用户名: 密码: 验证码:
黄土丘陵区小流域不同土地利用方式土壤水分动态规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤水是生态系统中植物赖以生存的基础,同时也是流域水循环中最为活跃的部分,影响着植物生长、生态环境建设以及水资源的合理分配与高效利用。黄土高原大部分地区地处半干旱、半湿润地区,加之其特殊成土过程形成的“土壤水库”,使得土壤水在该区生态环境建设中发挥着不可替代的作用。在黄土高原开展的以植被恢复为主的生态环境建设取得一定成绩的同时,土壤水资源储量被认为有减少的趋势。如何在开展生态建设的同时,实现土壤水资源的可持续利用是我们亟待解决的科学问题。本论文对黄土丘陵区延安燕沟流域不同土地利用方式的土壤水分时空变化及亏缺补偿特征进行了研究,并结合稳定性同位素技术,初步探讨了该区水循环中降水、土壤水、河流水和地下水的同位素组成特征,得出了以下结论:
     1)降水年型对不同植被类型土壤水分的季节变化和剖面垂直变化均有一定影响。旱农坡地平水年土壤水分的季节变化平缓;枯水年雨季前土壤水分缓慢减小,雨季后显著增加;丰水年则整体增加,且雨季后增加明显。刺槐林、沙棘灌丛和白羊草地平水年土壤水分的季节变化表现为整体降低;枯水年沙棘灌丛土壤水分先减后增,刺槐林与白羊草地呈“W”型曲线变化,两个最低值均出现在6月和8月;丰水年沙棘灌丛和刺槐林土壤水分的季节变化呈“V”型,白羊草地土壤水分波动较大,最低值出现在8月。旱农坡地枯水年的土壤水分活跃层和次活跃层深度较平水年下移,丰水年次活跃层消失;丰水年和枯水年,刺槐林和白羊草地土壤水分活跃层深度均较平水年下移,沙棘灌丛则上移。
     2)梯田各层土壤水分变化态势相似程度较高,即梯田土壤水分的垂直波动较小;不同土地利用方式下均是表层(0-30cm)和中层(30-100cm)土壤水分的灰关联度较大,即土壤水分的变化发展态势较一致,但由于不同利用方式的影响,土壤水分变化态势的相似程度为梯田>白羊草>刺槐>沙棘,除白羊草地外,其他土地利用方式下表层(0-30cm)与深层(100-200cm)的土壤水分灰关联度最小,土壤水分变化差异较大。从各月土壤水分灰关联度来看,沙棘除10月外,其他个月土壤水分变化态势的相似程度较高;白羊草地正好相反,整个生长季土壤水分的变化波动很大;梯田和刺槐林地居中,但各月土壤水分变化态势的相似程度仍存在差异,表现为雨季前各月土壤水分变化较为一致,雨季后的9、10月份与4月份相比差异较大。说明不同的土地利用方式对土壤水分的垂直变化和月动态均产生不同影响。
     3)不同水土保持措施雨季前后土壤储水均处于亏缺状态。降雨最多的7月份土壤储水亏缺均有不同程度的缓解,退耕坡地和梯田亏缺状态明显减轻;8月份表层土壤储水亏缺加剧;雨季后的10月份土壤储水均得到恢复。退耕坡地土壤储水亏缺度随土层深度的增加而减小,鱼鳞坑则随土层深度的增加土壤储水亏缺程度增大。梯田与水平阶相同,100-200cm土壤储水亏缺度最大,0-50cm次之,50-100cm最小。降雨对退耕坡地和梯田0-200cm土壤水分均有正补偿作用,补偿深度均为160cm。水平阶90cm处和160cm以下均出现负补偿现象。鱼鳞坑仅在30cm处出现负补偿,降雨补偿深度为100cm。在0-200cm土壤剖面上,土壤储水亏缺补偿度CSW依次为退耕坡地>梯田>鱼鳞坑>水平阶。
     4)黄土丘陵区降水线方程与全球降水线方程以及我国降水线方程相比,斜率与截距均偏小,这与研究区地处内陆,次降雨量小,空气湿度低,降水在降落过程中经过较强的蒸发有关。土壤水同位素组成变化远远小于降水。土壤水的氢氧同位素值均位于当地降水线的右下方,表明降雨在补给土壤水之前经历了强烈的非平衡蒸发,分馏明显。不同土层土壤水的氢氧同位素组成存在差异,表层30cm受降雨的影响较大,深层受土壤蒸发动力影响较大。2007年7月31日和8月10日土壤水氢氧同位素的剖面分布均呈“凹”型,最小值在200cm处,而9月1日土壤水氢氧同位素剖面分布呈“凸”型,最大值在200cm处。地表水氢氧同位素的平均值和标准差均小于降水。地表水氢氧同位素之间的关系为:δD=6.37δ~(18)O-12.08(R~2=0.97,n=21)。该方程斜率和截距均小于当地降水线方程的斜率和截距,氢氧同位素值大多数位于当地降水线右下方且与降水线接近,说明河流水来源于降水,并且受不同程度非平衡蒸发较小。河水的氢氧同位素组成受降雨的影响较大,也与前期河水同位素组成及流量有关。河水不同部位所受非平衡蒸发程度不同,导致河流水体不同部位氢氧同位素值不同,但经不同水体充分混合后,出现从上游至下游同位素值逐渐增大的趋势。井水与泉水的氢氧同位素组成较降水和土壤水变化范围明显都小。井水和泉水的δD和δ18O均落在当地降水线右下方且与降水线接近,与降水的平均δD和δ~(1)8O也很接近,说明井水和泉水均来源于大气降水,且在降水补给过程中由于非平衡蒸发引起的同位素分馏较小。降雨对泉水的补给滞后30天左右。降雨对井水的补给滞后时间以及土壤水对地下水的补偿作用还需进一步研究。
Soil water is the demanded facter for plant growth in ecosystem, and it is also the most active part which affects plant growth, ecological construction and reasonable distribution and effective utility of water resource. Most areas of the loess plateau are located in semi-arid and semi-humid area. The soil water reservoir constructed during characteristic soil formation is an irreplaceable factor in the ecological construction. Soil water storage decreased as the vegetation reconstruction developed. So, the continuous utilization of soil water is an urgent problem in ecological construction. In this research, temporal and spatial variations and deficits of soil water was studied under different land uses in Yangou catchment located in loess hilly region. Combined with stable isotope technique, the isotope composition of precipitation, soil water, river and ground water in this area was investigated, and the main conclusions were drawn as follows:
     (1) Yearly precipitation pateern had definite effects on the seasonal variation and profile distribution of soil moisture. In normal year, soil moisture in dry farmland had a gentle seasonal variation; in dry year, it decreased slowly before rainy season but increased markedly after rainy season; while in rainy year, it had an overall increase and the increment was remarkable after rainy season. The soil moisture in R. psendoacacia forestland, Hippophae shrubland, and B. ischaemun grassland decreased as a whole in normal year. In dry year, soil moisture in Hippophae shrubland decreased first and increased then, while that in R. psendoacacia forestland and B. ischaemun grassland varied in“W”type, with the minimum in June and August. In rainy year, the seasonal variation of soil moisture in R. psendoacacia forestland and Hippophae shrubland presented“V”type, and that in B. ischaemun grassland fluctuated markedly, with the minimum in August. In dry farmland, the active and sub-active layers of soil moisture were deeper in dry year than in normal year, and the sub-active layer disappeared in rainy year. In R. psendoacacia forestland and B. ischaemun grassland, the active layer of soil moisture was deeper in dry and rainy years than in normal year; while in Hippophae shrubland, this active layer was shallower in dry and rainy years than in normal year.
