用户名: 密码: 验证码:
潮汐周期性及其在灾害预测中应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以潮汐变化为主线,归纳并总结了“潮汐调温说”、“深海巨震降温说”等理论和假说,通过周期叠加,计算了潮汐多重复合周期,发现了1.03、1.1、2.2、3.1、4.1、5.5、9、11、22、27a(年)新周期,与厄尔尼诺现象周期、云南强震周期和青藏高原北部强震周期相对应。历史有关气候现象循环的记录75项,与潮汐周期相同的有66项,占88%,表明潮汐是影响气候现象循环的主要因素。太平洋十年涛动(PDO)最显著的变化周期为50a,其次为5.6a。这与5.5a、5.57a、51a、52a、54a、55a、55.7a和55.8a的潮汐周期有很好的对应关系。多因素复合形成51-56a的强烈共振周期,与太平洋十年涛动(亦称拉马德雷现象)周期相对应。5.57a和55.7a显著周期表明月亮近地潮和日月大潮在PDO中的重要作用。通过对潮汐周期和数理模型的计算,得到潮汐影响大气环流、海洋环流、厄尔尼诺、气温、海温、海冰和地震活动的初步形成机制和对应规律,建立了潮汐和季风激发地震的印度洋地壳跷跷板运动模式和北太平洋地壳跷跷板运动模式。
     综合近百年来的气温、海温、海冰、强震、沙尘暴、低温冻害、地球自转、厄尔尼诺、拉尼娜和潮汐变化资料,发现最强潮汐、8.5级以上地震、9级特大地震、中国严重低温冻害和世界流感大流行集中发生在拉马德雷冷位相时期的时空规律,形成一个周期为51-56a的强震、低温冻害、沙尘暴、流感大流行有序发生的灾害链,对预测预防重大自然灾害有一定的实践意义。
In the recent years, global disasters caused enormous economic losses and casualties. For example, Sumatra earthquake tsunami death reached 270,000 people in 2004, Myanmar tropical storm death reached 130,000 people and Chinese Wenchuan earthquake death reached 70,000 people in 2008. The severity is warning people that we must know disasters of occurrence and development scientifically and we should research and prevent disasters and reduce harm which disasters create as far as possible. Ma Zongjin points out that natural disasters prediction faces lots of problems, including multi-factors、multiplicity and uncertainty, but extensive collection of information is very important.
     Tidal regularity and effect are complex geophysical problems, tide and others comprehensive effect influent natural disasters. On base of the previous work, the paper describes time and space regularity of disaster chain during Pacific Decade Oscillation (PDO) cold phase and makes the following main aspects.
     1. Sum up relevant theories and hypothesis, including“The hypothesis of tide adjusting climate”,“The hypothesis of the oceanic earthquakes adjusting climate”,“The hypothesis of tide adjusting rainfall”,“The theory of solar eclipse-El Nino coefficient”,“The theory of earth rotation imbalance”,“Time and space sequence of large earthquakes disaster chain and its prediction”. And introduce latest development of tidal theory and El Nino theory.
     2. Calculation shows that tidal latest period and its application in the global changes. The superposable calculation of lunar track parameters shows that tides have basic cycles of 1.03a, 1.1004 a, 2.0533 a, 2.2014 a, 2.2087 a, 2.2274 a, 4.9 a, 9.98 a, 18.6 a, 60.8 a. Thus they derivative periods have 3.1 a, 4.1 a, 4.9 a, 5.5 a, 5.57 a, 9 a, 9.2 a, 9.8 a, 9.98 a, 10.3 a, 11 a, 22 a, 27 a, 41 a, 52 a, 54 a, 55 a, 55.8 a, 77 a, 81 a, 108 a, 216 a, which relative to the record of climatic cycle. And the 51-56a periodic changes are multi-period composite products, which form intensive resonant period. We found that the 75 records of climate cycle include 66 records which same with tidal period, the rate is 88%, it is show that tide is the primary factor which influence on climate cycles.
     7Ms earthquakes on the northern Tibetan plateau have obviously sequent, the main accumulation of earthquake time interval about at: 53-54 a,26-27 a,10-11 a,3-4 a. 27 a period occur frequently, which derivatives sequent chain: 27-54-81-107-214 a; Yunnan earthquakes have 11 a、18.6 a and 22 a period; El Nino have 2.2 a, 5.5 a, 11a and 22 a period, which same as tidal period; Earth core vibration period 29.8a is three times as tidal period 9.98 a; sea temperature and Antarctic sea ice have quasi-two-year cycle. These periods prove that tidal period have control effect on earthquake, El Nino, La Nina and earth core vibration. The most remarkable change period of PDO is 50 a, the next is 5.6 a. The most remarkable change period of ENSO is 3.6 a. They have good corresponding relationships with tidal periods of 3.1 a, 4.1 a, 5.5 a, 10 a, 18.6 a, 22 a, 51 a, 52 a, 54 a, 55a and 55.8 a, it is prove that the cyclical superimposition and the model computation of this paper are accurate. The average value of tidal 3.1a and 4.1 a periods are 3.6 a, the earth rotation also has 3-4 a periods, which are relative to the ENSO 3.6 a period. The 5.57 a and 55.7 a periods indicate that the perigee tide and syzygial tide are very important in PDO.
