用户名: 密码: 验证码:
东中国海物理环境长期变化的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东中国海外有大洋信号从边界传入,近岸受岸界影响较大而且有径流流入,上边界受大气、风场、太阳辐射的作用,不同海域间也存在着物质能量的交换。综合以上因素,并进行长期数值模拟,能消除结构受时间、空间的限制,客观的反映海洋物理过程,从而保证研究的真实性、连续性。
     本文运用ROMS海洋数值模式,模拟了东中国海近48年的海洋环境的变化过程。初始场和边界强迫来自于SODA数据资料,上边界强迫来自于NCEP再分析资料,边界强迫同时考虑了潮汐的作用,长江、黄河作为近岸海域主要是淡水输入。
     渤海海峡断面,冬季受风应力作用较强,水交换为南北出流,中间为补偿入流,夏季斜压效应占主,海平面由沿岸向中部倾斜,所以流型为北进南出结构。因为所研究海区水深深浅不一,与海底地形相应的动力学过程应对断面流速形态形成与维持起了至关重要的约束作用。海峡流量呈余弦曲线结构,冬季在强的风应力作用下流出渤海,交换量最大值出现在1月为1*104 m3/s;夏季斜压效应占主,水量流入渤海,水交换量8月份达最大,最大值超过1.5*104 m3/s;春秋为过度季节,渤海海峡的水交换较弱,最小为0.1*104 m3/s。通过渤海海峡断面进入渤海的净通量的年际变化与海洋观测站盐度的年际变化趋势一致,说明通过渤海海峡断面的水交换是渤海盐度年际变化的一个重要因素。
     东海黑潮水与陆架水是两种不同性质的水团,以台湾岛以北到济州岛的120m等深线为界来从研究黑潮和陆架水的交换和混合特征。水交换在黑潮初始入侵时比较强,随着纬度的增加,水交换逐渐减弱,在28N以北海域,更多的陆架水穿过120m等深线进入黑潮。季节变化上,秋、冬季黑潮向陆架入侵流速最大,春、夏季流速减小,因为冬季陆架水温降低,而黑潮带来高温水体,加强了斜压流动,同时风应力所产生的Ekman流也是向陆架方向的,夏季则相反;而陆架水向外海的入侵则相反,春夏季流速较大,而秋冬季小。盐度交换的季节分布显示,冬季在台湾岛以北600km的区域内,盐度值较高,显示了黑潮水向陆架的入侵;而在济州岛盐度值最低为33Psu向南逐渐增加。夏季陆架水向外海扩展较强,上50M盐度减小1psu,而下层水体盐度只减小0.2Psu,高温低盐的陆架水主要集中在上层。由与长江冲淡水夏季最大,济州岛附近海域低盐海水分布面积明显增加。
     从能量EOF分解时间来看,七十年代末的气候突变,对动能的分布影响最大。动能的时间分布较PDO延迟39个月,太平洋黑潮异常滞后PDO指数3年,所以可以认为黑潮信号传入东中国海从而使整个区域的能量重新分布需要2-3个月的时间。势能EOF第一模态时间系数较PDO延迟44个月,从而可以认为,正压势能的变化还较强地依赖于东中国海正压势能的季节变化。斜压势能主要受风应力对正压势能作用显著,风应力对海洋的影响最直接,它驱动海洋上层混合,从而产生密度的重新分布。
     高频时间输出能量的季节变化显示,长江口外海始终有一动能高值区。当不考虑潮汐作用时,高能区消失。因此认为高能区是潮汐作用的结果。单独的潮汐实验结果显示,尽管潮能通量是产生动能的源项,其分布与动能并不完全一致,潮能通量不是长江口外海产生高动能的直接原因。动能是水体运动的结果,潮流椭圆是潮流周期性运动最直接的表现,除了长江口沿岸海域,动能分布和潮流椭圆半焦距等值线分布结构一致,在改变地形效应时,二者变化趋势和分布结构一致。水体的局地旋转效应是长江口外海高动能产生的直接原因。
     Lagrange余流与Euler余流结构相似,最显著的区别是穿过整个黄海中部向南方向上,Euler余流直接冲入东海陆架,而Lagrange余流则受到长江口外海的向北的余流的抵制作用,二者汇合并转向东流,在济州岛西部分成两支,一支向北,同南下的流形成封闭性流环,一支则转向东南偏南穿过长江口外海达到东海里。Lagrange余流的产生是由于潮流沿着岬角流动时,水质点受到强的离心力作用流线有一个大的曲率。离心力强迫水体向外流动,岬角附近海面下降,水体流向岬角形成两个不同旋转意义上的两个流环。长江口外侧的舌状浅滩可减弱来自深水区的潮流,使得往复流速在不同位相上不同的,潮周期平均必然产生水体微团的净位移,因此Lagrange余流更能代表余流场。
The East China Sea (ECS) has a complex physical environment, since it is infected by the ocean, the rivers, as well as the driving elements on its surface boundary.. Meanwhile, for its enormous span of geography, there are complicated mass and energy exchange in different areas. Then, using the long-term numerical simulation is a better way to eliminate the temporal and spacial limitation on its structure, to describe its circulations objectively, and to make sure its authenticity and continuity.
