Diego, CA, USA: SPIE,1993:325~335.
    [76] Mahalanobis A, Forman A, Day N, et al. Multi-class SAR ATR UsingShift-invariant Correlation Filters [J]. Pattern Recognition, Special Issue onCorrelation Filters and Neural Networks,1994,27(4):619~626.
    [77] Perona M T, Mahalanobis A, Zachery K N. LADAR Automatic TargetRecognition Using Correlation Filters [C]//Proceedings of the SPIE Conferenceon Automatic Target Recognition IX. Bellingham, WA, USA: SPIE,1999:388~396.
    [78] Mahalanobis A, Vijaya Kumar B V K. Polynomial Filters for Higher OrderCorrelation and Multi-input Information Fusion[C]. Euro American Workshopon optoelectronic information processing, SPIE Optical Engineering Press,1997:221~231.
    [79] Mahalanobis A, Nevel A J V. Performance of Multi-dimensional Algorithms forTarget Detection in LADAR Imagery[C]//Proceedings of the SPIE Conferenceon Algorithms and Systems for Optical Information Processing VI. Bellingham,WA, USA: SPIE,2002:134~147.
    [80] Mahalanobis A, Muise R R, Stanfill S R, Nevel A V. Design and Application ofQuadratic Correlation Filters for Target Detection [J]. IEEE Transactions onAerospace and Electronic System,2004,40(3):837~850.
    [81]孙剑峰,李琦,陆威,等.相关滤波器与支持向量机的激光成像雷达目标识别算法[J].红外与激光工程,2008,37(5):916~919.
    [82] Sun J F, Li Q, Lu W, et al. Correlation Detection for Imaging Laser Radar[C]//Proceedings of the SPIE Conference on27th International Congress onHigh-Speed Photography and Photonics. Bellingham, WA, USA: SPIE,2007:62792Z-1~62792Z-6.
    [83] Sun J F, Li Q, Lu W, et al. Target Recognition of Laser Radar Using CorrelationFilter with In-plane Rotation Invariance[C]//Proceedings of the SPIE Conferenceon MIPPR2007: Multispectral Image Processing. Bellingham, WA, USA: SPIE,2007:67871F-1~67871F-6.
    [84] Chua C S, Jarvis R. Point Signatures: A New Representation for3D ObjectRecognition [J]. International Journal of Computer Vision,1997,25(1):63~85.
    [85] Koenderink J J, Doorn A V. Surface Shape and Curvature Scales [J]. ImageVision Compute,1992,10(8):557~565.
    [86] Dorai C, Jain A K. COSMOS-A Representation Scheme for3D Free-formObjects [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(10):1115~1130.
    [87] Jain A K, Dorai C.3D Object Recognition: Representation and Matching [J].Statistics and Computing,2000,10(2):167~182.
    [88] Chen H, Bhanu B.3D Free-form Object Recognition in Range Images UsingLocal Surface Patches [J]. Pattern Recognition Letters,2007,28(10):1252~1262.
    [89] Campbell R J, Flynn P J. A Survey of Free-form Object Representation andRecognition Techniques [J]. Computer Vision and Image Understanding,2001,81(2):166~210.
    [90] Johnson A E. Spin-images: a Representation for3-D Surface Matching [D].Pittsburgh, USA: Carnegie Mellon University,1997.
    [91]李世飞.基于深度图像的三维目标识别技术研究[D].长沙:国防科技大学,2010.
    [92] Johnson A E, Hebert M. Using Spin Images for Efficient Object Recognition inCluttered3D Scenes [J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1999,21(5):433~448.
    [93] Chevalier T, Andersson P, Gr nwall C, et al. Methods for Ground TargetDetection and Recognition in3-D Laser Data [R]. Sweden: FOI-SwedishDefence Research Agency,2006.
    [94] Foster M S, Schott J R, Messinger D W. Spin-image Target Detection AlgorithmApplied to Low Density3D Point Clouds [J]. Journal of Applied Remote Sensing,2008,2:023539.
    [95] Gr nwall C, Chevalier T, Tolt G, et al. An Approach to Target Detection inForested Scenes[C]//Proceedings of the SPIE Conference on Laser RadarTechnology and Applications XIII. Bellingham, WA, USA: SPIE,2008:69500S-1~69500S-12.
    [96] Gr nwall C, Tolt G, Chevalier T, Larsson H. Spatial Filtering for Detection ofPartly Occluded Targets [J]. Optical Engineering,2011,50(4):047201-1~047201-13.