     In the process of open-ocean convection in the subpolar North Atlantic Ocean, surface water sinks to depth as a distinct water mass, the characteristics of which affect the meridional overturning circulation and oceanic heat flux. In addition, carbon is sequestered from the atmosphere in the process. In recent years, this convection has been shallow or non-existent, which could be construed as a consequence of a warmer climate. Kjetil V?ge, Robert S. Pickart, Virginie Thierry, et al document the return of deep convection to the subpolar gyre in both the Labrador and Irminger seas in the winter of 2007–2008. Inclination between the Moon's path and the Equator is the largest in 2005-2007 and tide vibrates from north to south the most violently. It is a new evidence of tide adjusting climate by the tidal period of 18.6 a.
     The 5.57 a and 55.7 a periods are the superposition of the perigee tidal period and syzygia tidal period, the superposition makes the tidal intensity increase 80% to apogean tide, thus the superposition have remarkable influence. It is provide reasonable evidence that the days no more than three between the perigee tide and syzygial tidal are defined the strong tide. The derivative 11.14 a and 22.28 a periods of the 5.57 a period also have good corresponding relation with earth rotation speed change of 11.169 a and 22.337 a. The comprehensive analysis causes us to discover more advantageous factor, this is the innovative characteristic of this paper.
     3. Set up mathematical model, we obtain numerical formula and apply these results in practice. Calculation shows that rotational inertia of circle layers are constantly changing by tidal deformation, thus leading to the differential rotation of circle layers. Tidal deformation of circle layers are different, according to the calculation, velocity increment radio is 400:3:1. When new moon or full moon occurs in the equator, relative to lithosphere, the atmosphere and ocean move eastward, it is possible to La Nina; when new moon or full moon occurs in the Tropic Capricorn or the Tropic Cancer, relative to lithosphere, the atmosphere and ocean move westward, it is possible to El Nino. Model calculation also shows that tidal variation changes earth oblateness, which influence on earth rotation speed、atmosphere circulation and ocean circulation,it is conform to the actual distribution of atmospheric circulation and oceanic circulation. The regularity shows, when tidal deformation causes the earth rotation slowly, it is possible to La Nina; when tidal deformation causes the earth rotate quickly, it is possible to El Nino. Solar eclipse (include lunar eclipse) occur in the equator which conduce to formation of La Nina event. We set up mathematical model that tide and monsoon make the sea level changes and“seesawmovement”in the North Pacific crust and the Indian Ocean crust.
     We calculate the differential rotation of the atmosphere, ocean and lithosphere which caused by the tidal changes. When the earth flatting becomes larger, high speed air current and ocean current of equatorial plane result in the opposite direction of the earth’s rotation, which similar with the equatorial easterlies; when the earth flatting becomes smaller, high speed air current and ocean current of mid-latitudes result in the same direction as the earth’s rotation and, which similar with the westerlies of mid-latitudes, the processes of atmospheric and oceanic equator reduce and flow to the two poles. The regularity independents of stellar size and deformation scale. Comprehensive analysis shows that the sun in the equatorial plane, the equatorial easterlies and north-south equatorial warm oceanic current strengthened; the sun in Tropic of Capricorn or Tropic of Cancer, 35 degrees above the westerly and oceanic mid-latitude westerly strengthened. Moon tides enhance or diminish the effect. This indicated that the tide change influence atmospheric circulation and the oceanic circulation, which are one of climatic change reasons.
     4. Sum up latest regularities of disasters, including the relation between tide and earthquake、chilling damage、outbreaks of influenza and so on, these damages occur in the PDO cold phase, so we define the phenomena for disasters chain in the PDO cold phase. According to the data from 1889, we obtain that the PDO cold phase is the period of the concentrated outbreak of strong earthquake and low-temperature。Large earthquakes (m≥8.5) occur in this stage. During the PDO cold phase, large earthquakes and severe low temperature freezing disasters happen in an orderly way. Since 1889 earthquakes are greater than or equal to 8.5Ms altogether 21 times, from 1889 to 1924 the whole world had six earthquakes, from 1925 to 1945 had one, from 1946 to 1977 had eleven, from 1978 to 2003 had zero, from 2004 to 2007 had three, it is entered the PDO cold phase from 2000, Sumatra earthquake tsunami occurred on December 26, 2004, it is indicated that new round large earthquakes start. Using the largest global earthquake catalog available (the NEIC catalog with 442 412 events), Métivier and his co-operators observe a clear correlation (with 99% confidence) between the phase of the solid Earth tide and the timing of seismic events: earthquakes occur slightly more often at the time of ground uplift by the Earth tide, i.e. when normal stresses are reduced within the lithosphere. It is a new evidence of earthquake triggering by the solid earth tides.
     Comprehensive 1890-2004 data, we can get influenza pandemic climate of the six characteristics: Madre in the cold period and the phase boundary; the previous year or two years ago for the moderate-intensity above La Nina years; 20th century 50-70 at the same time as China's strong sandstorm; year or the year before and after China's northeast cold summer (50-70 in the 20th century at the same time as serious chilling damage); that moderate intensity for more than El Nino years; for the year sunspot Valley m or Peak M, m-1, m +1, or M +1. 1889-1890, 1900, 1918-1919, 1957-1958, 1968-1969, 1977 and the outbreak of avian flu have met six conditions.