     (2) Landuses made soil moisture in vertical layer quite different. In terrace land, the variational trend of soil moisture in different layers was accordant, that is, the fluctuation of soil moisture in vertical layer was little. Under different landuses, the variation of soil moisture between surface layer (0-30cm) and middle layer (30-100cm) was accordant, and landuse, in terms of the accordant degree, ranks in the descendant order of terrace land, pasture land, forestland, and shrub land. Except shrub land, the grey relational grade of the landuses between surface land (0-30cm) and deep layer (100-200cm) was least, which means that soil moisture varied remarkably. The grey relational grade of soil moisture in each month was different. In shrub land, except December, the variational trend of soil moisture was similar. By contraries, grass land had the different trend, and the fluctuation of soil moisutre in growth season was great. It can be seen that the different landuses resulted in the difference of dynamic characteristics of soil moisture.
     (3) No matter before or after rainy season, soil water storage under different measures of soil and water conservation was deficient and then increased in July. The increment for crop land and terraced land was the highest. In August, soil water storage deficit in surface layer increased. After rainy season, soil water storage deficit was restored by precipitation in October. Soil water storage deficit degree of crop land decreased with increased soil depth, while for fish-scale-pit land, it increased with increased soil depth. Soil water storage deficit degree of terraced land and narrow level-belt land was the highest in the 100-200 cm soil layer, the second place in the 0-50 cm, and the lowest in the 50-100 cm. The compensation effect of precipitation on soil water storage of crop land and terraced land was positive and the compensation depth was 160 cm. The compensation effect of precipitation on soil water storage of narrow level-belt land was negative at the depth of 90 cm and below 160 cm. The compensation effect in fish-scale-pit land was negative just at the depth of 30 cm and the compensation depth was at the depth of 100 cm. In the whole 0-200 cm soil layer, land types were in the descendant order of crop land, terraced land, fish-scale-pit land, and narrow level-belt land, in terms of compensation degree of soil water storage deficit. That is to say, soil and water conservation measures can influence the seasonal and vertical variations of soil water storage and the compensation impact of precipitation on soil water.
     (4) Compared with the global and Chinese meteoric water lines, slope and intercept of meteoric water line in loess hilly region was lower due to the lower individual rainfall, lower air humidity, inland location and strong evaporation of rainfall during the descent. The variation of soil water isotope composition was far lower than precipitation. TheδD andδ~(18)O of soil water located at the right-down of the local water line. It showed a remarkable fractionation due to the strong imbalance evaporation before precipitation compensated for the soil water. The hydrogen and oxygen isotopic composition of soil water in different layers existed significant differences, which in 0-30cm layer was affected more by precipitation while in deeper layers by soil water evaporation driving more. Average value and standard deviation of hydrogen and oxygen isotope of ground water were all lower than precipitation. The relationship of hydrogen and oxygen isotope of ground water showed that slope and interception of which was lower than local water line’s, and the values were mostly at the right-down of the line approach to the local water line closely. This indicated that river stream water came from the precipitation affected by the imbalanced evaporation less. Hydrogen and oxygen isotopic composition of ground water affected bigger by the precipitation, which was related to the former composition and fluxes. There was an increasing trend of isotopic value from upriver to lower river after the mixing of different water resource, despite the different isotopic values of varied part of river which was lead to by the different imbalanced evaporation. Variation of hydrogen and oxygen isotopic composition of well water and spring water were both lower than precipitation and soil water,δD andδ18O values of which were at the right-down of local line approach to the line closely, and the two values were close each other. This indicated that well and spring water were all come from precipitation and isotopic fractionation was less caused by the imbalanced evaporation in the course of compensation of precipitation. Replenishment of precipitation to spring water lagged about 30 days. The lagged time of precipitation replenishment to well water and the compensation of soil water to ground water demand for further investigation.