    [97]张小红.机载激光雷达测量技术理论与方法[M].武汉:武汉大学出版社,2007.
    [98]赖旭东.机载激光雷达基础原理与应用[M].北京:电子工业出版社,2010.
    [99] Snorrason M, Ruda H, Caglayan A. Automatic Target Recognition in LaserRadar Imagery [C]//Proceedings of1995International Conference on Acoustics,Speech, and Signal Processing (ICASSP). IEEE,1995,4:2471-2474.
    [100] Koksal A E, Shapiro J H, Wells W M. Model-based object recognition usinglaser radar range imagery [C]//Proceedings of the SPIE Conference on AutomaticTarget Recognition IX. Bellingham, WA, USA: SPIE,1999:256~266.
    [101] Felip R L, Binefa X. Discerning Objects from Ground and Target PoseEstimation in Ladar Data Using Robust Statistics [C]//Proceedings of IEEEInternational Conference on Image Processing (ICIP2006). IEEE,2006:2109~2112.
    [102] Chevalier T, Andersson P, Gr nwall C, et al. Methods for Ground TargetDetection and Recognition in3-D Laser Data [R]. Link ping, Sweden: FOI-Swedish Defence Research Agency,2006.
    [103] Gr nwall C, Tolt G, Karlsson D, et al. Threat Detection and Tracking Using3DFLASH LADAR Data[C]//Proceedings of the SPIE Conference on AutomaticTarget Recognition XX; Acquisition, Tracking, Pointing, and Laser SystemsTechnologies XXIV; Optical Pattern Recognition XXI. Bellingham, WA, USA:SPIE,2010:76960N-1~76960N-12.
    [104] Brandin M, Hamrén R. Classification of Ground Objects Using Laser Radar Data[D]. Link ping, Sweden: Link ping Institute of Technology,2003.
    [105] Persson. Extraction of Individual Trees Using Laser Radar Data[R]. Link ping,Sweden: FOI-Swedish Defence Research Agency,2001.
    [106] Gr nwall C, Chevalier T, Persson, et al. Methods for Recognition of Naturaland Man-made Objects Using Laser Radar Data[C]//Proceedings of the SPIEConference on Laser Radar Technology and Application IX. Bellingham, WA,USA: SPIE,2004:310-320.
    [107] Garten H, Tal Y, Swirski Y, et al. Recognition of Tanks in Laser Radar (LADAR)Images [C]]//Proceedings of the SPIE Conference on Military Remote Sensing.Bellingham, WA, USA: SPIE,2004:166~176.
    [108] Roy S, Se S, Kotamraju V, et al. Workbench for3D Target Detection andRecognition from Airborne Motion Stereo and Ladar Imagery [C]//Proceedingsof the SPIE Conference on Automatic Target Recognition XX; Acquisition,Tracking, Pointing, and Laser Systems Technologies XXIV; Optical PatternRecognition XXI. Bellingham, WA, USA: SPIE,2010:76960M-1~76960M-11.
    [109] Roy S, Maheux J. Baseline Processing Pipeline for Fast Automatic TargetDetection and Recognition in Airborne3D Ladar Imagery [C]//Proceedings ofthe SPIE Conference on Automatic Target Recognition XXI. Bellingham, WA,USA: SPIE,2011:80490S-1~80490S-11.
    [110] Tolt G, Wiklund A, Andersson P, et al. Registration and Change DetectionTechniques Using3D Laser Radar Data from Natural Environments[C]//Proceedings of the SPIE Conference on Electro-Optical Remote Sensing.Bellingham, WA, USA: SPIE,2006:63960A-1~63960A-10.
    [111] Neuenschwander A. Signal Processing Techniques for Feature Extraction andClassification Using Small-footprint Full-waveform Airborne Lidar [C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium(IGARSS2008). IEEE,2008, III:676~679.
    [112]杨庚,黄春明.激光测高仪回波分解算法[J].空间科学学报,2005,25(2):125~131.
    [113]赵楠翔,胡以华,雷武虎,等.激光回波波形分析小目标检测成像方法[J].红外与激光工程,2009,38(4):748~752.
    [114]赵楠翔,胡以华.激光遥感成像信号与目标细特征关系研究[J].红外与激光工程,2006,35(2):226~229.
    [115]李奇,马洪超.基于激光雷达波形数据的点云生成[J].测绘学报,2008,37(3):349~354.