     In the present paper, The Regional Ocean Modeling System is used to simulate the physical circulations of the ECS for 48 years. The SODA data is used to construct the initial states and boundary conditions. And the data for surface boundary is come from NCEP. Besides, the forcing factors on the open boundary not only include the tide, and also the fresh flux from the Yangtze River and Huanghe River.
     In the section of Bohai Sea strait, in winter time, the wind forcing has stronger influence in the shallower area, so the water exchange flows in from the middle part and out from the southern and northern part; however, in summer time, the baroclinic effect is obviously stronger than wind forcing, the sea level decreases from the coast to the middle part, consequently, the pressure gradient force makes the water flow out from the north and in from the south. In addition, the topography in the section of the Bohai Strait is rugged, the dynamic process caused by topography restrict the current conformation. The flux of the strait distributes like cosine curve. The outflow forced by wind in winter has a biggest value as 1*104m3/s in January, while, the inflow forced by baroclinic effect in summer has a biggest value as 1.5*104m3/s in August. In spring and autumn the water exchange is weaker, and with the smallest value as 0.1*104 m3/s。The yearly change of the net transport through the Bohai Strait section is consistent with change of salinity at the observation station, that means the water transport through the Bohai Strait is a important factor conducing the yearly change of the salinity in the Bohai Sea.
     The Kuroshio water has different character with shelf water. With the boundary at isobath of 120 meter from the north of the Taiwan island to the Cheju island, the exchange and mixture of the Kuroshio water and the shelf water is discussed. The water exchange is stronger at the intrusion of the Kuroshio, and decreases along the latitude increasing. The shelf water flows through the isobath into the Kurishio current in the area norther than 28 degree. On seasonal changes, the Kuroshio current intrudes to the shelf having a biggest value in the autumn and winter, and smaller value in spring and summer. For the temperature at shelf is lower compared to the water brought by the Kuroshio in winter, the baroclinic current is strengthened. Meanwhile, the Ekman current forced by wind is also forward to the shelf. The whole structure is opposite in summer. The shelf water intrudes to the outside having a bigger value in spring and summer, and smaller value in winter and autumn, that is opposite with intrusion of the Kuroshio. The seasonal distribution of salty exchange shows that the salty has a higher value in the area 600km norther than the Taiwan island in winter, that can demonstrate that the intrusion from the Kuroshio to the shelf, while, the salty has the lowest value as 33psu at the Cheju island. In summer, with the intrusion of shelf water to the outside, the salty value decreases 1psu in upper 50 meter layers and 0.2psu in lower layers. And the water with higher temperature and lower salinity is mainly in the upper layer. Besides, since the flux of the Yangtze River is biggest in summer, the area with lower salinity increases obviously near the Cheju island.
     From the EOF of energy, we find that the changes of climate in the late seventies have the biggest influence on the distribution of kinetic energy. The temporal distribution of kinetic energy is 39 months behind it of PDO, while the temporal distribution of the Kuroshio current abnormality is 3 years behind the latter, so we can conclude that it takes around 2 to 3 month that the signal of the Kuroshio current is introduced to the ECS and infects the redistribution of energy in the whole area. With the first EOF mode of potential energy, the temporal distribution of it is 44 month behind the temporal distribution of PDO. That means the changing potential energy more depend on its seasonal changing. The baroclinic potential energy is mainly infected by wind forcing, since the wind directly infects the mixture of the surface layer and forces the redistribution of density of the sea.
