用户名: 密码: 验证码:
盾构掘进地面隆陷及潮汐作用江底盾构隧道性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内水下盾构隧道建设方兴未艾,其施工环境效应及结构稳定性的研究应运而生。本文研究在杭州水下盾构隧道的建设背景下展开,依托于杭州庆春路过江隧道的工程实践,通过现场试验和理论计算研究了盾构掘进引起的地面隆陷及钱塘江潮汐对隧道结构受力性状的影响,旨在深入认识水下盾构隧道施工环境扰动及其长期结构性状。
     本文研究内容总体上分为2部分,分别为盾构掘进引起的地面隆陷和钱塘江潮汐作用下盾构隧道的受力性状。
     (一)盾构掘进引起的地面隆陷
     庆春路隧道建设期间,对盾构掘进引起的地面隆陷进行了大量的现场监测,并实时记录了盾构掘进参数。通过实测分析,总结了杭州软土中盾构掘进引起地面竖向位移的特征和规律,并对各传统地面沉降计算理论的适用性进行评析。
     在实测基础之上,引入土力学和流体力学的若干基本理论计算盾构掘进引起的地面隆陷。主要创新点如下:
     (1)提出了盾构非水平掘进时的地面隆陷Mindlin解数值积分算法。
     (2)在实测基础之上发现横向地面注浆隆起符合高斯分布,与地层损失沉降叠加,提出考虑注浆隆起效应的广义Peck公式。
     (3)基于源汇法推导得到在隧道围土不同收敛模式下的地面沉降计算公式,并在实测基础之上进行了经验性改进,提供了一种盾构隧道施工地层损失沉降估算的简单可靠方法。
     (4)提出了一种划分地层损失沉降与固结沉降的简单实用方法。
     (5)提供了一种盾构施工扰动超孔隙水压力及地面固结沉降的理论计算方法。
     (6)提出了一种考虑盾构掘进速度和停机时间的地面沉降计算理论。
     (7)探讨了同步注浆的时空效应,提出了考虑注浆效率和注浆分布模式的地面隆陷计算方法。
     (8)提出了一种基于切口超挖控制的地面隆陷计算方法。
     (二)钱塘江潮汐作用下盾构隧道的受力性状
     庆春路隧道在建设期间设计实施了结构健康监测系统,监测项目包括隧道位置钱塘江水位、隧道围压、衬砌钢筋应变、衬砌水平直径收敛以及隧道纵向沉降。依托于该健康监测系统的现场实测,主要有以下创新性研究:
     (1)分析了钱塘江水下盾构隧道围压及钢筋应变与水位的相关性。
     (2)针对隧道上覆土层透水性的不同,提出了2种水下盾构隧道衬砌设计模型,并以现场实测验证了其中之一的合理性。
     (3)采用惯用计算法计算水位波动引起的衬砌钢筋应变变化,并根据现场实测数据对计算弯矩进行了经验性修正,使其计算内力可用于衬砌结构应力应变分析。
     (4)基于上述两种水下盾构隧道衬砌设计模型,出于隧道结构安全的考量,对钱塘江极限容许水位进行了预测。
There is an ever-increasing potential for construction of underwater shield-driven tunnels nowadays in China. Research on environmental impacts induced by excavation of underwater tunnels and their structural soundness has emerged under this circumstance. This study was initiated synchronously with the construction of underwater shield-driven tunnels in Hangzhou, for the purpose of deepening the insight into their environmental disturbances and long-term structural properties. A comprehensive series of in situ tests during construction and operation of the Hangzhou Qingchun Road Underwater Tunnel combined with analytical computations were conducted to study tunnelling-induced ground surface vertical deformations and responses of tunnel structures subject to the Qiantang tidal bores.
     The contents of this study are broadly classified into two parts:(1) tunnelling-induced ground surface heave and subsidence, and (2) mechanical characteristics of the shield-driven tunnels subject to the Qiantang tidal bores.
     1. Tunnelling-induced ground surface heave and subsidence
     Tunnelling-induced ground surface vertical deformations were measured from extensive field instrumentations during construction of the Qingchun Road Tunnel. Besides, the shield excavation parameters were recorded in real time. Characteristics and development of ground surface deformations induced by shield tunnelling in Hangzhou soft ground were summarized by means of field observations.In addition, the applicability of available subsidence calculation methods was assessed.
     Based on field observations, several fundamental theories in soil mechanics and fluid mechanics were applied for calculation of heave and subsidence at the ground surface induced by shield tunnelling. The main innovations were as follows:
     (1) A numerical integration method based on the Mindlin's problem was proposed for calculation of ground surface vertical deformations due to shield tunnelling along an inclined alignment.
     (2) The transverse ground surface heave caused by shield tail synchronous grouting accords with the Gaussian distribution through field observations. A generalized Peck formula taking both ground loss settlement and grouting heave into account was put forward.
     (3) A formula for calculation of tunnelling-induced ground surface settlements under different surrounding soil intrusion models was deduced from the source-and-sink method in fluid mechanics. Subsequently, an empirical modification was conducted on the basis of field observations. The modified formula provides an easy and reliable means for estimation of ground loss settlement caused by shield tunnelling.
     (4) An easy and practical method to distinguish the time boundary between ground settlements arising from ground loss and consolidation was presented.
     (5) An analytical method for calculation of excess pore water pressures and consolidation settlements arising from disturbance caused by shield tunnelling was put forward.
     (6) A computation theory for tunnelling-induced ground surface settlement taking influences of shield advance rate and abnormal machine halt into account was presented.
     (7) The efficiency of tail void synchronous grouting was evaluated with respect to the time and spacial effects. A method for calculation of ground surface vertical deformations with account of grouting efficiency and distribution was proposed.
     (8) A simple method was formulated for estimation of ground surface vertical deformations based on over-excavation control at the cutting-face.
     2. Mechanical characteristics of shield-driven tunnels subject to Qiantang tidal bores
     A structural health monitoring system (SHMS) was designed and set up during construction of the Qingchun Road Tunnel to measure river stage of the Qiantang River, earth pressures acting on the tunnel linings, strains of the reinforcing steel bars, convergence of the tunnel linings along the springline and longitudinal settlements of the tunnel. Based on field observations from the SHMS, innovative research as follows was carried out.
     (1) Correlations between changes in earth pressures acting on the tunnel linings and strains of the reinforcing steel bars and fluctuations of river stages were assessed.