    [116] Manolakis D. Overview of Algorithms for Hyperspectral Target Detection:Theory and Practice [C]//Proceedings of the SPIE Conference on Algorithms andTechnologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII.Orlando, FL, USA: SPIE,2002:202~215.
    [117]刘凯龙,孙向军,赵志勇,等.地面目标伪装特征的高光谱成像检测方法[J].解放军理工大学学报(自然科学版),2005,6(2):166~169.
    [118] Tan S, Narayanan R M. A Multiwavelength Airborne Polarimetric Lidar forVegetation Remote Sensing: Instrumentation and Preliminary Test Results [C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium(IGARSS2002). IEEE,2002:2675~2677.
    [119] Tan S, Narayanan R M, Kolshoven J E. Measurement of Stokes Parameters ofMaterials at1064-nm and532-nm Wavelengths [C]//Proceedings of the SPIEConference on Laser Radar Technology and Applications VI. Orlando, FL, USA:SPIE,2001:263~271.
    [120] Cornell S L, Sadjadi F A. Target Recognition Study Using Polarimetric LaserRadar[C]//Proceedings of the SPIE Conference on Automatic Target RecognitionXIV. Orlando, FL, USA: SPIE,2004,5426:274.
    [121] Tan S, Narayanan R M, Helder D L. Polarimetric Reflectance and DepolarizationRatio from Several Tree Species Using a Multiwavelength Polarimetric Lidar[C]//Proceedings of the SPIE Conference on Polarization Science and RemoteSensing II. San Diego, CA, USA: SPIE,2005:58880M.
    [122]崔东,李铁,闫炜.涂漆金属等几种目标的后向散射激光偏振特性[J].探测与控制学报,2009,31(2):41~45.
    [123]姜海娇,来建成,王春勇,等.激光雷达的测距特性及其测距精度研究[J].中国激光,2011,38(5):0514001-1~0514001-7.
    [124]周琴,张秀达,胡剑,等.凝视成像三维激光雷达噪声分析[J].中国激光,2011,38(9):0908005-1~0908005-6.
    [125] Jutzi B, Stilla U. Characteristics of the Measurement Unit of a Full-waveform [C]//Symposium of ISPRS Commission I: From Sensors to Imagery. InternationalArchives of Photogrammetry, Remote Sensing and Spatial Information Sciences36(Part1/A)(on CD),2006.
    [126] Vandapel N, Amidi O, Miller J R. Toward Laser Pulse Waveform Analysis forScene Interpretation[C]//Proceedings of IEEE International Conference onRobotics and Automation2004. New Orleans, LA, USA: IEEE,2004:950~955.
    [127] Carlsson T, Steinvall O, Letalick D. Signature Simulation and Signal Analysisfor3-D Laser Radar [R]. Sweden: FOI-Swedish Defence Research Agency,2001.
    [128] Steinvall O, Carlsson T. Three-dimensional Laser Radar Modelling [C]//Proceedings of SPIE Conference on Laser Radar Technology and ApplicationsXI. Bellingham, WA, USA: SPIE,2001:23~34.
    [129] Jacob D, Gatt P, Nichols T. Overview of LMCT’s Advanced Ladar SignalSimulator (ALASS)[C]//Proceedings of SPIE Conference on Laser RadarTechnology and Applications XIII. Bellingham, WA, USA: SPIE,2008:69500L-1~69500L-12.
    [130] O’Brien M E, Fouche D G. Simulation of3D Laser Radar Systems [J]. LincolnLaboratory Journal,2005,15(1):37~60.
    [131] Budge S, Leishman B, Pack R. Simulation and Modeling of Return Waveformsfrom a Ladar Beam Footprint in USU LadarSIM [C]//Proceedings of SPIEConference on Laser Radar Technology and Applications XI. Bellingham, WA,USA: SPIE,2006:62140N-1~62140N-10.
    [132] Graham M. Design of a Foliage Penetrating Ladar Simulation Tool [R].Edinburgh, South Australia: Intelligence, Surveillance and ReconnaissanceDivision, DSTO (Defence Science and Technology Organisation),2009.
    [133] Mewett D T, Graham M D, Davies A H. Testing Flight Paths for Collecting3DLADAR Imagery of Inconspicuous Targets[C]//Proceedings of18th WorldIMACS/MODSIM Congress. Cairns, Australia, July,2009:1636~1642.