     The seasonal changes of energy show that there is always higher kinetic energy in the outer of the Yangtze River. But when the tidal effects are unconsidered, that subdivision disappears. Then, which can be considered a product of tides. However, the tidal experiment demonstrates that the tidal energy is not efficient reason for that subdivision, since the distribution of tidal energy is not exactly like consistent with it in kinetic energy. In fact, the kinetic energy is a product of movements of circulations, and the tidal current ellipse is the most direct behaviour of the period movements of tidal current. The distribution of kinetic energy is very similar with the sum of the square of long axis and short axis, except in the area of estuary of the Yangtze River. When the topography changes, the kinetic energy and tidal current ellipses change homogeneously and have the same distribution. So the water revolving is the directly reason to induce the higher kinetic energy in the outer of the Yangtze River.
     The structure of Lagrange current is similar with that of the Euler current. The big difference between them is shown in the area from the center to the south part of the Yellow Sea, since the Euler current flows directly to the shelf of the East Sea, however, the Lagrange current is infected by the current toward north at the estuary of the Yangtze River, both of them flow east and separate at the west of Cheju island, then, one of them turns north and forms a closed circulation with currents from the north, the other flows east-south and through the outside of Yangtze estuary the East Sea. When the tidal current flows along a cape, the water particles are subjected to a strong centrifugal force due to the large curvature of the streamline. The centrifugal force makes the water flow out, and the sea level falls in the vicinity of the cape, then the water on both sides flows towards the cape forming two rings with different rotating senses. The shallow topography makes the tidal current weaker, then the current changes in a tidal period, which result in a net displacement. Thereby, the Lagrange current can represent the character of tidal current better than the Euler current.
引文
[1] Su, J. Circulation dynamics of the China Seas North of 18 N. In: Robinson, A.R., Brink, K.H. (Eds.). The Sea, 1998, 11: 483~505
    [2]尤芳湖,郑义芳.关于潮流的大面预报问题.海洋与湖沼, 1959,2(3): 111~135
    [3]全国海洋普查报告.1964
    [4]沈育疆.东中国海数值潮汐计算.山东海洋学院学报, 1980,10(3):28~35
    [5]窦振兴,杨连武,Ozer.J.渤海三维潮流数值模拟.海洋学报,1993:15(5),1~15.
    [6]刘爱菊,卢铭.渤海潮汐数值计算.中国海洋湖沼学会水文气象学会学术会议(1980).北京:科学出版社, 1982,71~82
    [7]刘爱菊,尹逊福,卢铭.黄海潮汐特征(Ⅰ).黄渤海海洋, 1983, 1(2):1~7
    [8]山广林,刘占沛,王钟桾,等.渤海潮混合数值模拟(Ⅰ).海洋与湖沼, 1983, 14(5):410~431
    [9]丁文兰.渤海和黄海潮汐潮流分布的基本特征.海洋科学集刊,1985, 25, 27~40
    [10]方国洪,王仁树.海湾的潮汐与潮流.海洋与湖沼,1966, 8(1),60~77
    [11]方国洪.潮汐分析和预报的准调和方法,1.准调和分潮.海洋科学集刊,1974:9,1~15