     (2) According to differences in permeability of the overburden strata, two kinds of design models were established for underwater shield tunnel linings, one of which was verified by field observations.
     (3) The uniform rigidity ring method was applied for calculation of changes in strains of reinforcing steel bars induced by fluctuations of river stages. Moreover, an empirical modification was made to the computed bending moment based on field observations. In this way, the modified computed member forces can be applied for stress and strain analysis of the tunnel lining.
     (4) The limit allowable river stage of the Qiantang river was predicted for structural safety of the tunnel linings with respect to the two above-established design models.
引文
[1]Attewell, P. B. and Farmer, I. W. Ground deformations resulting from shield tunnelling in London clay[J]. Canadian Geotechnical Journal,1974,11(3):380-395.
    [2]Aysen, A. Soil mechanics:basic concepts and engineering applications[M]. London:Taylor & Francis,2005.
    [3]Ahmed, M. and Iskander, M. Analysis of tunneling-induced ground movements using transparent soil models[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011,137(5):525-535.
    [4]Arnau, O. and Molins, C. Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test. Part 2:Numerical simulation[J]. Tunnelling and Underground Space Technology,2011,26(6):778-788.
    [5]Burland, J. B. and Wroth, C. P. Settlements of buildings and associated damage, State of the art review[C].//Conference on Settlement of Structure, Pentech Press, London,1974: 611-654.
    [6]Belshaw, D. J. and Palmer, J. H. L. Results of a program of instrumentation involving a precast segmented concrete-lined tunnel in clay[J]. Canadian Geotechnical Journal,1978, 15(4):573-583.
    [7]Boscardin, M. D. and Cording, E. J. Building response to excavation-induced settlement[J]. Journal of Geotechnical Engineering,1989,115(1):1-21.
    [8]Bowers, K. H., Hiller, D. M. and New, B. M. Ground movements over three years at the Heathrow Express trial tunnel [C].//Proceedings of International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, London,1996: 647-652.
    [9]Bobet, A. Analytical solutions for shallow tunnels in saturated ground[J]. Journal of Engineering Mechanics,2001,127(12):1258-1266.
    [10]Broere, W. and van Tol, A. F. Time-dependant infiltration and groundwater flow in a face stability analysis[C].//Conference on Modern Tunneling Science and Technology, Adachi et al. (eds.), Kyoto, Japan,2001:629-634.
    [11]Burland, J. B., Standing, J. R. and Jardine, F. M. Building response to tunneling:Case studies from construction of the Jubilee Line Extension, London[M]. London:Thomas Telford Publishing, Thomas Telford Ltd,2001:23-43.
    [12]Bilotta, E. and Russo, G Internal Forces Arising in the Segmental Lining of an Earth Pressure Balance-Bored Tunnel [J]. Journal of Geotechnical and Geoenvironmental Engineering,2013,139(10):1765-1780.
    [13]Clough, G W. and Schmidt, B. Design and performance of excavations and tunnels in soft clay[C].//E. W. Brand and R. P. Brenner (Eds.), Soft Clay Engineering, Elsevier, Oxford, 1981:569-634
    [14]Clough, G W., Sweeney, B. P. and Finno, R. J. Measured soil response to EPB shield tunneling[J]. Journal of Geotechnical Engineering,1983,109(2):131-149.
    [15]Crawford, C. B. State of the art:evaluation and interpretation of soil consolidation tests[R].//Consolidation of Soils:Testing and Evaluation, edited by Messrs. Young and Townsend, the ASTM Symposium on Consolidation Behavior of Soils, Ft. Lauderdale, Florida,1985:71-101.
    [16]Clough, G W. and Leca, E. EPB shield tunneling in mixed face conditions[J]. Journal of geotechnical engineering,1993,119(10):1640-1656.
    [17]Celestino, T. B., Gomes, R. A. M. P. and Bortolucci, A. A. Errors in ground distortions due to settlement trough adjustment[J]. Tunnelling and Underground Space Technology,2000, 15(1):97-100.
    [18]Chi, S. Y., Chern, J. C. and Lin, C. C. Optimized back-analysis for tunneling-induced ground movement using equivalent ground loss model[J]. Tunnelling and Underground Space Technology,2001,16(3):159-165.
    [19]Chou, W. I. and Bobet, A. Predictions of ground deformations in shallow tunnels in clay[J]. Tunnelling and Underground Space Technology,2002,17(1):3-19.
    [20]Chapman, D. N., Ahn, S. K. and Hunt, D. V. Investigating ground movements caused by the construction of multiple tunnels in soft ground using laboratory model tests[J]. Canadian Geotechnical Journal,2007,44(6):631-643.
    [21]蔡忠祥,黄茂松,焦齐柱.越江隧道涌潮作用下振动实测分析[J].岩土工程学报, 2013,(增刊2):869-873.
    [22]Davis, E.H. and Poulos, H. G. The use of elastic theory for settlement prediction under three-dimensional conditions[J]. Geotechnique,1968,18(1):67-91.
    [23]Davis, R. O. and Selvadurai, A. P. Elasticity and geomechanics[M]. Cambridge University Press,1996:90-94.
    [24]丁春林,周书明,周顺华.盾构施工对隧道围岩内力和地层变形的影响[J].中国公路学报,2002,15(4):62-65.
    [25]de Farias, M. M., Moraes Junior, A. H. and de Assis, A. P. Displacement control in tunnels excavated by the NATM:3-D numerical simulations[J]. Tunnelling and underground space technology,2004,19(3):283-293.
    [26]Dimmock, P. S. and Mair, R. J. Volume loss experienced on open-face London Clay tunnels[J]. Proceedings of the ICE-Geotechnical engineering,2007,160(1):3-11.
    [27]Das, B. M. Advanced soil mechanics[M]. New York:Taylor & Francis, Third edition, 2008.
    [28]Dias, D. and Kastner, R. Movements caused by the excavation of tunnels using face pressurized shields-Analysis of monitoring and numerical modelling results [J]. Engineering Geology,2013,152(1):17-25.
    [29]Do, N. A., Dias, D., Oreste, P. and Djeran-Maigre, I.2D numerical investigation of segmental tunnel lining behavior[J]. Tunnelling and Underground Space Technology,2013, 37:115-127.