引文
[1]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000
    [2] Korzoun V l. World Water Balance and Water Resources of the Earth. Unesco-USSR Committee for the International Hydrological Decade, Leningrad, 1974
    [3]刘昌明.中国水量平衡与水资源储量的分析[A].中国地理学会水文专业委员会.中国地理学会第三次全国水文学术会议论文集[C].北京:科学出版社,1986: 113-118
    [4]李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报,1983,3(2): 24-37
    [5]朱显谟.抢救“土壤水库”治理黄土高原生态环境[J].中国科学院院刊,2000(4): 293-295
    [6]朱显谟.重建土壤水库是黄土高原治本之道[J].中国科学院院刊,2006,21(4): 320-324
    [7]朱显谟.抢救“土壤水库”实为黄土高原生态环境综合治理与可持续发展的关键[J].水土保持学报,2000,14(1): 1-6
    [8]穆兴民.黄土高原土壤水分与水土保持措施相互作用[J].农业工程学报,2000,16(2): 41-45
    [9]傅伯杰,陈利顶.黄土丘陵区小流域土地利用变化对生态环境的影响:以延安市羊圈沟为例[J].地理学报,1999,54(3): 241-246
    [10]杨文治,马玉玺,韩仕峰.黄土高原地区造林土壤水分生态分区研究[J].水土保持学报,1994,8(1): 1-9
    [11]杨文治.黄土高原土壤水资源与植树造林[J].自然资源学报,2001,16(5): 433-438
    [12]侯庆春,韩蕊莲,韩仕峰.黄土高原人工林草地“土壤干层”问题初探[J].中国水土保持,1999,5: 11-14
    [13]侯庆春,韩蕊莲,李宏平.关于黄土高原典型地区植被建设中有关问题研究——1土壤水分状况与植被类型区划[J].水土保持研究,2000,7(2): 102-110
    [14]穆兴民,陈霁伟.黄土高原水土保持措施对土壤水分的影响[J].土壤侵蚀与水土保持学报,1999,5(4): 39-44
    [15]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3): 311-318
    [16] Philip J R. Plant water relations:some physical aspects[J]. Annual Review of Plant Physiology,1966,17: 245-268
    [17]陈恩凤.土壤含水量对于油桐苗生长的影响[J].土壤学报,1952,2(1): 30-33
    [18]朱祖祥.土壤水分的能量概念及其意义[J].土壤学进展,1979(1): 1-2
    [19]庄季屏.四十年来的中国土壤水分研究[J].土壤学报,1989,26(3): 241-247
    [20]邵明安,陈志雄. SPAC中的水分运动[A].西北水土保持研究所集刊[C]. 1991(13): 3-12
    [21]康绍忠,刘晓明,高新科等.土壤-植物-大气连续体水分传输的计算机模拟[J].水利学报,1992(3): 1-12
    [22]陈建耀,刘昌明,吴凯.利用大型蒸渗仪模拟土壤-植物-大气连续体水分蒸散[J].应用生态学报,1999,10(1): 45-48
    [23] Western A W, Rodger B G. The Tarrawarra data set: soil moisture patterns, soil characteristics, and hydrological flux measurements [J]. Water Resources Research,1998,34(10):2765-2768
    [24] Western A W, Rodger B G. Geostatistical characterization of soil moisture patterns in the Tarrawarra catchment [J]. Journal of Hydrology,1998,205:20-37
    [25]王军,傅伯杰,蒋小平.土壤水分异质性的研究综述[J].水土保持研究,2002,9(1): 1-5
    [26] Henninger D L, Petersen G W, Engman E T. Surface soil moisture within a watershed-variations, factors influencing, and relationships to surface runoff [J]. Soil Science Society of America Journal,1976,40(5):773-776
    [27] Moore I D, Burch G J, Mackenzie D H. Topographic effects on the distribution of surface soil water and the location of ephemeral gullies [J]. Trans.Am.Ag.Engng,1988,31:1098-1107
    [28] Famiglietti J S, Rudnicki J W, Rodell M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas [J]. Journal of Hydrology,1998,210:259-281
    [29]王军,傅伯杰.黄土丘陵区小流域土地利用与土壤水分的时空分布[J].地理学报,2000,55(1): 84-91
    [30]刘春利,邵明安,张兴昌.神木水蚀风蚀交错带退耕坡地土壤水分空间变异性研究[J].水土保持学报,2005,19(1): 132-135
    [31]孙中峰,张学培,张晓明等.晋西黄土区林地坡面土壤水分异质性研究[J].干旱地区农业研究,2004,22(2): 81-86
    [32] Hawley M E, Jackson T J, Mccuen R H. Surface soil moisture variation on small agricultural watersheds [J]. Journal of Hydrology,1983,62: 179-200
    [33] Singh J S, Milchunas D G, Lauenroth W K. Soil water dynamics and vegetation patterns in a semiarid grassland [J]. Plant Ecology,134: 77-89
    [34]邱扬,傅伯杰,王军等.黄土丘陵小流域土壤水分的空间异质性及其影响因子[J].应用生态学报,2001,12(5): 715-720
    [35] Schmugge T J. Jackson T J. Soil moisture variability//Stewart J B, Engman E T, Feddes R A, et al. Scaling-up in Hydrology using Remote Sensing. Chichester, England: John Wiley&Sons Ltd, 1996.183-192.