     5. Numerical calculation shows that tidal deformation and tidal oscillations are the reason of ocean current cycles and seasonal El Nino phenomenon. The globe low-temperature damages and heavy snow have occurred frequently after Sumatra earthquake tsunami in December 26, 2004. The“hypothesis of the oceanic earthquakes adjusting climate”which issued by Guo Zengjian is a reasonable explanation. According to the theory, the globe temperature in 2005 would be lower. The scientists of the National Aeronautics and Space Administration (NASA) thought that a weak El Nino event and human-made greenhouse gases could make 2005 become the warmest year on record. It is not true for the objective testing. Now western scientists also acknowledge the objective fact that the natural climate changes from 2005 to 2006 offset globe warming effect. Lunar oscillations explain an intriguing 60-year cycle in the world’s temperature. Strong tides and the great earthquakes in ocean and its margin are one of thermostats for adjusting climate. The strong earthquakes in the ocean bottom can bring the cool waters at the deep ocean up to the ocean surface and make the global climate cold. So, earthquake, strong tide and global low temperature are closely related together. In this paper, the relation of low temperature, Pacific Decadal Oscillation, the strongest earthquake, Influenza, hurricane and El Nino are discussed. In the cold period of Pacific Decade Oscillation, the strongest earthquake, hurricane with La Nina, Pandemic Influenza with El Nino will occur stronger and stronger. From 1950 to 1976, the strongest sand-dust storm is connected with Pandemic Influenza one by one. So, sand-dust storm may spread Pandemic Influenza Viruses. The strongest earthquakes will occur from 2000 to 2018 for 18 years. The strongest tides and earthquakes may occur in cycle of Quasi-four years.
     6.The application of solar eclipse - El Nino coefficient, the sea temperature quasi-two years periods and the tide 11a periods has forecasted the El Nino event in 2006 and the La Nina event in 2007 successfully; the proposition in 2005 that the hypothesis of“The hypothesis of the oceanic earthquakes adjusting climate”should be tested already confirms, the Indonesian Sumatra occurred three times large earthquakes continuously in 2004, 2005 and 2007, it is the fact that the climate became cold in 2008; the prediction of large earthquakes and low temperature freezing injury in the PDO cold phase from 2000 to 2035 also obtain the preliminary confirmation。
     Synthesize past century data of air temperature、ocean temperature, sea ice, strong earthquakes, dust storm, chilling damage, earth rotation, EL Nino, La Nina and tide, we found that strong tides, 9Ms earthquakes, chilling damage of China, influenza pandemic climate occurred regularity in the PDO cold phase, which formed an orderly disaster chain of 51-56 a period, which has practical significance for forecasting and preventing significant natural disasters.
     This paper makes a depth of discussion and study and obtains some conclusion of available test on tidal model calculation、tidal data analysis and tidal application, for example, occurrence regularity of great earthquakes and Large earthquakes (Ms≥8.5), orderly regularity of 7Ms earthquakes prediction occurrence regularity of chilling damages of China, influenza pandemic climate of the six characteristics, occurrence regularity of disasters chain on the PDO cold phase and so on, which have important significance on study of natural disasters and prevention of serious damages, during the PDO cold phase, great earthquakes, severe chilling damages, global influenza pandemic climate occur in an orderly way according to regularity.
引文
1.余志豪.厄尔尼诺-反厄尔尼诺和南方涛动[M].南京:南京大学出版社, 1992.
    2.倪允琪.气候动力学[M].北京:气象出版社, 1993.
    3. Quinn H. Monitoring and predicting El Nino invasions [J]. J. Appl. Meteor., 1974,13:825-830.
    4. Wyrtri K. El Nino—the dynamic response of the equatorial Pacific ocean to atmospheric forcing [J]. J. Phys.Oceanogr, 1976, 6: 621-681.
    5.郑大伟,罗时芳,宋国玄.地球自转年际变化、厄尔尼诺事件和大气角动量[J].中国科学(B辑), 1988, (3): 332-337.
    6.郑大伟,宋国玄,罗时芳.日长变化观测资料预测El Nino事件[J].科学通报, 1990, 35(16): 1244-1246.
    7.郑大伟,周永宏,廖新浩,等.日长年际变化与1982~1983年和1997~1998年ENSO事件[J].中国科学, 2000, 30 (10): 946-95.
    8.任振球.全球变化[M].北京:科学出版社, 1990: 60-77.
    9.刘厚赞,刘辉,俞永强.海底火山喷发引发厄尔尼诺事件的数值模拟[J].气象学报, 1998, 56(5): 602-610.
    10.杜乐天.自然灾害可能的深部流体肇因[J].地学前缘, 1996, 3 (4): 298-305.
    11. Shaw H, Moore J. Magma flows blamed for El Nino events [J]. New Scientist, 1988, 12 (10): 17.
    12.林振山,赵佩章,赵文桐.日食-厄尔尼诺系数及其应用[J].地球物理学报, 1999, 42(6): 732-738.