    [30]Einstein, H. H. and Schwartz, C. Discussion on simplified analysis for tunnel supports[J]. Journal of the Geotechnical Engineering Division, ASCE GT7,1980:835-838.
    [31]El-Nahhas, F. M. Soft ground tunnelling in Egypt:Geotechnical challenges and expectations [J]. Tunnelling and Underground Space Technology,1999,14(3):245-256.
    [32]Ezzeldine, O. Y. Estimation of the surface displacement field due to construction of Cairo Metro Line El Khalafawy-St. Therese[J]. Tunnelling and Underground Space Technology, 1999,14(3):267-279.
    [33]Fujita, K. Prediction of surface settlements caused by shield tunnelling[C].//Proceedings of International Conference on Soil Mechanics, Vol.1, Mexico City,1982:239-246.
    [34]Finno, R. J. and Clough, G W. Evaluation of soil response to EPB shield tunneling[J]. Journal of Geotechnical Engineering,1985,111(2):155-173.
    [35]Fang, Y. S., Lin, S. J. and Lin, J. S. Time and settlement in EPB shield tunnelling[J]. Tunnels and Tunnelling,1993,25(11):27-28.
    [36]Fang, Y. S., Lin, J. S. and Su, C. S. An estimation of ground settlement due to shield tunnelling by the Peck-Fujita method[J]. Canadian geotechnical journal,1994,31(3): 431-443.
    [37]Franzius, J. N. Behaviour of buildings due to tunnel induced subsidence[D]. London: Department of Civil and Environmental Engineering, Imperial College of Science, Technology and Medicine,2003:56-79.
    [38]龚晓南.高等土力学[M].杭州:浙江大学出版社,1996:92-111.
    [39]Grant, R. J. and Taylor, R. N. Tunnelling-induced ground movements in clay[J]. Proceedings of the ICE-Geotechnical Engineering,2000,143(1):43-55.
    [40]Gonzalez, C. and Sagaseta, C. Patterns of soil deformations around tunnels. Application to the extension of Madrid Metro[J]. Computers and Geotechnics,2001,28(6):445-468.
    [41]龚晓南.土力学[M].北京:中国建筑工业出版社,2002:99-114.
    [42]顾晓鲁,钱鸿缙,刘惠珊,汪时敏.地基与基础[M].北京:中国建筑工业出版社,第三版,2003:138-198.
    [43]Guglielmetti, V., Grasso, P., Mahtab, A. and Xu, S. Mechanized tunnelling in urban areas: design methodology and construction control[M]. London:Taylor & Francis Group,2008: 125-152.
    [44]郭小红.厦门翔安海底隧道风化槽衬砌结构稳定性研究[D].北京:北京交通大学,2011.
    [45]郭信君,闵凡路,钟小春,朱伟.南京长江隧道工程难点分析及关键技术总结[J].岩石力学与工程学报,2012,31(10):2154-2160.
    [46]Henkel, D. J. The shear strength of saturated remolded clays[C].//Research Conference on Shear Strength of Cohesive Soils, ASCE,1960:533-554.
    [47]Hwang, R. N., Wu, D. J. and Lee, C. J. Pore pressure response to shield tunnelling in soft clay[C].//Proceedings of South East Asian Symposium on Tunnelling and Underground Space Development, Bangkok, Thailand, January,1995:33-40.
    [48]Hwang, R. N., Fan, C. B. and Yang, G R. Consolidation settlements due to tunnelling[C].// Proceedings of the South East Asian Symposium On Tunnelling and Underground Space Development, Bangkok Thailand, January,1995:79-86.
    [49]Hwang, R. N., Ju, D. H., Tsai, M. S. and Fang, Y. S. Soft ground tunnelling in Taiwan[C].// Proceedings of US/Taiwan Geotechnical Engineering Collaboration Workshop, Taipei, Taiwan,1995:13-26.
    [50]Heath, G. R. and West, K. J. F. Ground movement at depth in London clay[J]. Proceedings of the ICE-Geotechnical Engineering,1996,119(2):65-74.
    [51]Housner, G., Bergman, L., Caughey, T., Chassiakos, A., Claus, R., Masri, S., Skelton, R., Soong, T., Spencer, B., and Yao, J. Structural Control:Past, Present, and Future[J]. Journal of Engineering Mechanics,1997,123(9):897-971.
    [52]Hamza, M., Ata, A. and Roussin, A. Ground movements due to the construction of cut-and-cover structures and slurry shield tunnel of the Cairo Metro[J]. Tunnelling and Underground Space Technology,1999,14(3):281-289.
    [53]Hashimoto, T., Nagaya, J. and Konda, T. Prediction of ground deformation due to shield excavation in clayey soils[J]. Soils and foundations,1999,39(3):53-61.
    [54]胡昕,黄宏伟.相邻平行顶管推进引起附加荷载的力学分析[J].岩土力学,2001,22(1):75-77.
    [55]黄宏伟,臧小龙.盾构隧道纵向变形性态研究分析[J].地下空间,2002,22(3):2.44-251.
    [56]黄宏伟,胡昕.顶管施工力学效应的数值模拟分析[J].岩石力学与工程学报,2003,22(3):400-406.
    [57]Hefny, A. M. and Chua, H. C. An investigation into the behaviour of jointed tunnel lining[J]. Tunnelling and Underground Space Technology,2006,21(3):428-428.
    [58]黄明华.甬江水底隧道运行性能分析与健康监测系统设计实现[D].哈尔滨:哈尔滨工业大学土木工程学院,2008.
    [59]黄清飞,袁大军,王梦恕.水位对盾构隧道管片结构内力影响研究[J].岩土工程学报, 2008,30(8):1112-1120.
    [60]黄融.上海崇明越江通道长江隧道工程综述(一)-长江隧道工程设计[J].地下工程与隧道,2008,(1):2-8.
    [61]Hashimoto, T., Ye, G. L., Nagaya, J., Konda, T. and Ma, X. F. Study on earth pressure acting upon shield tunnel lining in clayey and sandy grounds based on field monitoring[C].//Proceedings of the 6th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground,2009:307-312.
    [62]洪开荣,杜创东,王坤.广深港高速铁路狮子洋水下盾构隧道修建技术[J].中国工程科学,2009,11(7):53-58.
    [63].何川,封坤.大型水下盾构隧道结构研究现状与展望[J].西南交通大学学报,2011,46(1):1-11.