    [36]杨文治,邵明安,彭新德等.黄土高原环境的旱化与黄土中水分关系[J].中国科学:D辑,1998,28(4): 357-365
    [37]徐学选,穆兴民.黄土高原农林草地土壤水分地带性分布研究[A].吴普特.西北水资源与节水技术、战略研究[C].北京:水利电力出版社,2001: 432-436
    [38]韩仕峰,李玉山,石玉洁等.黄土高原土壤水分资源特征[J].水土保持通报,1990,10(1): 36-43
    [39]王孟本,李洪建.晋西北黄土区人工林土壤水分动态的定量研究[J].生态学报,1995,15(2): 178-184
    [40]李俊,毕华兴,李孝广等.晋西黄土残塬沟壑区不同植被类型土壤水分动态研究[J].水土保持研究,2006,13(6): 65-68
    [41]樊军,郝明德,邵明安.黄土旱塬农业生态系统土壤深层水分消耗与水分生态环境效应[J].农业工程学报,2004,20(1): 61-64
    [42]陈洪松,邵明安,王克林.黄土区深层土壤干燥化与土壤水分循环特征[J].生态学报,2005,25(10): 2491-2498
    [43] Ladson A R, Moore I D. Soil water prediction on the Konza Prairie by microwave remote sensing and topographic attributes. Journal of Hydrology,1992,138:385-407
    [44] Whitaker M P L. Small-scale spatial variability of soil moisture and hydraulic conductivity in a semi-arid rangeland soil in Arizona. Tucson: The University of Arizona,1993
    [45]韩仕峰,李玉山,张孝中等.黄土高原地区土壤水分区域动态特征[A].中国科学院西北水土保持研究所集刊[C]. 1989,(10): 161-167
    [46]张孝中,韩仕峰,李玉山.渭北旱原土壤水分动态规律研究[J].干旱地区农业研究,1990,8(4): 27-36
    [47]冯起,程国栋.我国沙地水分分布状况及其意义[J].土壤学报,1999,36(2): 225-236
    [48]赵从举,康慕谊,雷加强.古尔班通古特沙漠腹地土壤水分时空分异研究[J].水土保持学报,2004,18(4): 158-161
    [49]靳孟贵,张人权,孙连发等.土壤水资源评价的研究[J].水利学报,1999,16(2): 73-78
    [50]黄荣珍,杨玉盛,谢锦升等.福建闽江上游不同林地类型土壤水库“库容”的特性[J].中国水土保持科学,2005,3(2): 92-96
    [51]史学正,梁音,于东升.“土壤水库”的合理调用与防洪减灾[J].土壤侵蚀与水土保持学报, 1999,5(3): 6-10
    [52]苏彩虹,郭创业.黄土旱塬农田全程全覆盖的“土壤水库”作用.水土保持学报,2001,15(4): 87-91
    [53]刘庚山,郭安红.开发利用土壤深层水资源的一种有效途径——“以肥润水”的大田试验研究[J].自然资源学报,2002,17(4): 423-429
    [54]由懋正,王会肖.农田土壤水资源评价[M].北京:气象出版社,1996
    [55]冯谦诚,王焕榜.土壤水资源评价方法的探讨[J].水文,1990(4): 28-32
    [56]刘昌明.水量转换.北京:科学出版社,1988: 222-243
    [57]王保秋,李红,梅双斌.关于土壤水资源评价方法的商榷[J].华北地质矿产杂志,1999,14(2): 208-212
    [58]夏自强,李琼芳.土壤水资源及其评价方法研究[J].水科学进展,2001,2(4): 535-540
    [59]于东升,史学正.我国土壤水分状况的优算[J].自然资源学报,1998,13(3): 227-233
    [60]杨文治,余存祖.黄土高原区域治理与评价[M].北京:科学出版社,1992
    [61]杨文治.延安地区北部的干旱与山地抗旱增产问题[J].土壤,1977,(3)
    [62]杨文治.黄土高原土壤水资源与植树造林[J].自然资源学报,2001,16(5): 433-438
    [63]中科院西北水土保持研究所土壤水分组.陕西省东旱塬农田土壤墒情调查[J].土壤,1975,(6): 279-285
    [64]曹淑定等.吴旗飞播区沙打旺根系的研究[J].水土保持通报,1982,(3): 57-62
    [65]李玉山.黄土高原森林植被对陆地水循环影响的研究[J].自然资源学报,2001,16(5): 427-432
    [66]刘增文,王佑民.人工油松林蒸腾耗水及林地水分动态特征的研究[J].水土保持通报,1990,10(6): 78-84
    [67]李代琼,从心海,梁一民.黄土高原半干旱区沙棘林净初级生产量与耗水量研究[J].水土保持通报,1990,10(6): 91-97,84
    [68]梁一民,李代琼,从心海.吴旗沙打旺草地土壤水分及生产力特征[J].水土保持通报,1990,10(6): 113-118
    [69]陈一鹗,刘康.渭北旱原紫花苜蓿蒸腾强度与水量平衡研究[J].水土保持通报,1990,10(6): 108-112
    [70]吴钦孝,杨文治.黄土高原人工植被建设与持续发展[M].北京:科学出版社,1998.