    [12]方国洪.潮汐分析和预报的准调和方法,2.短期观测的分析,海洋科学集刊, 1976, 11,33~56
    [13]方国洪.潮汐分析和预报的准调和方法,3.潮流和潮汐的一个实际计算过程.海洋科学集刊, 1981, 18,19~40
    [14]方国洪,王凯,郭丰义,等.近30年渤海水文和气象状况的长期变化及其相互关系.海洋与湖沼, 2002, 33(5), 515~525
    [15]于克俊,张法高.渤海潮波运动的三维数值计算.海洋与湖沼, 1987,18(3):227~236
    [16]陈达熙.渤、黄、东海海洋图集-水文分册.北京:海洋出版社,1992
    [17]叶安乐,梅丽明.渤黄东海潮波数值模拟.海洋与湖沼, 1995, 26(1): 64~70
    [18]万振文,乔方利,袁业立.渤、黄、东海三维潮波运动数值模拟.海洋与湖沼,1998, 29(6): 611~616
    [19]王凯,方国洪,冯士笮.渤海、黄海、东海M2潮汐潮流的三维数值模拟.海洋学报, 1999, 21(4): 1~13
    [20]王凯,冯士笮,施心慧.渤、黄、东海夏季环流的三维斜压模型.海洋与湖沼, 2001, 32 (5):551~560
    [21]林珲,闾国华,宗志尧,等.东中国海潮波系统与海岸演变模拟研究.北京:科学出版社, 2000
    [22]苏纪兰,刘先炳.南海环流的数值模拟.海洋环流研讨会论文选集,海洋出版社,1992, 206~215
    [23]苏纪兰.中国近海的环流动力机制研究二.海洋学报,2001, 23(4): 1~16
    [24]刘秦玉,刘倬腾,等.黑潮在吕宋海峡的形变及动力机制.青岛海洋大学学报,1996, 26(4): 413~420
    [25]许建平.阿尔戈全球海洋观测大探秘.北京:海洋出版社, 2002
    [26] Nitani H. Beginning of the Kuroshio[A]. Stommel H, Yoshida K ed. Kuroshio. Physical Aspects of the Japan Current. Seattle: University of Washington Press, 1972, 129~163
    [27] Hidaka K. Japan Sea. In: Fairbridge R W ed. The Encyclopedia of Oceanography. Stroudsburg: Dowen, Hutchinson & Ross Inc., 1966, 417~424
    [28]袁耀初,刘勇刚,苏纪兰. 1997-1998年EL Niňa至La Niňa期间东海黑潮的变异.地球物理学报,2001, 44(2): 20~31
    [29] Liu, C., S. Cheng, W. Chuang, et al. Mean structure and transport of Taiwan current (Kuroshio), Acta Oceanogr. Taiwan.. 1998, 36(2): 159~176
    [30]孙湘平.中国近海区域海洋.青岛:海洋出版社. 2008, 134~150
    [31] HSUEH Y, CHERN C S, WANG J. The blocking of the Kuroshio by the continental shelf northeast of Taiwan[J]. J Geo- phys Res, 1993, 98(12):351~359
    [32]郭炳火,汤毓祥,陆赛英.春季东海黑潮锋面涡旋的观测与分析.海洋学报,1995, 17(1): 13~23
    [33]郭炳火,汤毓祥,葛人峰,等.台湾暖流和入侵陆架黑潮水的季节变化.海洋学报,2000, 22(增刊): 24~38
    [34] Tang, T., J. Tai and Y. Yang. The flow pattern north of Taiwan and the migration of the Kuroshio. Cont. Shelf Res., 2000, 20: 349~371
    [35] Lie H J, Cho C H. On the origin of the Tsushima Warm Current[J]. J Geophys Res, 1994, 99: 25081~25091
    [36]宋万先,郭炳火,九州西侧海域129oE断面的流速和温盐结构特征.海洋与湖沼, 1996, 27(5): 538~545
    [37]郭炳火,李兴宰,李载学夏季对马暖流区黑潮水与陆架水的相互作用-兼论对马暖流的起源.海洋学报,1998, 20(5): 1~12
    [38]郭炳火,万邦君,汤毓祥.东海海洋锋的波动及演变特征.黄渤海海洋,1995, 13(2): 1~10
    [39] Lin, X., D. Wu, and J. Lan. The intrusion and influences of intraseasonal long Rossby wave in the East China Sea. J. Hydrodynamics(Ser.B), 2004, 16(5): 1~12
    [40] Uda, M., and A. Kishi. Cyclonic cold eddies along the edge of Kuroshio current in relation to the genesis and passage of cyclones, I. Waters north of Taiwan. The Kuoshio III, Proc. Th Chin. J. Oceanol. Limnol., 1974, 22(3): 292~298
    [41] Lin C, Shyu C Z, Shih W H. The kurishio fronts and cold eddies off northeastern Taiwan observed by NOAA-AVHRR imageries[J]. Terrestrial, Atmospheric and Oceanic Sciences, 1992, 3: 225~242
    [42]孙湘平,修树孟.台湾东北海域冷涡的分析.海洋通报, 1997, 18(3): 27~34
    [43]郭炳火,万邦君,汤毓祥.东海海洋锋的波动及演变特征.黄渤海海洋, 1995, 13(2): 1~10
    [44]郭炳火,李兴宰,李载学.夏季对马暖流区黑潮水与陆架水的相互作用-兼论对马环流的起源.海洋学报, 1998, 20(5): 1~12