    [64]Hisatake, M. A proposed methodology for analysis of ground settlements caused by tunneling, with particular reference to the "buoyancy" effect[J]. Tunnelling and Underground Space Technology,2011,26(1):130-138.
    [65]侯永茂,郑宜枫,杨国祥,葛修润,邵裕华.超大直径土压平衡盾构施工对环境影响的现场监测研究[J].岩石力学与工程学报,2013,34(1):235-242.
    [66]Inokuma,A. and Ishimura, T. Earth pressure acting on shield driven tunnels in soft ground[C].//Proceedings of International Symposium on Underground Construction in Soft Ground, K. Fujita and O. Kuskabe, eds., Balkema, Rotterdam, The Netherlands,1995: 221-224.
    [67]Japanese Society of Civil Engineers (JSCE). Japanese Standard for Shield Tunneling[S]. 3rd edition,1996.
    [68]贾坚.软土时空效应原理在基坑工程中的应用[J].地下空间与工程学报,2005,1(4):490-493.
    [69]姜忻良,赵志民.盾构施工引起土体位移的空间计算方法[J].华中科技大学学报(城市科学版),2005,22(2):1-12.
    [70]姜忻良,赵志民.镜像法在隧道施工土体位移计算中的应用[J].哈尔滨工业大学学报,2005,27(6):801-803.
    [71]贾航,杜创东,王文杰.富水软弱地层大直径泥水盾构施工技术[J].隧道建设,2009,29(3):347-366.
    [72]Japanese Society of Civil Engineers (JSCE). Design of Shield Tunnel Lining[M]. Revised edition,2010.(in Japanese)
    [73]Jones, B. Low-volume-loss tunnelling for London ring main extension[J]. Proceedings of the ICE-Geotechnical Engineering,2010,163(3):167-185.
    [74]Jiang, M. and Yin, Z. Y. Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete method[J]. Tunnelling and Underground Space Technology, 2012,32:251-259.
    [75]Kusakabe, O., Hagiwara, T., Nomoto, T., Mito, K. and Nakamatsu, U. Experimental evaluation of earth pressures and lining stresses of tunnels in sand[C].//Proceedings of the International Congress on Tunnel and Underground Works, Today and Future, China,1990: 529-536.
    [76]Komiya, K., Soga, K., Akagi, H., Jafari, M. R. and Bolton, M. D. Soil consolidation associated with grouting during shield tunnelling in soft clayey ground[J]. Geotechnique, 2001,51(10):835-846.
    [77]Koyama, Y. Present status and technology of shield tunneling method in Japan[J]. Tunnelling and Underground Space Technology,2003,18(2):145-159.
    [78]Kasper, T. and Meschke, G A 3D finite element simulation model for TBM tunnelling in soft ground[J]. International journal for numerical and analytical methods in geomechanics, 2004,28(14):1441-1460.
    [79]Karakus, M. and Fowell, R. J. Back analysis for tunnelling induced ground movements and stress redistribution[J]. Tunnelling and Underground Space Technology,2005,20(6): 514-524.
    [80]Kavvadas, M. J. Monitoring ground deformation in tunnelling:Current practice in transportation tunnels[J]. Engineering geology,2005,79(1):93-113.
    [81]Kasper, T. and Meschke, G. On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling[J]. Tunnelling and Underground Space Technology,2006, 21(2):160-171.
    [82]Kasper, T. and Meschke, G. A numerical study of the effect of soil and grout material properties and cover depth in shield tunnelling[J]. Computers and Geotechnics,2006, 33(4):234-247.
    [83]Kim, H. J. and Eisenstein, Z. Prediction of tunnel lining loads using correction factors[J]. Engineering Geology,2006,85 (3):302-312.
    [84]Lo, K. Y. and Rowe, R. K. Predicting settlement due to tunnelling in clay[C].//Tunnelling in Soil and Rock, American Society of Civil Engineers,1984:46-76.
    [85]Lee, K. M. and Rowe, R. K. Deformations caused by surface loading and tunnelling:the role of elastic anisotropy[J]. Geotechnique,1989,39(1):125-140.
    [86]Lee, K. M. and Rowe, R. K. Effects of undrained strength anisotropy on surface subsidences induced by the construction of shallow tunnels [J]. Canadian Geotechnical Journal,1989,26(2):279-291.
    [87]Lee, K. M. and Rowe, R. K. An analysis of three-dimensional ground movements:the Thunder Bay tunnel[J]. Canadian Geotechnical Journal,1991,28(1):25-41.
    [88]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991:329-395.
    [89]Lee, K. M., Rowe, R. K. and Lo, K. Y. Subsidence owing to tunnelling. I. Estimating the gap parameter[J]. Canadian Geotechnical Journal,1992,29(6):929-940.
    [90]Loganathan, N. and Poulos, H. G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998, 124(9):846-856.
    [91]Lee, K. M., Ji, H. W., Shen, C. K., Liu, J. H. and Bai, T. H. Ground response to the construction of Shanghai metro tunnel-line 2[J]. Soils and Foundations,1999,39(3): 113-134.
    [92]Lee, C. J., Wu, B. R. and Chiou, S. Y. Soil movements around a tunnel in soft soils[J]. Proceedings of the National Science Council, Republic of China. Part A, Physical science and engineering,1999,23(2):235-247.
    [93]Loganathan, N., Poulos, H. G and Stewart, D. P. Centrifuge model testing of tunnelling-induced ground and pile deformations [J]. Geotechnique,2000,50(3):283-294.
    [94]Lee, K. M., Hou, X. Y, Ge, X. W., and Tang, Y. An analytical solution for a jointed shield-driven tunnel lining[J]. International journal for numerical and analytical methods in Geomechanics,2001,25(4):365-390.
    [95]Lee, K. M., and Ge, X. W. The equivalence of a jointed shield-driven tunnel lining to a continuous ring structure[J]. Canadian Geotechnical Journal,2001,38(3):461-483.
    [96]Loganathan, N., Poulos, H. G. and Xu, K. J. Ground and pile-group responses due to tunnelling[J]. Soils and Foundations,2001,41(1):57-67.
    [97]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评[J].地震工程与工程振动,2002,22(3):82-90.
    [98]Lee, C. J., Chiang, K. H. and Kuo, C. M. Ground movement and tunnel stability when tunneling in sandy ground[J]. Journal of the Chinese Institute of Engineers,2004,27(7): 1021-1032.