    [71]王克勤,王斌瑞.集水造林防止人工林植被土壤干化的初步研究[J].林业科学,1998(4): 14-21
    [72]李玉山.旱作高产田产量波动性和土壤干燥化[J].土壤学报,2001,38(3): 353-356
    [73]肖军,赵景波.黄土高原地区土壤干层综合研究[J].固原师专学报:自然科学版,2005,26(6): 58-62
    [74]殷淑燕,黄春长.黄土高原苹果基地土壤干燥化原因及其对策[J].干旱区资源与环境,2005,19(2): 76-80
    [75]胡梦珺,刘文兆,赵姚阳.黄土高原农、林、草地水量平衡异同比较分析[J].干旱地区农业研究,2003,21(4): 113-116
    [76]杨文治,马玉玺,杨新民等.黄土高原造林土壤水分生态分区研究[J].水土保持学报,1994,8(1): 1-9
    [77]马履一.国内外土壤水分研究现状与进展[J].世界林业研究,1997(5): 26-32
    [78]高国治,张斌.时域反射法(TDR)测定土壤含水量的精度[J].土壤,1998(1): 48-51
    [79]龚元石,曹巧红.土壤容重和温度对时域反射仪测定土壤水分的影响[J].土壤学报,1999,35(2): 145-153
    [80] Journel A G., Huijbregts Ch. J. Mining Geostatistics[M]. New York: Academic Press, 1978
    [81]徐吉炎,Webster. R.土壤调查数据地域统计的最佳估值研究[J].土壤学报,1983,20: 419-430.
    [82]沈思渊.土壤空间变异研究中地统计学的应用及其展望[J].土壤学进展,1989,17(2): 11-25
    [83]张朝生,陶澍,袁贵平等.天津市平原土壤微量元素含量的空间自相关研究[J].土壤学报,1995,32(1): 50-56
    [84]张朝生,章申,何建邦.长江水系沉积物重金属含量空间分布特征研究——地统计学方法[J].地理学报,1997,52(2): 184-192
    [85]穆兴民.试论黄土区旱地土壤水资源的地带性与非地带性[J].土壤学报,1999,36(2): 237-244
    [86]穆兴民,徐学选等.黄土高原生态水文研究[M].北京:中国林业出版社,2001
    [87]王书功,康尔泗,李新.分布式水文模型的进展及展望[J].冰川冻土,2004,26(1): 61-65
    [88]张济世,康尔泗,蓝永超等.河西内陆河流域地表水与地下水转化关系及水资源利用率研究[J].冰川冻土,2001,23(4): 375-382
    [89] Beven K, Kirkby M J. A physically based, variable contributing area model of basin hydrology [J]. Hydro Sci Bull, 1979, 24: 43-69
    [90]余新晓,赵玉淘,张志强等.基于地形指数的TOPMODEL研究进展与热点跟踪[J].北京林业大学学报,2002,24(4): 117-121
    [91]刘金清,王光生,周砺等.分布式流域水文模型刍议[J].水文,2007,27(5): 21-24
    [92]胡彩虹,郭生练,熊立华等.黄河流域水文模型研究现状与进展[J].西北水资源与水工程,2003,14(1): 5-8
    [93]石教智,陈晓宏.流域水文模型研究进展[J].水文,2006,26(1): 18-23
    [94]王中根,刘昌明,左其亭等.基于DEM的分布式水文模型构建方法[J].地理科学进展,2002,21(5): 430-439
    [95]任立良,刘新仁.基于DEM的水文物理过程模拟[J].地理研究,2000,19(4): 369-376
    [96]郭生练,熊立华.基于DEM的分布式流域水文物理模拟[J].武汉水利电力大学学报,2000,33(6): 1-5
    [97]王中根,刘昌明,黄友波. SWAT模型的原理、结构与应用[J].地理科学进展,2003,22(1): 79-86
    [98]刘青娥,左其亭. TOPMODEL模型理论探讨[J].郑州大学学报(工学版),2002,23(4): 82-86
    [99]王秀英,曹文洪,付玲燕等.分布式流域产流数学模型的研究[J].水土保持学报,2001,15(3): 38-40
    [100]李纪人.遥感和地理信息系统在分布式流域水文模型研制中的应用[J].水文,1997,17(3): 8-12
    [101]何延波,杨琨.遥感和地理信息系统在水文模型中的应用[J].地质地球化学,1999,27(2): 99-103
    [102] Schultz G A. Remote sensing in hydrology [J]. Journal of Hydrology, 1988(100): 239-265
    [103] Schultz G A. Hydrological modeling based on remote sensing information [J]. Advances in Space Research, 1993, 13(5): 149-166
    [104] Andersen J, Dybkjaer G, Jensen K H, et al. Use of remotely sensed precipitation and leaf area index in a distributed hydrological model [J]. Journal of Hydrology, 2005, 305(1-4): 15-39
    [105] Chen J M, Chen X Y, Ju W M, et al. Distributed hydrological model for mapping evapotranspiration using remote sensing inputs [J]. Journal of Hydrology, 2002, 264(1-4): 34-50
    [106] Stout G E (editor). Isotope techniques in the hydrologic cycle. (Geophysical Monograph Series Number 11, National Academy of Sciences-National Council Publication 1488). 1967 Washington DC, NW. 200 p
    [107] Gat J R and Gonfiantini R (Editors). Stable isotope hydrology: Deuterium and oxygen-18 in the water cycle. Technical Report Series No. 210. 1981, IAEA, Vienna, Australia. 339 p
    [108] Payne B R. The status of isotope hydrology today [J]. Journal of Hydrol, 100: 207-237
    [109] Kendall C and McDonnell J J (Editors). Isotope Tracers in Catchment Hydrology. Elsevier Science B V, Amsterdam, 1998. 839 p
    [110]宋献方,于静洁.国际环境同位素水文学会议纪要及我国的研究对策[J].水文地质工程地质,2004,31(1): 114-115
    [111] Friedman I. Deuterium content of nature waters and other substances [J]. Geochimica et Cosmochimica Acta,1953,4: 89-103
    [112] Dansgaard W. Stable isotopes in precipitation [J]. Tellus,1964,16: 436-468
    [113] Craig H. Isotopic variations in meteoric waters [J]. Science,1961,133: 1702-1703