    13. Walker D A. More evidence indicates link between El Ninos and seismicity [J]. EOS, 1995, 76(4): 33, 34, 36.
    14.张丽欣.厄尔尼诺—来自天道的警告[M].北京:科学普及出版社, 1999, 42-43, 293, 294, 315-316.
    15.郭增建,秦保燕,郭安宁.地气耦合与天灾预测[M].北京:地震出版社, 1996. 116-117, 135-138, 165-188, 194-198.
    16.杨学祥.大气、海洋与固体地球的能量交换[J].世界地质, 2004, 23(1): 28-34.
    17.杨学祥.厄尔尼诺事件产生的原因与验证[J].自然杂志, 2004, 26(3): 151-155.
    18.杨学祥,陈震,陈殿友,等.厄尔尼诺事件与强潮汐的对应关系[J].吉林大学学报(地球科学版), 2003, 33(1): 87-91.
    19.杨修群,朱益民,谢倩,等.太平洋年代际震荡的研究进展[J].大气科学, 2004, 28(6): 979-992.
    20.吕俊梅,琚建华,张庆云,等.太平洋年代际振荡冷、暖背景下ENSO循环的特征[J].气候与环境研究, 2005, 10(2): 238-249.
    21. Zhang Y, Wallace J M, Battisti D S. ENSO-like interdecadal variability: 1900-93[J]. J. Climate, 1997, 10:1004-1020.
    22. Mantua N J, Hare S R, Zhang Y, et al. A Pacific ingterdecadal climate oscillation with impacts on salmon production [J]. Bull. Amer. Meteor. Soc., 1997, 78: 1069-1079.
    23. Keeling C D, Whorf T P. The 1800-year oceanic tidal cycle: A possible cause of rapid climate change [J]. PNAS, 2000, 97(8): 3814-3819.
    24.蓝永超,丁永建,康尔泗,等.黄河上游径流长期变化及趋势预测模型[J].冰川冻土, 2003, 25(3): 321-326.
    25.杨学祥. 2001年发生厄尔尼诺事件的天文条件[J].地球物理学报, 2002, 45(增刊): 56-61.
    26.李家林,张元东.特殊天象组合期与地震发震关系的检验及应用[J].地震, 1993, (3): 32-37.
    27.杜品仁. 18.6a地震轮回及其成因初探[J].地球物理学报, 1994, 37(3): 362-369.
    28.胡辉,赵洪声,和宏伟.日月影响与云南未来地震趋势研究[J].云南天文台台刊, 2003, (4): 49-55.
    29. Cochran E S, Vidale J E, Tanaka S. Earth Tides Can Trigger Shallow Thrust Fault Earthquakes [J]. Science, 2004, 306: 1164-1166.
    30.杨学祥,韩延本,陈震,等.强潮汐激发地震火山活动的新证据[J].地球物理学报, 2004, 47(4): 616-621.
    31. Li Guoqing. 27.3-day and 13.6-day atmospheric tide and lunar forcing on atmospheric circulation [J]. Adv. Atmos. Sci. 2005, 22: 359-374.
    32.魏鸣,欧阳首承.地球的章动和转速与副热带高压和高温干旱[J].中国工程科学, 2007, 9(8): 40-46 (中国工程院院刊,中国工程院,高等教育出版社).
    33.马宗晋,杜品仁.现今地壳运动问题[M].北京:地质出版社, 1995, 10: 99-102.
    34.杨学祥.全球变暖、构造运动与沙漠化[J].地壳形变与地震, 2001, 21(1): 15-23.
    35.杨学祥,陈殿友,李守春.干旱、地震与月球赤纬角变化[J].西北地震学报, 1999, 21(1):44-47.
    36.李宪之.亚太地区1991年春夏两季自然灾害的探讨[J].北京大学学报(自然科学版), 1994, 30(3): 355-360.
    37.杨学祥,术洪亮.环太平洋地震带与柯里奥利力[J].西北地震学报, 1995, 17(4): 13-16.
    38.罗时芳,梁世光,叶叔华,等.地球自转转率变化的周期分析[J].天文学报, 1974, 15(1): 79-84.
    39.杨学祥,陈殿友.地球差异旋转动力学[M].长春:吉林大学出版社, 1998.
    40.徐道一,杨正宗,张勤文,等.天文地质学概论[M].北京:地质出版社, 1983: 117, 119, 155.
    41. E.布赖恩特.气候过程和气候变化[M].刘东生,等译.北京:科学出版社, 2004: 11.
    42.杨学祥.地球流体的差异旋转与气候变化[J].自然杂志, 2002, 24(2): 87-91.
    43. M. B.斯托瓦斯.地球自转的不均衡性—地球形状及大地构造因素[A].地质力学论丛(1)[C],科学出版社, 1959.
    44. Hamilton1 D P, Krüger H. The sculpting of Jupiter's gossamer rings by its shadow [J]. Nature, 2008, 453: 72-75.
    45.周秀骥,陆龙骅.南极与全球气候环境相互作用和影响的研究[M].北京:气象出版社, 1996: 2, 12, 44, 133, 380, 381-392.