    [99]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [100]Lee, C. J., Wu, B. R., Chen, H. T. and Chiang, K. H. Tunnel stability and arching effects during tunneling in soft clayey soil[J]. Tunnelling and Underground Space Technology, 2006,21(2):119-132.
    [101]Liao, S. M., Gao, L. Q. and Zhu, H. H. Soft ground movement under small disturbance of shield driving[C].//Proceedings of Soil and Rock Behavior and Modeling, Sessions of the GeoShanghai Conference,2006:62-69.
    [102]刘燕,刘国彬,孙晓玲,王海平.考虑时空效应的软土地区深基坑变形分析[J].岩土工程学报,2006,28(增刊):1433-436.
    [103]Leca, E. and New, B. Settlements induced by tunneling in soft ground[J]. Tunnelling and Underground Space Technology,2007,22(2):119-149.
    [104].李伟,.熊福文.潮汐对过江隧道沉降的影响[J].上海地质,2007,(2):18-20.
    [105]卢海林,赵志民,方芃,姜忻良.盾构法隧道施工引起土体位移与应力的镜像分析方法[J].岩土力学,2007,28(1):45-50.
    [106]刘松樵.软土扰动地层再固结及其对地铁隧道的影响[D].上海:同济大学土木工程学院,2007:37-42.
    [107]李勇军.武汉长江隧道工程施工技术[J].隧道建设,2008,28(3):318-323.
    [108]林炳尧.钱塘江涌潮的特性[M].北京:海洋出版社,2008.
    [109]Liao, S. M., Liu, J. H., Wang, R. L. and Li, Z. M. Shield tunneling and environment protection in Shanghai soft ground[J]. Tunnelling and Underground Space Technology, 2009,24(4):454-465.
    [110]Laver, R. G Long-term behaviour of twin tunnels in London clay[D]. University of Cambridge,2010,
    [111]林志,李鹏.盾构隧道施工引起的超孔隙水压力变化规律研究[J].公路交通技术,2010,(5):98-102.
    [112]Leung, C. and Meguid, M. A. An experimental study of the effect of local contact loss on the earth pressure distribution on existing tunnel linings[J]. Tunnelling and Underground Space Technology,2011,26(1):139-145.
    [113]Lin, C. G., Wu, S. M., Zhang, Z. M., and Li, Z. L. Monitoring and analysis of deformations and movements of slurry shield runnel linings[C].//Proceedings of the International Conference on Electric Technology and Civil Engineering, Institute of Electrical and Electronics Engineers, Lushan, China,2011:2379-2383.
    [114]李凤翔.深埋软弱围岩隧道施工时空效应及大变形控制研究[D].长沙:中南大学土木工程学院,2012.
    [115]刘国彬,李青,吴宏伟.地下水开采引起的次压缩对隧道长期沉降的影响[J].岩土力学,2012,33(12):3729-3735.
    [116]陆海军.水下长距离浅埋大直径盾构隧道设计与施工[J].建筑机械化,2012,(增刊2):51-54.
    [117]Mindlin, R. D. Force at a point in the interior of a semi-infinite solid[J]. Journal of Applied Physics,1936,7(5):195-202.
    [118]Mair, R. J., Taylor, R. N. and Bracegirdle, A. Subsurface settlement profiles above tunnels in clays[J]. Geotechnique,1993,43(2):315-320.
    [119]Mair, R. J. and Taylor, R. N. Bored tunnelling in the urban environment[C].//Proceeding of 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg,1997:2253-2385.
    [120]Mair, R. J. Geotechnical aspects of design criteria for bored tunnelling in soft ground[C].//Proceedings of world tunnel congress on tunnels and metropolis, Sao Paulo, 1998:183-199.
    [121]Moraes Jr., A. H. Three-dimensional numerical simulation of tunnels excavated with NATM[D]. Brazil:University of Brazilia,1999. (in Portugese)
    [122]Melis, M., Medina, L. and Rodriguez, J. M. Prediction and analysis of subsidence induced by shield tunnelling in the Madrid Metro extension[J]. Canadian Geotechnical Journal,2002,39(6):1273-1287.
    [123]Mashimo, H. and Ishimura, T. Evaluation of the load on shield tunnel lining in gravel[J]. Tunnelling and underground space technology,2003,18(2):233-241.
    [124]Maynar, M. M. and Rodriguez, L. M. Predicted versus measured soil movements induced by shield tunnelling in the Madrid Metro extension[J]. Canadian geotechnical journal, 2005,42(4):1160-1172.
    [125]Mair, R. J. Tunnelling and geotechnics:new horizons[J]. Geotechnique,2008,58(9): 695-736.
    [126]Meguid, M. A., Saada, O., Nunes, M. A. and Mattar, J. Physical modeling of tunnels in soft ground:A review[J]. Tunnelling and underground space technology,2008,23(2): 185-198.
    [127]Mroueh, H. and Shahrour, I. A simplified 3D model for tunnel construction using tunnel boring machines[J]. Tunnelling and Underground Space Technology,2008,23(1):38-45.
    [128]Meguid, M. A. and Dang, H. K. The effect of erosion voids on existing tunnel linings[J]. Tunnelling and Underground Space Technology,2009,24(3):278-286.
    [129]Migliazza, M., Chiorboli, M. and Giani, G. P. Comparison of analytical method,3D finite element model with experimental subsidence measurements resulting from the extension of the Milan underground[J]. Computers and geotechnics,2009,36(1):113-124.
    [130]Mahmutoglu, Y. Surface subsidence induced by twin subway tunnelling in-soft ground conditions in Istanbul[J]. Bulletin of Engineering Geology and the Environment,2011, 70(1):115-131.
    [131]Molins, C. and Arnau, O. Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test. Part 1:Test configuration and execution[J]. Tunnelling and Underground Space Technology,2011,26(6):764-777.
    [132]Marshall, A. M., Farrell, R., Klar, A. and Mair, R. Tunnels in sands:the effect of size, depth and volume loss on greenfield displacements[J]. Geotechnique,2012,62(5): 385-399.
    [133]Neaupane, K. M. and Adhikari, N. R. Prediction of tunneling-induced ground movement with the multi-layer perceptron[J]. Tunnelling and Underground Space Technology,2006, 21(2):151-159.
    [134]Nomoto, T., Imamura, S., Hagiwara, T., Kusakabe, O. and Fujii, N. Shield tunnel construction in centrifuge[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999,125(4):289-300.