    [114] Yurtsever Y. Worldwide survey of stable isotopes in precipitation [A]. Rep. Isotope Hydrology Section [C]. Vienna:Int. At. Energy Agency. 1975,pp40
    [115] Rozanski K, Araguás-Araguás L, Gonfiantini R. Isotopic patterns in modern global precipitation [A]. In: Continental Isotope Indicators of Climate [C]. American Geophysical Union Monograph,1993,1-36
    [116]郑淑蕙,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素的研究[J].科学通报,1983, 28 (13): 801-806
    [117]于津生,虞福基,刘德平.中国东部大气降水氢氧同位素组成[J].地球化学,1987,6(3): 12-15
    [118]刘进达,刘恩凯,赵迎昌等.影响中国大气降水稳定同位素组成的主要因素分析[J].勘察科学技术,1997,4: 14-18
    [119]马致远.平凉大气降水氢氧同位素环境效应[J].西北地质,1997,18(1): 33-36
    [120] Hubert P, Marin E, Meyback M, et al. Aspects hydrelogiques et sedimentologiques de la crue ex ceptionnelle de la Dranse du Chablais du 22 Septembre 1968,Arch. Sci. Geneve,1969,22 (3): 581-604
    [121] Fritz P, Cherry J A, Weyer K U, et al. Storm runoff analyses using environmental isotopes and major ions [A]. Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater Hydrology, Panel Proc. Ser. [C]. Vienna: IAEA, 1976, 111-130
    [122] Dincer T, Payne B R, Florkowski T, et al. Snowmelt runoff from measurements of tritium and oxygen-18[J]. Water Resour. Res., 1970, 6(1): 110-124
    [123] Bottomley D J, Craig D, Johnston L M. Neutralization of acid runoff by groundwater discharge to stream in Canadian Precambrian Shield watersheds [J]. Journal of Hydrology,1984,75: 1-26
    [124] Pearce A J, Stewart M K, Sklash M G. Storm runoff generation in humid headwater catchments 1.Where does the water come from [J]. Water Resour.Res.,1986,22: 1263-1272
    [125] DeWalle D R,Swistock B R,Sharpe W E. Three component trace model for stormflow on a small Appalachian forest catchment[J]. Journal of Hydrology,1988,104: 301-310
    [126] McDonnell J J,Stewart M K,Owens I F. Effect of Catchment-Scale Subsurface Mixing on Stream Isotopic Response [J]. Water Resour. Res.,1991,27(12): 3065-3073
    [127] Turner J V,Macpherson D K,Stokes R A. The mechanisms of catchment flow processes using natural variations in deuterium and oxygen-18[J]. Journal of Hydrology,1987,94: 143-162
    [128]程汝楠.应用天然同位素示踪水量转换[A].刘昌明,任鸿遵主编.水量转换——实验与计算分析[M].北京:科学出版社,1988. 33-50
    [129]尹观,范晓,郭建强等.四川九寨沟水循环系统得同位素示踪[J].地理学报,2000,55(4): 487-494
    [130]顾慰祖.利用环境同位素及水文实验研究集水区产流方式[J].水利学报,1995,5: 9-17,24
    [131] Sharma P,Gupta S K. Soil water movement in semi-arid climate-an isotope investigation [A]. In: Stable and Radioactive isotopes in the study of the unsaturated zone[C]. IAEA,Vienna, IAEA-TECDOC-357: 55-69,1985
    [132] Zimmerman U,Ehhalt D,Münnich K O. Soil-water movement and evapotranspiration: changes in the isotopic composition of the water [A]. Proc. IAEA Symp. Isotopes Hydrol.,1967,567-585
    [133] Allison G B. The relationship between 18O and deuterium in water in sand columns undergoing evaporation[J]. Journal of Hydrology,1982,55: 163-169
    [134] Allison G B,Hughes M W. The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region[J]. Journal of Hydrology,1983,60: 157-173
    [135] Allison G B,Barnes C J. Estimation of evaporation from non-vegetated surfaces using natural deuterium [J]. Nature,1983,301: 143-145
    [136] Darling W G,Bath A H. A stable isotope study of recharge processes in the English Chalk.Journal of Hydrology,1988,101: 31-46
    [137] Hsieh J C C,Chadwick O A,Kelly E F,Savin S M. Oxygen isotopic composition of soil water: quantifying evaporation and transpiration. Geoderma,1998,82: 269-293
    [138] Barnes C J,Allison G B. Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen[J]. Hydrol. 1988,100: 143-176