    46.杨学祥,陈殿友.构造形变、气象灾害与地球轨道的关系[J].地壳形变与地震, 2000, 20(3): 39-48.
    47.高庆华,胡景江,徐炳川,等.地壳运动问题[M].北京:地质出版社, 1996: 148, 131-132, 180.
    48.周永宏,郑大伟,虞南华,等.地球自转运动与大气、海洋活动[J].科学通报, 2000, 45(24): 2588-2597.
    49. Brosche P, Wunsch J, Frische A, et al. The seasonal variation of the angular momentum of the oceans [J]. Naturwissenschaften, 1990, 77: 185-186.
    50. Dickey J O, Marcus S L, Johns C M, et al. The oceanic contribution to the earth’s seasonal angular momentum budget [J]. Geophys Res Lett, 1993, 20: 2953-2956.
    51. Marcus S L, Chao Y, Dickey J O, et al. Detection and modeling of nontidal oceanic effects on earth’s rotation rate [J]. Science, 1998, 281: 1656-1659.
    52. Johnson T J, Wilson C R. Oceanic angular momentum variability estimated from the parallel ocean climate model, 1988-1998[J]. J. Geophys Res, 1999, 104: 25183-25195.
    53.高庆华,胡景江,徐炳川,等.地壳运动问题[M].北京:地质出版社, 1996, 131, 135, 148.
    54.侯章栓,李晓东.近百年全球气候变化与外强迫因子信号检测[J].北京大学学报(自然科学版), 2000, 36(5): 641-650.
    55. J. Houghton.戴晓苏,等译.全球变暖[M].北京:气象出版社, 1998: 53, 83.
    56. Bond G, Broecker W, Johnsen S, et al. Correlations between climate record from North Atlantic sediments and Greenland ice [J]. Nature,1993, 365: 143-147.
    57. Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates [J]. Science, 1997, 278: 1257-1266.
    58.胡建国,李建成,董晓军,等.利用卫星测高技术监测海平面变化[J].测绘学报, 2001, 30(4): 316-320.
    59.叶更新.厄尔尼诺与行星运动的联系及其预测[J].气象学报, 1998, 56(5): 635-640.
    60.张家诚.再见,厄尔尼诺[M].上海:上海科学技术出版社, 1999: 22.
    61.魏松林.厄尔尼诺事件对黑龙江省低温洪涝灾害的影响及其预报[J].自然灾害学报, 2001, 10(3): 79-86.
    62.王在文,李晓东.太平洋海温演变的时空结构[J].北京大学学报(自然科学版), 2002, 38(2): 350-357.
    63.钱维宏,丑纪范.固体地球-海洋-大气耦合的一个简单线性模式及其试验结果[J].应用气象学报, 1995, 6 (3): 297-303.
    64.任福民,王梅华,周秀骥,等.近十五年全球臭氧变化[J].气象学报, 1998, 56(4): 485-492.
    65.吴珍汉.旋转地球动力学[M].北京:地质出版社, 1997.
    66. Abarca R, Cazenave A. Interannual variations in the Earth’s polar motion for 1963-1991: comparison with atmospheric angular momentum over 1980-1991 [J]. Geophys Res Lett,1994, 21: 2361-2364.
    67. Liao D C, Greiner-Mai H. A new D LOD series in monthly intervals (1892-1997) and its comparison with other geophysical results[J]. J. Geodesy, 1999, 73: 466-477.
    68. Hide R, Dickey J O. Earth’s variable rotation [J]. Science, 1991, 253: 629-637.
    69. Morgan P J, King R W, Shapiro I I. Length of day and atmospheric angular momentum: a comparison for 1981-1983 [J]. J Geophys Res, 1985, 90: 12645-12652.
    70. Wahr J M, Oort A H. Friction and mountain-torque estimates from global atmospheric data [J]. J Atm Sci, 1984, 41: 190-204.
    71. Rosen R D, Salstein D A. Comment on“a seasonal budget of the earth’s axial angular momentum”by Naito and Kikuchi [J]. Geophys Res Lett, 1991, 18: 1925-1926.
    72.周永宏,郑大伟,廖新浩.日长变化、大气角动量和ENSO:1997-1998厄尔尼诺和1998-1999拉尼娜信号[J].测绘学报, 2001, 30(4): 288-292.
    73.杨学祥.太平洋环流速度减慢的原因[J].世界地质, 2003, 22(4): 380-384.
    74.周春平.大洋暖池及其影响[M].北京:气象出版社, 2001: 57, 84.
    75.张家诚,等.气候变迁及其原因[M].北京:科学出版社, 1976, 126-132.
    76.杨学祥.青藏高原隆升的潮汐-均衡模式[J].世界地质, 2003, 22(2): 119-123.
    77.杨学祥.海平面振荡产生的地壳跷跷板运动[J].地学前缘. 2003, 10(3): 190.
    78. LIN Zhenshan. The phase relation between accumulative effect of solar eclipse and El Nino [J]. Journal of Nanjing Uninersity (Natural Sciences), 1999, 35(6): 777-779.
    79.傅承义.地球十讲[M].北京:科学出版社, 1976: 55-57.
    80.杨学祥.厄尔尼诺事件预测[J].科学技术与工程, 2003, 3(2): 155.