    [135]Ng, C. W. and Lee, G. T. Three-dimensional ground settlements and stress-transfer mechanisms due to open-face tunnelling[J]. Canadian geotechnical journal,2005,42(4): 1015-1029.
    [136]Netzel, H. D. Building response due to ground movements[D]. Amsterdam, Netherlands: Delft University of Technology,2009:37-46.
    [137]Ng, C. W. W., Liu, G B. and Li, Q. Investigation of the long-term tunnel settlement mechanisms of the first metro line in Shanghai[J]. Canadian Geotechnical Journal,2013, 50(6):674-684.
    [138]O'Reilly, M. P. and New, B. M. Settlements above tunnels in the United Kingdom-their magnitude and prediction[C].//Proceeding of Tunnelling'82 Symposium, London,1982: 173-181.
    [139]O'Reilly, M. P., Mair, R. J. and Alderman, G H. Long-term settlements over tunnels:an eleven-year study at Grimsby[C].//Proceedings of Conference on Tunnelling, London, Institution of Mining and Metallurgy,1991:55-64.
    [140]Ohta, H., Takeuchi, T., and Nishiwaki, Y. Performance of linings for shield driven tunnels-A survey on Japanese shield tunneling[C].//Proceedings of International Symposium on Underground Construction in Soft Ground, K. Fujita, and O. Kuskabe, eds., Balkema, Rotterdam, The Netherlands,1995:367-374.
    [141]Ortigao, J. A., Kochen, R., Farias, M. M. and Assis, A. P. Tunnelling in Brasilia porous clay[J]. Canadian geotechnical journal,1996,33(4):565-573.
    [142]Ou, C. Y., Hwang, R. N. and Lai, W. J. Surface settlement during shield tunnelling at CH218 in Taipei[J]. Canadian geotechnical journal,1998,35(1):159-168.
    [143]Osman, A. S., Mair, R. J. and Bolton, M. D. On the kinematics of 2D tunnel collapse in undrained clay[J]. Geotechnique,2006,56(9):585-595.
    [144]Osman, A. S., Bolton, M. D. and Mair, R. J. Predicting 2D ground movements around tunnels in undrained clay[J]. Geotechnique,2006,56(9):597-604.
    [145]Peck, R. B. Deep excavations and tunneling in soft ground[C].//State of the Art Report, Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City,1969:225-290.
    [146]Poulos, H. G and Davis, E. H. Elastic solutions for soil and rock mechanics[M]. New York:John Wiley and Sons, inc.,1974:16-20.
    [147]Palmer, J. H. L. and Belshaw, D. J. Deformations and pore pressures in the vicinity of a precast, segmented, concrete-lined tunnel in clay[J]. Canadian Geotechnical Journal,1980, 17(2):174-184.
    [148]Panet, M. and Guenot, A. Analysis of convergence behind the face of a tunnel[C].// Proceedings of the International Conference Tunnelling'82, Institution of Mining and Metallurgy, London,1982:187-204.
    [149]Potts, D. M. and Addenbrooke, T. I. A structure's influence on tunnelling-induced ground movements[J]. Proceedings of the ICE-Geotechnical Engineering,1997,125(2):109-125.
    [150]Park, S. H. and Adachi, T. Laboratory model tests and FE analyses on tunneling in the unconsolidated ground with inclined layers[J]. Tunnelling and underground space technology,2002,17(2):181-193.
    [151]Park, K. H. Elastic solution for tunneling-induced ground movements in clays[J]. International Journal of Geomechanics,2004,4(4):310-318.
    [152]Park, K. H. Analytical solution for tunnelling-induced ground movement in clays[J]. Tunnelling and underground space technology,2005,20(3):249-261.
    [153]Phienwej, N., Sirivachiraporn, A., Timpong, S., Tavaranum, S. and Suwansawat, S. Characteristics of ground movements from shield tunnelling of the first Bangkok subway line[C].//Proceedings of the International Symposium on Underground Excavation and Tunnelling, Bangkok, Thailand,2006:319-330.
    [154]Palmer, A. C. and Mair, R. J. Ground movements above tunnels:a method for calculating volume loss[J]. Canadian Geotechnical Journal,2011,48(3):451-457.
    [155]彭柏兴,何天铭,王会云,肖宏宇.南湖路湘江隧道盾构施工影响因素及工程措施[J].交通科学与工程,2012,28(2):67-71.
    [156]Puzrin, A. M., Buralnd, J. B. and Standing, J. R. Simple approach to predicting ground displacements caused by tunnelling in undrained anisotropic elastic soil[J]. Geotechnique, 2012,62(4):341-352.
    [157]璩继立,葛修润.软土地区盾构隧道施工沉降槽的特性分析[J].工业建筑,2005,35(1):42-46.
    [158]齐静静,徐日庆,魏纲,王涛.隧道盾构法施工引起周围土体附加应力分析[J].岩土力学,2008,29(2):529-544.
    [159]Rowe, R. K., Lo, K. Y. and Kack, G J. A method of estimating surface settlement above tunnels constructed in soft ground[J]. Canadian Geotechnical Journal,1983,20(1):11-22.
    [160]Rowe, R. K. and Kack, G J. A theoretical examination of the settlements induced by tunnelling:four case histories[J]. Canadian Geotechnical Journal,1983,20(2):299-314.
    [161]Rowe, R. K. and Lee, K. M. Subsidence owing to tunnelling. Ⅱ. Evaluation of a prediction technique[J]. Canadian Geotechnical Journal,1992,29(6):941-954.
    [162]Rowe, R. K. and Lee, K. M. Subsidence owing to tunnelling. Ⅱ. Evaluation of a prediction technique:Reply[J]. Canadian Geotechnical Journal,1994,31(3):467-469.
    [163]日本土木学会编,朱伟译.隧道标准规范(盾构篇)及解说[M].北京:中国建筑工业出版社,2001.
    [164]Skempton, A. W. The pore-pressure coefficients A and B[J]. Geotechnique,1954,4(4): 143-147.
    [165]Skempton, A. W. and Bjerrum, L. A contribution to the settlement analysis of foundations on clay[J]. Geotechnique,1957,7(4):168-178.
    [166]Skopek, J. The influence of foundation depth on stress distribution[C].//Proceeding of the 5th International Conference on Soil Mechanics and Foundation Engineering, Paris,1961.