    [45] Qiu, B., T. Toda, and N. Imasatc. On Kuroshio front fluctuations in the East China Sea using satellite and in situ observational data. J.Geophys.Res, 1990, 95(C10): 191~204
    [46]袁耀初,苏纪兰. 1986年夏初东海黑潮流场结构的计算.黑潮调查研究论海洋出版社,1990, 175~192
    [47]袁耀初,潘子勤. 1989年夏初东海黑潮流量与热通量的变化.黑潮调查研究论文(四),海洋出版, 1992: 265~272
    [48]袁耀初.东海三维海流的一个预报模式.黑潮调查研究论文选(五),北京:海洋出版社,1993:311~323
    [49]袁耀初,潘子勤,金子郁雄,袁藤昌宏.东海黑潮的变异与琉球群岛以东海流,黑潮调查研究论文选(五).海洋出版社,1993, 279~297
    [50]袁耀初,苏纪兰,孙德桐,许卫艺.东海黑潮与琉球群岛以东海流半诊断计算.海洋学报, 1997, 19(1): 8~20
    [51] Kagimoto, T., T. Yamagata. Seasonal transport variations of the Kuroshio: An OGCM Simulation. J. Phys. Oceanogr., 1997, 27: 403~418
    [52] Guo, X., H. Hukuda, Y. Miyazawa, and T. Yamagata. A triply nested ocean model for simulating the Kuroshio-roles of horizontal resolution on JEBAR. J. Phys. Oceanogr., 2003, 33: 146~169
    [53]鲍献文,林霄沛,吴德星,山峰.东海陆架环流季节变化的模拟与分析.中国海洋大学学报,2005, 35(3): 349~356
    [54]苏纪兰,潘玉球.台湾以北陆架环流动力学初步研究[J].海洋学报,1989,11:1~14
    [55]毛汉礼,邱道立.中国近海温、盐、密度的跃层现象(节要).见:毛汉礼著作选集.北京学苑出版社, 1964, 141~146
    [56] Inoue N. Bottom current on the continental shelf of the East China Sea[J]. Marine Science Monthly, 1975, 2: 12~18(in Japanese)
    [57]管秉贤.黑潮源地区域若干冷暖涡的主要特征.见:第二次中国海洋湖沼科学会议论文集.北京:科学出版社, 1983, 19~30
    [58]翁学传,王从敏. T-S点聚的初步研究和夏季台湾暖流的起源[J].海洋科学集刊,1984,21:113~133
    [59]管秉贤.东海海流结构及涡旋特征概述.海洋科学集刊, 1986, 27:1~21
    [60]翁学传,王从敏.台湾暖流深层水变化特征的分析.海洋与湖沼, 1983, 14(4): 357~366
    [61]赵保仁.局地风对黄海和东海近岸域海流的影响和研究.海洋与湖沼, 1982, 13(6): 479~490
    [62]朱耀华,方国洪.陆架和浅海环流的一个三维正压模式及其在渤、黄、东海的应用.海洋学报, 1994, 16(6): 11~26
    [63]浦泳修,苏玉芬,许小云.东海南部流场的若干特征.黑潮调查研究论文集,北京:海洋出版社, 1987, 33~44
    [64] Uda, M. The results of simultaneous oceanographical investigations in the Japan Sea and its adjacent waters in May and June 1932 (in Japanese). J. Imp. Fish. Exp. St., 1934, 5: 138~190
    [65] Hsueh,Y.. Recent current observation in the Eastern Yellow Sea. J. Geophys. Res., 1988, 93: 612~615
    [66]乐肯堂,毛汉礼.南黄海冬季温盐结构及其流系.海洋与湖沼, 1990, 21(6): 505~515.
    [67] Teague, W. J., and G. A. Jacobs. Current observations on the development of the Yellow Sea Warm Current. J. Geophys. Res., 2000, 105(C2): 3401~3411
    [68]汤毓祥,邹娥梅,李兴宰,等.南黄海环流的若干特征.海洋学报, 2000, 22(1): 1~16
    [69]汤毓祥,邹娥梅, Lie Heung-Jae.冬至初春黄海暖流的路径和起源.海洋学报, 2001, 23(1): 1~16
    [70] Fangli Qiao, Yongzeng Yang, Xingang Lv, el al. Coastal upwelling in the East China Sea in winter. J. Geophys. Res., 2006, vol 111, C11S06,doi: 10. 1029/2005JC003264
    [71] Lie, H.-J., C.-H. Cho, J.-H. Lee, and S. Lee. Does the Yellow Sea Warm Current really exist as a persistent mean flow. J. Geophys. Res., 2001, 106(C10): 22,199~22,210
    [72] Xie, S.-P., J. Hafner, Y. Tanimoto, et al. Bathymetric effect on the winter sea surface temperature and climate of the Yellow and East China Seas. Geophys. Res. Lett., 2002, 29(24), 2228, doi:10.1029/2002GL015884