    81.杨学祥,宋冬林,陈震.灾害预报与鸡西煤矿瓦斯爆炸事件[J].西北地震学报, 2003, 25(1): 93.
    82.杨学祥.海底扩张的潮汐模式[J].大地测量与地球动力学, 2003, 23(2): 77-80.
    83. Yang Xuexiang, Chen Zhen, Chen Dianyuo, et al. The Relation between Tectonic Movement and Climatic Change [J]. J. Geosci. Res. NE Asia, 2003, 6 (1): 82-88.
    84. Wang B, Wang Y. Development of El Ninos during 1971-1992[J]. Transactions of Oceanology and Limnology, 1994, (2): 26-40.
    85.任福民,郭艳君,周琴芳,等.小波变换及其对厄尔尼诺研究的初步应用[J].数理统计与管理, 1998, 17 (3): 21-25.
    86. Kolaczek B, Nuzhdina M, Nastula J, et al. El Nino impact on atmospheric polar motion excitation [J]. J Geophys Res, 2000, 105: 3081-3087.
    87.曲维政,陈璐,黄菲,等.南半球对流层气候年代际变化及其与太阳活动的联系[J].地球科学进展, 2005, 20(7): 794-803.
    88.曲维政,邓声贵,黄菲,等.深海温度变化对太阳活动的响应[J].第四纪研究, 2004, 24(3): 285-292.
    89.曲维政,邓声贵,黄菲,等.太阳磁场磁性指数异常变化对南北半球中纬度气候的影响[J].地球物理学报, 2004, 47(3): 398-404.
    90.张人禾,周广庆,巢纪平. ENSO动力学与预测[J].大气科学, 2003, 27(4): 674-688.
    91.于红,吕素琴,范垂仁.沙罗周期与洪水定性预测[J].东北水利水电, 2001, 19(9): 41,45.
    92.张家诚,李文范.地学基本数据手册[M].北京:海洋出版社, 1986, 183, 186-188, 404.
    93.范洪顺. 1900年以来全球地震活动的初步分析[J].国际地震动态, 2001, (1): 13-18.
    94.郭增建.海洋中和海洋边缘的巨震是调节气候的恒温器之一[J].西北地震学报, 2002, 24(3): 287.
    95. Keenlyside N S, Latif M, Jungclaus J, et al. Advancing decadal-scale climate prediction in the North Atlantic sector [J]. Nature, 2008, 453: 84-88.
    96. Smith D M., Cusack S, Colman A W, et al. Reports: Improved Surface Temperature Prediction for the Coming Decade from a Global Climate Model [J]. Science, 2007, 317: 796-799.
    97. Alpert M.张涛译.飓风是怎样“炼”成的[J].科学(Scientific American Chinese Edition). 2005, (2): 11.
    98.杨海,范来福,刘继锋.禽流感和流感的关系、起源、变异和对策[J].职业与健康, 2004, 20(10): 87-89.
    99.于恩庶,徐秉锟.中国人兽共患病学[M].福州:福建科技出版社, 1988: 233.
    100.周立宏,刘新安,周育慧.东北地区低温冷害年的环流特征及预测[J].沈阳农业大学学报, 2001, 32(1): 22-25.
    101.康杜娟,王会军.中国北方沙尘暴气候形势的年代际变化[J].中国科学(D辑), 2005, 35 (11): 1096-1102.
    102. Potter C W. A history of influenza [J]. J Appl Microbiol, 2001, 91: 572-579.
    103. Tumpey T M, Basler C F, Aguilar P V, et al. Characterization of the Reconstructed 1918 Spanish Influenza Pandemic Virus [J]. Science, 2005, 310: 77-80.
    104.张忠鲁.大流行性流感:古老的疾病,人类的灾难[J].医学与哲学, 2005, 26(12):13-17.
    105.吴长德,赵德明,韩彩霞,等.气候对禽流感爆发的影响[J].吉林畜牧兽医, 2004, (7):15-16.
    106.于洋,娄东辉.关于流感流行可能趋势的几点探讨[J].检验检疫学, 2005, 15(增刊): 108-109.
    107. McPhaden M J, Zhang Dongxiao. Slowdown of the meridional overturning circulation in the upper Pacific Ocean [J]. Nature, 2002, 415: 603-608.
    108. Frakes L A, Kemp E M, Influence of continental positions on Early Tertiary climate [J]. Nature, 1972, 240: 97-100.
    109. Frakes L A, Kemp E M. Palaeogene continental positions and evolution of climate [A]. In: D.H. Tarling and S.K. Runcorn (Editors), Implications of Continental Drift to the Earth Sciences, 1[C]. Academic Press, London, 1973, 539-559.
    110. Frakes L A. Climates throughout geologic time [M]. Elsevier Scientific Publishing Company, Amsterdam—Oxford—New York, 1979, 182, 192, 200, 223, 315.
    111. Kaneps A. Late Neogene Biostratigraphy (Planktonic Foraminifera) Biogeography and Depositional History [M]. Ph. D. Dissertation, Columbia University, New York, N.Y., 1970. 299-328.