    [167]Sagaseta, C. Analysis of undrained soil deformation due to ground loss[J]. Geotechnique, 1987,38(7):301-320.
    [168]Sagaseta, C. Discussion:Analysis of undrained soil deformation due to ground loss[J]. Geotechnique,1988,38(4):647-649.
    [169]Schmidt, B. Consolidation settlement due to soft ground tunneling[C].//Proceeding of 12th International Conference on Soil Mechanics and Foundation Engineering, Vol 2, Rio de Janeiro,13-18 August 1989:797-800.
    [170]Shirlaw, J. N. Pore pressures around tunnels in clay:discussion[J]. Canadian Geotechnical Journal,1993,30:1044-1046.
    [171]Shirlaw, J. N. Subsidence owing to tunnelling. Ⅱ. Evaluation of a prediction technique: Discussion[J]. Canadian Geotechnical Journal,1994,31(3):463-466.
    [172]Shirlaw, J. N. Observed and calculated pore pressures and deformations induced by an earth balance shield:discussion[J]. Canadian Geotechnical Journal,1995,32(1):181-189.
    [173]Suzuki, M., Kamada, T., Nakagawa, H., Hashimoto, T. and Satsukawa, Y. Measurement of earth and water pressure acting on the great depth shield tunnel segments[C].// Proceedings of International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, R. J. Mair and R. N. Talor, eds., Balkema, Rotterdam, The Netherlands,1996:613-619.
    [174]Sigl, O. and Atzl, G. Design of bored tunnel linings for Singapore MRT North East Line C706[J]. Tunnelling and Underground Space Technology,1999,14(4):481-490.
    [175]Sugiyama, T., Hagiwara, T., Nomoto, T., Nomoto, M., Ano, Y., Mair, R. J., Bolton, M. D., and Soga, K. Observations of ground movements during tunnel construction by slurry shield method at the Docklands light railway Lewisham extension-East London[J]. Soils and foundations,1999,39(3):99-112.
    [176]邵俊江,李永盛.潮汐荷载引起沉管隧道沉降计算方法[J].同济大学学报,2003,31(6):657-662.
    [177]Shirlaw, J. N., Ong, J. C. W., Rosser, H. B., Tan, C. G., Osborne, N. H. and Heslop, P. E. Local settlements and sinkholes due to EPB tunnelling[J]. Proceedings of the ICE-Geotechnical Engineering,2003,156(4):193-211.
    [178]Shahin, H. M., Nakai, T., Hinokio, M., Kurimoto, T. and Sada, T. Influence of surface loads and construction sequence on ground response due to tunnelling[J]. Soils and foundations,2004,44(2):71-84.
    [179]史学涛.结构健康监测系统的研究[D].上海:同济大学土木工程学院,2006.
    [180]Standing, J. R. and Burland, J. B. Unexpected tunnelling volume losses in the Westminster area, London[J]. Geotechnique,2006,56(1):11-26.
    [181]Suwansawat, S. and Einstein, H. H. Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling[J]. Tunnelling and Underground Space Technology,2006,21(2):133-150.
    [182]Suwansawat, S. and Einstein, H. H. Describing settlement troughs over twin tunnels using a superposition technique[J]. Journal of geotechnical and geoenvironmental engineering, 2007,133(4):445-468.
    [183]施成华.城市隧道施工地层变形时空统一预测理论及应用研究[D].长沙:中南大学土木建筑学院,2007:75-131.
    [184]施成华,彭立敏,雷明锋.盾构法施工隧道地层变形时空统一预测方法研究[J].岩土力学,2009,30(8):2379-2384.
    [185]沈林冲.杭州地铁1号线下穿钱塘江工程的若干技术问题[J].城市轨道交通研究,2011,(9):84-102.
    [186]孙文昊.钱江通道及接线工程钱江隧道设计综述[J].现代隧道技术,2011,48(6):82-93.
    [187]Sirivachiraporn, A., Phienwej, N. Ground movements in EPB shield tunneling of Bangkok subway project and impacts on adjacent buildings[J]. Tunnelling and Underground Space Technology,2012,30:10-24.
    [188]Standing, J. and Selemetas, D. Greenfield ground response to EPBM tunnelling in London Clay[J]. Geotechnique,2013,63(12):989-1007.
    [189]孙钧.论跨江越海建设隧道的技术优势与问题[J].隧道建设,2013,33(5):337-342.
    [190]Shen, S. L., Wu, H. N., Cui, Y. J. and Yin, Z. Y. Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai [J]. Tunnelling and Underground Space Technology, 2014,40:309-323.
    [191]Terzaghi, K., Peck, R. B. and Mesri, G. Soil mechanics in engineering practice[M].3rd edition, Wiley, com,1996:223-236.
    [192]Takano, Y. H. Guidelines for the design of shield tunnel lining[J]. Tunnelling and Underground Space Technology,2000,15(3):303-331.
    [193]The British Tunnelling Society and the Institution of Civil Engineers. Tunnel lining design guide[M]. London:Thomas Telford Publishing,2004.
    [194]唐益群,张曦,王建秀,宋永辉.粉性土中土压平衡盾构施工的扰动影响[J].同济大学学报(自然科学版),2005,33(8):1031-1035.
    [195]Talmon, A. M. and Bezuijen, A. Simulating the consolidation of TBM grout at Noordplaspolder[J]. Tunnelling and Underground Space Technology,2009,24(5): 493-499.
    [196]Tuchiya, Y., Kurakawa, T., Matsunaga, T., and Kudo, T. Research on the long-term behavior and evaluation of lining concrete of the Seikan Tunnel[J]. Soils and Foundations, 2009,49 (6):969-980.
    [197]唐晓武,朱季,刘维,陈仁朋.盾构施工过程中的土体变形研究[J].岩石力学与工程学报,2010,29(2):417-422.
    [198]Teachavorasinskun, S., and Chub-uppakarn, T. Influence, of segmental joints on tunnel lining[J]. Tunnelling and Underground Space Technology,2010,25(4):490-494.
    [199]Verruijt, A. and Booker, J. R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Geotechnique,1996,46(4):753-756.
    [200]Verruijt, A. and Booker, J. R. Discussion:Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Geotechnique,1998,48(5):709-713.
    [201]Vorster, T. E., Klar, A., Soga, K. and Mair, R. J. Estimating-the effects of tunneling on existing pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005, 131(11):1399-1410.