    [134] Jutzi B, Stilla U. Precise Range Estimation on Known Surfaces by Analysis ofFull-waveform Laser[C]//Proceedings of Symposium of ISPRS Commission III:Photogrammetric Computer Vision PCV06. International Archives ofPhotogrammetry, Remote Sensing and Spatial Information Sciences36(Part3),2006:234~239.
    [135] Jutzi B, Stilla U. Simulation and Analysis of Full-waveform Laser Data of UrbanObjects[C]//Proceedings of2007Urban Remote Sensing Joint Event. Paris,France: IEEE,2007:1~5.
    [136] Kim A M. Simulation Full-waveform Lidar [D]. Monterey, CA, USA: NavalPostgraduate School,2009.
    [137]薛国刚,孙东松,杨昭.直接探测激光雷达模型及其性能模拟[J].红外与激光工程,2003,32(3):244~247.
    [138]易翔,王蔚然.激光雷达系统的数值仿真[J].光子学报,2004,(33)1:21~23.
    [139]马超杰,孙晓泉,李晓霞.基于激光成像雷达制导系统的仿真设计[J].红外与激光工程,2005,34(6):655~659.
    [140]戴品娟,刘国国,吴谨.大气湍流下合成孔径激光雷达成像数值模拟及PGA补偿[J].光学学报,2010,30(3):739~746.
    [141]金晓峰,孙建锋,严毅,等.反射层析激光雷达小系统成像模拟[J].光学学报,2010,30(3):747~752.
    [142]唐勐,赵远,张宇,等.增益调制非扫描激光雷达距离像的仿真及实验验证[J].中国激光,2011,38(4):0414001-1~0414001-8.
    [143]吴龙,赵远,靳辰飞,等.变阈值检测对无扫描距离选通激光雷达探测概率的影响[J].光学学报,2010,30(11):3117~3123.
    [144]韩宏伟,张晓晖,葛卫龙.水下激光距离选通成像系统的模型与极限探测性能研究[J].中国激光,2011,38(1):0109001-1~0109001-7.
    [145] Blanquer E. Ladar Proximity Fuze-system Study [D]. Stockholm, Sweden: theRoyal Institute of Technology of Stockholm,2007.
    [146]北京富斯德科技有限公司.全波形分析的长距离机载激光雷达扫描仪:LMS-Q680i [EB/OL]. http://www.fs3s.com/winupfiles/documentdown/560725931564LMS-Q680i中文介绍.pdf,2009-08-20/2011-10-15.
    [147]王金虎,李传荣,周梅.机载全波形激光雷达数据处理及其应用[J].应用天地,2012,31(6):71~79.
    [148]北京富斯德科技有限公司. Airborne Data Processing Software RiAnalyze560for Full Waveform Analysis [EB/OL]. http://www.fs3s.com/winupfiles/documentdown/94143711_DataSheet_RiANALYZE_20-08-2009.pdf,2009-08-20/2011-10-15.
    [149] Watt A.3D计算机图形学(第三版)[M].包宏,译.北京:机械工业出版社,2005.
    [150] Slater M, Steed A, Chrysanthou Y.计算机图形学与虚拟环境[M].程成,徐玉田,译.北京:机械工业出版社,2004.
    [151]王文玺,肖世德,孟文,等.一种基于八叉树空间剖分技术的光线跟踪算法[J].计算机应用,2008,28(3):656~658.
    [152]赵爽,李学军.复杂场景的快速光线跟踪算法[J].计算机工程,2006,32(1):224~225,272.
    [153] Der S, Redman B, Chellappa R. Simulation of Error in Optical Radar RangeMeasurements [R]. USA: Army Research Laboratory,1998:1~25.
    [154]戴永江.激光雷达技术(上册)[M].北京:电子工业出版社,2010,11.
    [155]李自勤,王骐,李琦,等.激光成像雷达系统中散斑像的乘法模型及其滤除[J].中国激光,2003,30(8):717~720.
    [156]熊辉丰.激光雷达[M].北京:宇航出版社,1994,4.
    [157]胡春生.脉冲半导体激光器高速三维成像激光雷达研究[D].长沙:国防科学技术大学,2005:52-87.
    [158] Mallet C, Bretar F. Full-waveform Topographic Lidar: State-of-the-art [J]. ISPRSJournal of Photogrammetry and Remote Sensing,2009,(64):1~16.
    [159] Steinvall O, Andersson P, Elmqvist M, et al. Overview of Range Gated Imagingat FOI [C]//Proceedings of SPIE Conference on Infrared Technology andApplications XXXIII. Bellingham, WA, USA: SPIE,2007:624216-1~624216-13.