    112. Kennett J P, Burns R E, Andrews J E, et al. Australian-Antarctic continental drift, palaeocirculation changes and Oligocene deep-sea erosion[J]. Nature, 1972, 239: 51-55.
    113. Kennett J P, Houtz R E, Andre P B. Antarctic glaciation and the development of the Circum-Antarctic Current [A]. In: Initial Reports of the Deep Sea Drilling Project, 29. U.S[C]. Government Printing Office, Washington, D.C., 1975, 1155-1170.
    114. Van Andel T H, Heath G R, Moore T C. Cenozoic History and Paleooceanography of the Central Equatorial Pacific Ocean [J]. Geol. Soc. Am., Mem., 1975, 143: 134.
    115.杨学祥.厄尔尼诺现象的构造基础与激发因素[J].西北地震学报, 2002, 24(4): 367-370.
    116.杨学祥,宋秀环,刘淑琴.地球潮汐形变的数值评价[J].地壳形变与地震, 1997, 17(2): 53-58.
    117.徐文耀, Henri-Claud Nataf,魏自刚,等.地磁场长期变化速率的30年周期[J].地球物理学报, 2006, 49(5): 1329-1337.
    118.杨学祥,牛树银,陈殿友.深部物质与深部过程[J].地学前缘, 1998, 5(3): 77-85.
    119.吉野泰造,国森裕生,胜尾双叶,等. 2000年夏季用“基石”网络观测到东京地区的地壳变形[J].地球物理学报, 2002, 45(增刊): 151-156.
    120.杨学祥,陈震,乔淇源. 2002年厄尔尼诺事件的天文条件[J].西北地震学报, 2002, 24(2): 190-192.
    121.杨学祥.大洋地壳的跷跷板现象[J].科学技术与工程, 2003, 3(1): 28-29.
    122.韩延本,李志安,赵娟.由地球自转的年际变化预测厄尔尼诺事件[J].地球物理学进展,2000, 15(3): 112-114.
    123.郑大伟,丁晓利,周永宏,等. El Nino事件的前兆现象在日长和海平面观测中的反映[J].科学通报. 2000, 45(23): 2572-2576.
    124.刘伟,杨学祥.厄尔尼诺的三个调控器[J].吉林大学学报(地球科学版), 2004, 34(3): 456-458.
    125.国家地震局分析预报中心二室.一九八二年震情[J].地震, 1983, (1): 47-48.
    126.郭增建,郭安宁,周可兴.地球物理灾害链[M].西安地图出版社, 2007: 111-114,146-158.
    127.门可佩.青藏高原北部地区7级强震的有序网络特征及其预测研究[J].地球物理学进展, 2003, 18(4): 765-771.
    128.门可佩.重大地震灾害连的时空有序性及其预测[A].见:高建国.苏门答腊地震海啸影响中国华南天气的初步研究—中国首届灾害链学术研讨会论文集[C].气象出版社, 2007: 74-84.
    129.马未宇.汶川地震前的NCEP异常现象[J].科学导报, 2008, 25(10): 37-39.
    130. Lubick N.柯江华译,曾少立,杨光校.埋藏的地震锁链[J].科学(Scientific American Chinese Edition). 2003, (5):10-11.
    131.罗葆荣. 21世纪云南第1次大地震活跃期的趋势预测[J].云南天文台台刊, 2003, (3): 69-72.
    132.张素欣,解用明,乔子云,等.太阳活动与华北强震关系分析[J].华北地震科学, 2004, 22(2): 59-63.
    133.陈伯舫.太平洋中部地磁台11年周期变化的研究[J].华南地震, 2004, 24(4): 8-10.
    134.翁衡毅.太阳活动11年周期对气候系统中准两年震荡的影响[J].大气科学进展, 2003, 20(2): 303-309.
    135.张焕志.地极和日长的29.8年波动与内核振动[J].中国科学(A辑), 1982, (12): 1129-1139.
    136.杨学祥.太阳活动驱动气候变化的证据[J].中国学术期刊文摘, 2000, 6(5): 615-617.
    137.杨学祥,王莉.地球质心偏移与各圈层形变[J].地壳形变与地震, 1995, 15(4): 23-30.
    138.杨学祥.地磁层和大气层漏能效应[J].中国学术期刊文摘, 1999, 5(9): 1170-1171.
    139.杨学祥,陈殿友,宋秀环.太阳风、地球磁层与臭氧层空洞[J].科学(Scientific American Chinese Edition). 1999, (5): 58-59.
    140.莱伊尔.地质学原理[M].北京:科学出版社, 1959: 129.
    141.杨学祥,陈殿友.火山活动与天文周期[J].地质论评, 1999, 45(增刊): 33-42.
    142.杨学祥,陈震,刘淑琴,等.地球内核快速旋转的发现与全球变化的轨道效应[J].地学前缘, 1997, 4(2): 187-193.
    143.杨学祥,张中信,陈殿友.地核能量的积累与释放[J].地壳形变与地震, 1996, 16(4): 85-92.
    144.杨学祥.地球反对称构造与气候变化的关系[J].自然杂志, 2001, 23(3): 135-139.
    145.杨学祥.气候波动、沙漠化与人类知识结构[J].中国学术期刊文摘, 2000, 6(8): 1003-1005.