    [139] Allison G B, Barnes C J. Estimation of evaporation from the normally“dry”Lake Frome in South Australia [J]. Journal of Hydrology,1985,78 : 229-242
    [140] Mathieu R,Bariac T. A numerical model for the simulation of stable isotope profiles in drying soils[J]. Geophys. Res.,1996,101: 12685-12696
    [141] Shurbaji A R M,Phillips F M,Campbell A R,et al. Application of a numerical model for simulating water flow,isotope transport,and heat transfer in the unsaturated zone[J]. Hydrol. 1995,171: 143-163
    [142] Shurbaji A R M,Phillips F M. A numerical model for the movement of H2O,H218O,and 2HHO in the unsaturated zone[J]. Journal of Hydrology,1995,171: 125-142
    [143] Melayah A,Bruckler L,Bariac T. Modelling the transport of water stable isotopes in unsaturated soils under natural conditions: 1. Theory[J]. Water Resour. Res.,1996,32: 2047-2054
    [144] Braud I,Bariac T,Gaudet J P,et al. SiSPAT-Isotope,a coupled heat,water and stable isotope (HDO and H218O) transport model for bare soil. Part I. Model description and first verifications[J]. Journal of Hydrology,2005,309: 277-300
    [145] Saxena R K,and Dressie Z. Estimation of groundwater recharge and moisture movement in sandy formations by tracing natural oxygen-18 and injected tritium profiles in the unsaturated zone[A]. In: Isotope Techniques in Water Resources Development[C]. IAEA,Vienna,1984,pp. 139-150
    [146] Burger H M,and Seiler K P. Evaporation from soil-water under humid climate conditions and its impact on deuterium and oxygen-18 concentrations in groundwater[C]. In:Isotope Techniques in Water Resources Development. IAEA,Vienna,1992,pp.647-678
    [147] Allison G B,Gee G W,Tyler S W. Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions[J]. Soil Sci. Soc. Am. J. 1994,58: 6-14
    [148] Gvirtzman H,Margaritz M. Investigation of water movement in the unsaturated zone under an irrigated area using environmental tritium[J]. Water Resour. Res.,1986,22: 635-642
    [149] Scanlon B R. Evaluation of liquid and vapor water movement in desert soils based on chlorine-36 and tritium tracers and non-isothermal flow simulations[J]. Water Resour. Res., 1992,28: 285-297
    [150] Cook P G,Walker G R,Buselli G,et al. The application of electromagnetic techniques to groundwater recharge investigations[J]. Journal of Hydrology,1992,130: 201-230
    [151] McCarthy K A,McFarland W D,Wilkinson J M,et al. The dynamic relationship between ground water and the Columbia River: using deuterium and oxygen-18 as tracers [J]. Journal of Hydrology,1992,13: 1-12
    [152] Stichler W,Moser H. An example of exchange between lake and groundwater [A]. Isotopes in Lake Studies [C]. IAEA,Vienna,1979,115-119
    [153] Krabbenhoft D P,Bowser C J,Anderson M P,et al. Estimating groundwater exchange with lakes,1: The stable isotopes mass balance method [J]. Water Resour. Res,1990,26: 2445-2453
    [154] Fontes J Ch,Bortolami G C,Zuppi G M. Hydrologie Isotopique du Massif du Mont-Blanc[A]. Isotope Hydrology[C]. IAEA,Vienna,1978,411-440
    [155]马致远,高文义.平凉大岔河隐伏岩溶水补给的环境同位素研究[J].西北地质,1997,1:53-57
    [156]苏小四,林学钰.包头平原地下水水循环模式及其可更新能力的同位素研究[J].吉林大学学报(地球科学版),2003,33(4):503-509
    [157] Rightmire C T,Pearson F J,Back Jr,et al. Distribution of sulphur isotopes of sulphates in groundwaters from the principal artesian aquifer of Florida and Edwards limestone aquifer of Texas,USA[A]. Proceeding Symposium Isotope Technique Groundwater Hydrology. [C]. IAEA Vienna,1974,Ⅱ: 191-206
    [158] Yurtsever Y , Payne B R. Application of environmental isotopes to groundwater investigations in Qatar[A]. Proceeding Symposium Isotope Technique Groundwater Hydrology[C]. IAEA, Vienna,1979,Ⅱ: 465-490
    [159]高志发.环境同位素法在西北地区地下水资源评价中的应用[J].甘肃地质学报,1995, 4(1): 62-72