    [202]Verruijt, A. and Strack, O. E. Buoyancy of tunnels in soft soils[J]. Geotechnique,2008, 58(6):513-515.
    [203]Wood, A. M. M. The circular tunnel in elastic ground[J]. Geotechnique,1975,25 (1): 115-127.
    [204]Wu, B. R. and Lee, C. J. Ground movements and collapse mechanisms induced by tunneling in clayey soil[J]. International Journal of Physical Modelling in Geotechnics, 2003,3(4):15-29.
    [205]吴勃英.数值分析原理[M].北京:科学出版社,2004:20-62.
    [206]魏纲,徐日庆.软土隧道盾构法施工引起的纵向地面变形预测[J].岩土工程学报,2005,27(9):1077-1081.
    [207]Wongsaroj, J., Borghi, F. X., Soga, K., Mari, R. J., Sugiyama, T., Hagiwara, T. and Bowers, K. H. Effect of TBM driving parameters on ground surface movements:Channel Tunnel Rail Link Contract 220[C].//In Geotechnical aspects of underground construction in soft ground (Eds Bakker et al.), Taylor & Francis Group, London,2005:335-341.
    [208]王明胜,倪冰玉.广州地铁小新区间盾构法隧道施工综述[J].现代隧道技术,2006,(增刊):422-427.
    [209]王明胜.土压平衡盾构穿越珠江关键性施工技术[J].地下空间与工程学报,2007,3(8):1518-1524.
    [210]王梦恕.水下交通隧道发展现状与技术难题:兼论“台湾海峡海底铁路隧道建设方案”[J].岩石力学与工程学报,2008,27(11):2161-2172.
    [211]王梦恕,孙谋,谭忠盛.长江第一隧-武汉长江隧道修建技术[J].中国工程科学,2009,11(7):11-17.
    [212]魏纲,张金菊,魏新江.数学模型在盾构地面长期沉降预测中的应用[J].地下空间与工程学报,2009,5(3):541-545.
    [213]Wongsaroj, J., Soga, K. and Mair, R. J. Tunnelling-induced consolidation settlements in London Clay[J]. Geotechnique,2013,63(13):1103-1115.
    [214]吴世明,李宗梁,刘冠水.大直径盾构隧道技术工程示范[M].北京:人民交通出版社,2013.
    [215]Wang, J., Huang, H., Xie, X. and Bobet, A. Void-induced liner deformation and stress redistribution[J]. Tunnelling and Underground Space Technology,2014,40:263-276.
    [216]徐芝纶.弹性力学[M].北京:高等教育出版社,1990:16-204.
    [217]许宏发,吴华杰,郭少平,廖铁平.桩土接触面单元参数分析[J].探矿工程,2002,(5):10-12.
    [218]Xu, Y., Sun, D. A., Sun, J., Fu, D. and Dong, P. Soil disturbance of Shanghai silty clay during EPB tunnelling[J]. Tunnelling and underground space technology,2003,18(5): 537-545.
    [219]肖明清.国内大直径盾构隧道的设计技术进展[J].铁路设计标准,2008,(8):84-87.
    [220]Yoshikoshi, W., Watanabe, O. and Takagi, N. Prediction of ground settlements associated with shield tunnelling[J]. Soils and Foundations,1978,18(4):47-59.
    [221]Yi, X., Rowe, R. K. and Lee, K. M. Observed and calculated pore pressures and deformations induced by an earth balance shield[J]. Canadian Geotechnical Journal,1993, 30(3):476-490.
    [222]Yi, X., Rowe, R. K. and Lee, K. M. Observed and calculated pore pressures and deformations induced by an earth balance shield:reply[J]. Canadian Geotechnical Journal, 1995,32(1):190-191.
    [223]尹旅超,朱振宏,李玉珍等编译.日本隧道盾构新技术[M].武汉:华中理工大学出版社,1999.
    [224]杨红禹,周建民.论我国越江隧道的发展[J].地下空间,2000,20(3):209-213.
    [225]杨国伟,王如路,刘建航.时空效应规律在深基坑施工中的应用[J].地下工程与隧道,2000,(4):41-50.
    [226]于洪丹,陈卫忠,郭小红,卢海峰,谭贤君,杨建平.潮汐对跨海峡隧道衬砌稳定性影响研究[J].岩石力学与工程学报,2009,28(增1):2905-2914.
    [227]余铎.软岩隧道施工时空效应研究[D].西安:长安大学,2011.
    [228]Yuan, Y., Bai, Y. and Liu, J. Assessment service state of tunnel structure[J]. Tunnelling and Underground Space Technology,2012,27(1):72-85.
    [229]Zapata, S. F. Prediction and field observation in soft ground tunnel [D]. Chicago, Illinois: Graduate College of the Illinois Institute of Technology,1998.
    [230]张冬梅,黄宏伟,林平,张平云.地铁盾构推进引起周围土体附加应力的分析[J].地下空间,1999,19(5):379-394.
    [231]张凤祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2004:111-430.
    [232]周文波.盾构法施工技术及应用[M].北京:中国建筑工业出版社,2004.
    [233]张晨明.上海地区盾构施工期及工后土体固结反应特性研究[D].上海:同济大学土木工程学院,2005.
    [234]钟小春.盾构隧道管片土压力的研究[D].南京:河海大学土木工程学院,2005.
    [235]张宇辉.桥梁结构健康监测技术与方法研究[D].长沙:湖南大学土木工程学院,2005.
    [236]郑宜枫,丁志诚,戴仕敏.超大直径盾构推进引起周围土体变形和土水压力变化分析[J].地下空间与工程学报,2006,2(8):1349-1378.
    [237]朱伟,钟小春,加瑞.盾构隧道垂直土压力松动效应的颗粒流模拟[J].岩土工程学报,2008,30(5):750-754.
    [238].朱季.考虑孔隙水压力变化的盾构开挖面稳定性研究[J].铁道勘测与设计,2012,·(1):47-50.
    [239]张顶立,张素磊,房倩,陈峰宾.铁路运营隧道衬砌背后接触状态及其分析[J].岩石力学与工程学报,2013,32(2):217-224.
    [240]Zhang, Z. X., Zhang, H. and Yan, J. Y. A case study on the behavior of shield tunneling in sandy cobble ground[J]. Environmental Earth Sciences,2013,69(6):1891-1900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700