    146. Broecker W S. Massive iceberg discharges as triggers for global climate change [J]. Nature, 1994,372: 421-424.
    147. Coffin M F, Eldholm O. Large igneous provinces [J]. Scientific American, 1993, 269(4): 26-33.
    148. Eddy J A, Gilliland R L, Hoyt D V. Changes in the solar constant and climatic effects [J]. Nature, 1982, 300: 689.
    149. Channell J E T, Hodell D A, McManus J, et al. Orbital modulation of the Earth’s magnetic field intensity [J]. Nature, 1998, 394: 464-468.
    150. Allegre C J, Schneider S H. The evolution of the earth [J]. Scientific American, 1994, 271(4): 44-51.
    151.李培基. Milankovitch理论被推翻了还是被证实了[J].冰川冻土, 1994, 16(4): 363-370.
    152.杨学祥.对全球海面变化均衡模式的改进[J].地质科学, 1992, (4): 404-408.
    153.杨学祥.地壳均衡与海平面变化[J].地球科学进展, 1992, 7(5): 22-30.
    154.杨学祥.地壳形变与海平面变化[J].地壳形变与地震, 1994, 14(4): 29-37.
    155.吴锡浩,蒋复初,肖华国.地球公转轨道偏心率变化的构造运动响应[J].地质力学学报, 1995, 1(1): 8-14.
    156.杨学祥,陈殿友.地球固体内核快速自转的理论证明和实测证实[J].西北地震学报, 1996, 18(4): 82.
    157.杨学祥,陈震,刘淑琴,等.地球内核快速旋转的发现与全球变化的轨道效应[J].地学前缘, 1997, 4(1): 187-193.
    158. Métivier L, DE Viron O, Conrad C P, et al. Evidence of earthquake triggering by the solid earth tides [J]. Earth and Planetary Science Letters, 2009, 278(3-4): 370-375.
    159. Smith D M, Cusack S, Colman A W, et al. Reports: Improved Surface Temperature Prediction for the Coming Decade from a Global Climate Model [J]. Science, 2007, 317: 796-799.
    160.杨学祥.全球变暖还是变冷[J].科技潮, 2006, (9): 20-22.
    161. Dansgaard W, Johnsen S J, Clausen H B, et al. Climatic record revealed by the Camp Century ice core [A]. In Turekian K K, ed., The Late Cenozic Glacial Ages[C]. Yale Univ. Press, New Haven, 1971, 37-56.
    162.赵希涛,杨达源,等.全球海面变化[M].北京:科学出版社, 1992, 118,108,74,148-149.
    163.周光召.若干基础科学的发展趋势[J].科学, 1996, 48(5): 4-7.
    164.丁一汇,张锦,徐影,等.气候系统的演变及其预测[J].北京:气象出版社, 2003: 27, 31, 70.
    165.汪品先,翦知湣.寻求高分辨率的古环境纪录[J].第四纪研究, 1999, (1):1-17.
    166.杨学祥,陈殿友.重力均衡与质量均衡[J].长春科技大学学报, 1995, 25(1): 87-92.
    167.杨学祥.地壳均衡与水平运动[J].世界地质, 1988,7(1): 43-48.
    168.高庆华,张业成,张春山.论我国洪涝灾害不断加剧的地质环境因素[A].见:邓乃恭,雷伟志主編,大陆构造及陆内变形暨第六屆全国地质力学学术讨论会论文集[C].北京:地质出版社, 1999: 180-184.
    169.杨学祥.降水能源变化与未来地下水危机[J].科学, 1999, 51(1): 46-48.
    170.王绍武,董光荣.中国西部环境演变评估(第一卷)[M].北京:科学出版社, 2002.
    171.编辑部. 20世纪中国7级以上地震目录[J].华夏人文地理, 2000, (2) : 41.
    172.冯利华,陈立人. 20世纪长江的3次巨洪[J].自然灾害学报, 2001, 10(1): 8-11.
    173. Berardelli P. Shaken Volcanoes Blow Their Tops [J]. Science NOW Daily News. 8 December 2008.
    174. Zhang Pingzhong, Cheng Hai, Lawrence E R, et al. A Test of Climate, Sun, and Culture Relationships from an 1810-Year Chinese Cave Record [J]. Science, 2008: 322(5903): 940-942.
    175.郑景云,王绍武.中国过去2000年气候变化的评估[J].地理学报, 2005, 60(1): 21-31.
    176.杨志根.地球轨道根数变化与第四纪冰期[J].天文学进展, 2001, 19(4): 445-456.
    177.周尚哲.冰期天文理论研究中的几个问题[J].冰川冻土, 1994, 16(1): 85-92.
    178. Stephen B, Paula D, Maryline J V, et,al. Interhemispheric Atlantic seesaw response during the last deglaciation[J]. Nature, 2009, 457: 1097-1102.
    179. V?ge K, Pickart R S, Thierry V, et al. Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007-2008[J]. Nature Geoscience, 2009, 2: 67-72.
    180.马宗晋,康平,高庆华,等.面对大自然的报复—防灾与减灾[M].北京:清华大学出版社;天河:暨南大学出版社, 2000: 120-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700