    [160]刘丹,刘世青,徐则民.应用环境同位素方法研究塔里木河下游浅层地下水[J].成都理工学院学报,1997,24(3): 89-95
    [161]胡宏韬,李同斌,宋雷等.多层渗流系统地下水补给和运动的环境同位素研究[J].世界地质,1998,17(2): 55-59
    [162]顾慰祖,林曾平,费光灿等.环境同位素硫在大同南寒武-奥陶系地下水资源研究中的应用[J].水科学进展,2000,11(1): 14-20
    [163]林平选,李锋,黄卫星.水同位素在判别溶岩地下水资源组成中的应用——以筛珠洞泉域为例[J].陕西地质,2003,21(1): 67-71
    [164]苏小四,林学钰.银川平原地下水循环及其可更新能力评价的同位素证据[J].资源科学,2004,26(2): 29-35
    [165]张应华,仵彦卿,丁建强等.运用氧稳定同位素研究黑河中游盆地地下水与河水转化[J].冰川冻土,2005,27(1): 106-110
    [166]宋献方,李发东,于静洁等.给予氢氧同位素与水化学的潮白河流域地下水水循环特征[J].地理研究,2007,26(1): 11-21
    [167]王斌瑞,王百田.黄土高原径流林业[M].北京:中国林业出版社,1996
    [168]孙立达,朱金兆等.水土保持林体系综合效益研究与分析[M].北京:中国科学技术出版社,1995
    [169]王克勤,王斌瑞.集水造林防止人工林植被土壤干化的初步研究[J].林业科学,1998,34(4): 14-21
    [170]王百田等.集水技术与林木生长的土壤水环境研究[J].水土保持通报,1997,(6): 7-14
    [171]王军,傅伯杰.黄土丘陵小流域土地利用结构对土壤水分时空分布的影响[J].地理学报,2000,55(1): 84-91
    [172]李锋瑞,赵松岭.陇东黄土旱塬不同降水年型作物土壤水分时空分异特征分析[J].兰州大学学报(自然科学版),1996,32(2): 99-107
    [173]徐学选,蒋定生,高鹏.延安降水对农作物生长适宜性的模糊分析[J].水土保持研究,2000,7(2):73-77
    [174]徐学选,刘文兆,琚彤军等.黄土丘陵区县域尺度农业水资源高效利用探讨[J].干旱地区农业研究,2003,21(4):105-108
    [175]邱扬,傅伯杰,王军等.黄土丘陵小流域土壤水分时空分异与环境关系的数量分析[J].生态学报,2000,20(5): 741-747
    [176]贾志清.晋西北黄土丘陵沟壑区典型灌草植被土壤水分动态变化规律研究[J].水土保持通报,2006,26(1): 10-15
    [177]王万忠,焦菊英.黄土高原降雨侵蚀产沙与黄河输沙[M].北京:科学出版社,1996
    [178]陶林威,马洪,葛芬莉.陕西省降水特性分析[J].陕西气象,2000(5): 6-9
    [179]韩仕峰.旱地土壤水分变化规律及有效利用[J].山西农业科学,1990(7): 20-23
    [180]张北赢,徐学选,刘江华.黄土丘陵沟壑区不同土地利用方式的土壤水分效应[J].水土保持通报,2005,25(6): 5-9
    [181]王浩,杨贵羽,贾仰文等.土壤水资源的内涵及评价指标体系[J].水利学报,2006,37(4): 389-394
    [182]傅伯杰,王军,马克明.黄土丘陵区土地利用对土壤水分的影响[J].中国科学基金,1999,4: 225-227
    [183]徐学选,刘江华,高鹏等.黄土丘陵区植被的土壤水文效应[J].西北植物学报,2003,23(8): 1347-1351
    [184]邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社. 1987
    [185]王学萌,穆月英,唐翼龙.灰色系统分析方法论初探[J].系统辩证学学报,1995,3(2): 85-89
    [186]夏军. Excel2000在灰关联分析中的应用.中国卫生统计,2004,21(2): 117-121
    [187]蒋定生编著.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997. 27-37,331-461
    [188]孙立达,朱金兆主编.水土保持林体系综合效益研究与评价[M].北京:中国科学技术出版社,1995. 293-305
    [189]黄明斌,杨新民,李玉山.黄土高原生物利用型土壤干层的水文生态效应研究[J].中国生态农业学报,2003,11(3): 113-116
    [190]白厚义,肖俊璋.试验研究及统计分析[M].西安:世界图书出版西安公司,1998. 101-107
    [191]穆兴民.黄土高原土壤水分与水土保持措施相互作用[J].农业工程学报,2000,16(2): 41-45
    [192]杨开宝,刘国彬,李景林等.陕北丘陵区农田蒸散规律及对土壤水环境的影响与防治对策[J].西北农林科技大学学报(自然科学版),2005,33(4): 91-96
    [193]樊军,邵明安,王全九.陕北水蚀风蚀交错区苜蓿地土壤水分过耗与恢复[J].草地学报,2006,14(3): 261-264
    [194]王健,吴发启.黄土高原丘陵沟壑区果园土壤水分动态[J].节水灌溉,2007,(3): 32-35
    [195]高利峰,赵先贵,韦良焕.铜川市耀州区苹果林土壤水分状况研究[J].干旱地区农业研究,2007,25(3): 120-124
    [196]韩仕峰,史竹叶,徐建荣.宁南半干旱地区不同立地农田水分恢复评价[J].水土保持研究,1996,3(1): 22-26
    [197]张永忠,李宝庆.土壤水分含量对降雨入渗补给系数的影响[A].刘昌明,任鸿遵主编.水量转换:实验与计算分析[C].北京:科学技术出版社,1988. 260-274
    [198]王进鑫,黄宝龙,罗伟祥.黄土高原人工林地水分亏缺的补偿与恢复特征[J].生态学报, 2004,24(11): 2395-2401
    [199] Dansgaard W. The abundance of 18O in atmosphere water and water vapour [J]. Tellus,1953,5(4):461-469
    [200]章新平,姚檀栋.我国降水中δ18O的分布特点[J].地理学报,1998,53(4):356-364
    [201] Friedman I,Machta J,and Soller R. Water vapor exchange between water droplet and its environment [J]. J. Geophysical Res.,1962,67:2761-2766
    [202]田立德,姚檀栋,M. Tjimura,孙维贞.青藏高原中部土壤水中稳定同位素变化[J].土壤学报,2002,39(3):289-295
    [203] IAEA. Isotopes in Water Resources Management [M]. Vienna: IAEA Press, 1996.
    [204] Cameron EM, et al. Isotopic and elemental hydrogenochemistry of a major river system: Fraser River, British Columbia, Canada [J]. Chemical Geology, 1995, 122
    [205] Torgersen T. Isotopic composition of river runoff on the U.S. east coast: Evaluation of stable isotope versus salimity plots for coastal water mass identification [J]. Journal of Geophysical Research, 1979, 84(C7): 3773-3775
    [206]苏小四,林学钰,廖资生等.黄河水δ18O、δD和3H的沿程变化特征及其影响因素研究[J].地球化学,2003,32(4):349-357

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700