    [160] Chauve A, Mallet C, Bretar F, et al. Processing Full-waveform LiDAR Data:Modelling Raw Signals [C]//Proceedings of the International Archives ofPhotogrammetry, Remote Sensing and Spatial Information Sciences2007, Espoo,Finland,2007:102~108.
    [161]廖瑛,邓方林,梁加红,等.系统建模与仿真的校核、验证与确认(VV&A)技术[M].长沙:国防科技大学出版社,2006.
    [162] Green T J, Shapiro J H. Maximum-likelihood Laser Radar Range Image Profilingwith the Expectation-maximization Algorithm [J]. Optical Engineering,1992,31(11):2343~2354.
    [163] Greer D R, Fung I, Shapiro J H. Maximum-likelihood Multiresolution LaserRadar Range Imaging [J]. IEEE Transactions on Image Processing,1997,6(1):36~46.
    [164]赵明波,何峻,付强.激光雷达含噪距离像仿真实现与影响因素分析[J].系统工程与电子技术,2011,33(8):1770~1777.
    [165] Umasuthan M, Wallace A M. Outlier Removal and Discontinuity PreservingSmoothing of Range Data [J]. IEE Proceedings-Vision, Image, and SignalProcessing,1996,143(3):191~200.
    [166] Nevel A V, Peterson L, Kenney C. Image Processing for LADAR AutomaticTarget Recognition [C]//Proceedings of the AIAA Missile Science Conference,Monterey, CA, USA,2000:1~9.
    [167]李琦,王永珍,王骐,等.相干激光雷达距离像的噪声抑制算法研究[J].光学学报,2005,25(5):581~584.
    [168]李自勤,王骐,李琦,等.相干激光雷达距离像噪声机理及距离反常抑制[J].中国激光,2005,32(3):356~360.
    [169]陈晓清.激光成像雷达目标识别算法研究[D].长沙:国防科学技术大学,2010:38~40.
    [170]陈晓清,马君国,付强,等.相干激光成像雷达距离像距离反常抑制方法[J].中国激光,2010,37(1):181~185.
    [171]王橹晓.激光雷达距离反常噪声抑制与目标边缘提取研究[D].长沙:国防科学技术大学,2009:11~24.
    [172]马超杰.3D激光雷达图像的地面目标识别技术[D].合肥:电子工程学院,2009:32~34.
    [173]沈严,杨志卿.距离图像的分层滤波处理算法.西安电子科技大学学报(自然科学版)[J],2003,30(1):136~140.
    [174] Sithole G, Vosselman G. Report: ISPRS Comparison of Filter [R/OL].http://www.itc.nl/isprswgIII-3/filtertest/Report05282003.pdf,2003-8/2012-6.
    [175] Meng X. Currit N, Zhao K. Ground Filtering Algorithms for Airborne LiDARData: a Review of Critical Issues [J]. Remote Sensing,2010,(2):833~860.
    [176]罗伊萍,姜挺,王鑫,等.基于数学形态学的LiDAR数据滤波新方法[J].测绘通报,2011,3:15~19.
    [177] Gonzalez R C, Woods R E.数字图像处理(第二版)[M].阮秋琦,阮宇智,等译.北京:电子工业出版社,2006.
    [178] Sonka M, Hlavac V, Boyle R.图像处理、分析与机器视觉(第二版)[M].艾海舟,武勃,等译.北京:人民邮电出版社,2003.
    [179] Vosselman G. Test Sites [DB/OL]. http://www.itc.nl/isprswgIII-3/filtertest/DownloadSites.htm,2006-6-13/2012-6-20.
    [180]薛耀红.点云数据配准及曲面细分技术研究[D].长春:吉林大学,2010.
    [181]杨棽,齐越,沈旭昆,等.一种快速的三维扫描数据自动配准方法[J].软件学报,2010,21(6):1438~1450.
    [182] Huber D F. Automatic Three-dimensional Modeling from Reality [D]. Pittsburgh,Pennsylvania, USA: Carnegie Mellon University,2002.
    [183] Williams J, Bennamoun M. Simultaneous Registration of MultipleCorresponding Point Sets [J]. Computer Vision and Image Understanding,2001,81:117~142.
    [184]何文峰.大型场景三维重建中的深度图像配准[D].北京:清华大学,2004.
    [185]李世飞,王平,沈振康.迭代最近点算法研究进展[J].信号处理,2009,25(10):1582~1588.