    [73] Changshui Xia, Fangli Qiao, et al. Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model. J. Geophys. Res, 2006, VOL.111, C11S03, doi:10.1029/2005JC003218
    [74]张淑珍,奚盘根,冯士竿.渤海环流数值模拟.山东海洋学院学报, 1984, 14(2): 12~19
    [75]缪经榜,刘兴泉.北黄海和渤海冬季环流动力学的数值试验.海洋学报, 1989, 11(1): 15~22
    [76]匡国瑞,张琦等.渤海中部长期流的观测与余流分析.海洋湖沼通报, 1991, 2: 1~11
    [77]顾玉荷,修日晨.渤海海流概况及其输沙作用初析.黄渤海海洋, 1996, 14(1): 1~6
    [78]黄大吉,苏纪兰,陈宗镛.三维陆架海洋模式在渤海中的应用, I.潮流、风生环流及其相互作用.海洋学报, 1996, 18(5): 1~11
    [79]赵保仁,方国洪,曹德明.渤、黄、东海潮汐潮流的数值模拟.海洋学报, 1994, 16(5): 1~10
    [80]赵保仁,方国洪,曹德明.渤海、黄海和东海的潮余流特征及其与近岸环流输运的关系.海洋科学集刊, 1995, 36: 1~11
    [81]赵保仁,曹德明.渤海冬季环流形成机制动力学分析及数值研究.海洋与湖沼, 1998, 29(1): 86~96
    [82]赵保仁,曹德明,李徽翡,王其茂.渤海的潮混合特征及潮汐锋现象.海洋学报,2001, 23(4): 113~118
    [83]鲍献文,苏洁,郭心顺,等.黄、渤海热结构及环流季节变化的数值模拟.中国海洋大学学报, 2004, 34(4): 513~522
    [84]万修全,鲍献文,吴德星,等.渤海夏季潮致-风生-热盐余流的数值诊断计算.海洋与湖沼, 2004, 35(1): 51~57
    [85]林霄沛,吴德星,等.渤海海峡断面温度结构及流量的季节变化.青岛海洋大学学报, 2002, 32(2): 355~360
    [86] Chuanlan Lin, Jilan Su, et al. Long-term variations of temperature and salinity of the Bohai Sea and their influence on its ecosystem. Progress in Oceanography, 2001, 49: 7~19
    [87]吴德星,牟林,李强,等.渤海盐度长期变化特征及可能的主导因素.自然科学进展, 2004, 14(2): 191~195
    [88] Munk,W.,Wunseh,C.. Abyssal recipesⅡ: Energetics of tidal and wind mixing. Deep-Sea Research, 1998, 45, 1977~2010
    [89] Egbert, G.D., Erofeeva, S.Y.. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 2002, 19(N2), 183~204
    [90] Weisberg, R.H., Zheng, L.. How estuaries work: a Charlotte Harbor example. Journal of Marine Research, 2003, 61: 635~657
    [91] Parker MacCready, Neil S.Banas, et al. A model study of tide- and wind-induced mixing in the Columbia River Estuary and plume. 2008. Article in press
    [92]方国洪.黄海潮能的耗散.海洋与湖沼, 1979, 10(3): 200~213
    [93]张占海,吴辉碇.渤海潮汐和潮流数值计算.海洋预报, 1994, 11(1): 48~54
    [94]李培良.渤黄东海潮波同化数值模拟和潮能耗散的研究: [博士学位论文].青岛:中国海洋大学海洋环境学院, 2003
    [95]徐玲玲.风场等外部强迫对东中国海海洋物理环境的影响: [博士学位论文].青岛:中国海洋大学海洋环境学院, 2008
    [96] Parker MacCready, Neil S.Banas, et al. A model study of tide- and wind-induced mixing in the Columbia River Estuaru and plume. Continental Shelf Research. 2008. Article in press
    [97] Xueen Chen, Dexing Wu. A preliminary study on numerical simulation of the Northeast Asian Regional Seas. Qingdao: China Ocean University Press, 2006
    [98] Beckmann, A., Haidvogel, D.B.. Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and model accuracy. Journal of Physical Oceanography, 1993, 23: 1736~1753
    [99] Mellor, G.L., and T. Yamada. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 1974, 31, 1791~1806
    [100] Mellor, G.L., and T. Yamada. Development of a turbulence closure model for geophysical fluidGeophys. Res., 2003, 108: 3220~3236
    [118]潘玉球,苏纪兰,苏玉芬.东海南部水文的季节特征[A].黑潮调查研究论文选[C],北京:海洋出版社,1993,186~200
    [119]林葵,陈则实,等.东海黑潮水与陆架水的季节性输运和交换.黄渤海海洋, 1995, 13(4): 1~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700