    [186] Besl P J, McKay N D. A Method for Registration of3D Shapes [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,1992,14(2):239~256.
    [187] Chen Y, Medioni G. Object Modeling by Registration of Multiple RangeImages[C]//Proceedings of IEEE International Conference on Robotics andAutomation. Sacramento, USA,1991,3:2724~2729.
    [188]高鹏东.深度像配准及曲面细分技术的研究与应用[D].天津:天津大学,2006.
    [189]吕渭萍.多视点深度图像的配准方法研究与实现[D].四川,成都:电子科技大学,2008.
    [190]陈楚.基于激光扫描的深度影像配准方法的研究[D].湖北,武汉:武汉大学,2005.
    [191] Rodríguez J M, Sánchez-Reyes P J, Cruz-Rivera S M. Foliage Penetration byUsing4-D Point Cloud Data[C]//Proceedings of SPIE Conference on LaserRadar Technology and Applications XVII. Bellingham, WA, USA: SPIE,2012:83790B-1~83790B-8.
    [192] Chang L D, Slatton K C, Anand V, et al. Automatic Forest Canopy RemovalAlgorithm for Underneath Obscure Target Detection by Airborne LiDAR PointCloud Data[C]//Proceedings of SPIE Conference on Detection and Sensing ofMines. Bellingham, WA, USA: SPIE,2010:766424-1~766424-12.
    [193] Sithole G, Vosselman G. Experimental Comparison of Filter Algorithms forBare-earth Extraction from Airborne Laser Scanning Point Clouds [J]. ISPRSJournal of Photogrammetry&Remote Sensing,2004,59:85~101.
    [194]罗伊萍,姜挺,龚志辉,等.基于自适应和多尺度数学形态学的点云数据滤波方法[J].测绘科学技术学报,2009,26(6):426~429.
    [195] Kilian J, Haala N, Englich M. Capture and Evaluation of Airborne Laser ScannerData [J] International Archives of Photogrammetry and Remote Sensing,1996,XXXI (B3):383~388.
    [196] Zhang K, Chen S C, Whitman D, et al. A Progressive Morphological Filter forRemoving Nonground Measurements from Airborne LIDAR Data [J]. IEEETransactions on Geoscience and Remote Sensing,2003,41(4):872~882.
    [197] Zhang K, Whitman D. Comparison of Three Algorithms for Filtering AirborneLiDAR Data [J]. Photogrammetric Engineering&Remote Sensing,2005,71(3):313~324.
    [198] Chen Q, Gong P, Baldocchi D, et al. Filtering Airborne Laser Scanning Datawith Morphological Methods [J]. Photogrammetric Engineering&RemoteSensing,2007,73(2):175~185.
    [199]殷飞.机载激光雷达数据滤波方法研究[D].成都:西南交通大学,2010.
    [200] Lalonde J, Vandapel N, Huber D F, et al. Natural Terrain Classification UsingThree-dimensional Ladar Data for Ground Robot Mobility[R]. Pittsburgh,Pennsylvania, USA: Carnegie Mellon University,2006.
    [201]徐伯勋,白旭滨,傅孝毅.信号处理中的数学变换和估计方法[M].北京:清华大学出版社,2004:170~173.
    [202] Kuntimad G, Delashmit W. Target Detection in LADAR Range Images UsingShadow Analysis[C]//Proceedings of SPIE Conference on Laser RadarTechnology and Applications XI. Bellingham, WA, USA: SPIE,2006:621405-1~621405-8.
    [203]章毓晋.图象工程(下册)——图像理解与计算机视觉[M].北京:清华大学出版社,2000:253.
    [204]王爱玲,叶明生,邓秋香. MATLAB R2007图像处理技术与应用[M].北京:电子工业出版社,2008:217~219.
    [205]孙即祥.现代模式识别[M].长沙:国防科技大学出版社,2003:28~29.
    [206] Carlsson C, Millnert M. Vehicle Size and Orientation Estimation UsingGeometric Fitting[C]//Proceedings of SPIE Conference on Automatic TargetRecognition XI. Bellingham, WA, USA: SPIE,2001:412~423.
    [207] Gr nwall C, Gustafsson F. Approaches to Object/Background Segmentation andObject Dimension Estimation[R]. Link ping, Sweden: Link pings University,2006.
    [208] Gr nwall C, Gustafsson F, Millnert M. Ground Target Recognition UsingRectangle Estimation [J]. IEEE Transactions on image processing,2006,15(11):3401~3409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700