用户名: 密码: 验证码:
海潮引起滨海承压含水层地下水位变化的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究海岸带地下水的运动规律对于沿海地区地下水资源的合理开发和科学管理、沿海地区建筑物的结构稳定安全和地下工程施工以及海岸带生态环境的保护都具有十分重要的意义,其中地下水水位的确定更是研究的重点所在。潮汐海平面上下波动带动毗邻的滨海地下水水位振动,对达到动态稳定后的地下水水位作周期平均后,其位置高出不考虑潮汐作用的稳态水位,即潮汐影响下滨海地下水水位存在超高。在现有的区域地下水数学模型中,潮汐引起的海平面波动通常被忽略,其预测出的地下水水位位置与实际情况可能会有一定的误差。
     本文通过数值模拟,结合物理实验对比分析,寻找一个等效的海岸边界条件的确定方法,我们在短时间序列内把海潮边界描述成正弦函数形式,在长时间序列内把海潮边界描述成有限项傅立叶级数形式,来研究潮汐作用下的沿海区域地下水水位的周期性波动特性。本文分别针对无越流和有越流两种情形,建立了描述近岸地下水运动的一维数学模型和三维数学模型,并依据实测数据对模型参数进行反演,对模型进行校正,随后运用有限差分法对模型进行离散,并编制计算程序,求得数值解,并对数值解和实测数据进行了比较,得到了滨海含水层地下水位随海潮变化的规律,结果表明,受海潮影响的滨海含水层地下水位与海潮有相似的波动特征,周期相同,周期T=24.7h;但振幅和潮汐效率随距海岸距离具有衰减效应,呈负指数函数衰减,在距离海岸500m处,振幅为1.35268m,潮汐效率为0.54107,在2000m处,振幅为0.26736m,潮汐效率为0.10694;地下水位到达波峰或波谷的时间具有滞后效应,滞后时间随距离呈线性增加,在距离海岸500m处,滞后时间为1.825h,在2000m处,滞后时间为9.825h;在无越流初始水位水平状态下,距海岸达4389m以远时可以认为地下水位不受海潮波动的影响。并且初始水位水平和线性倾斜两种状态下又有细微差别,潮汐波动影响的最远距离也不同,这些结论为正确评价地下水资源提供参考依据。
Studies of groundwater motion in coastal aquifers are of important significance inreasonable development of groundwater resources and scientific management ofcoastal areas in building safe structures and underground project construction and inthe ecological environment protection. The research focus of this paper is on thedetermination of water level. Tidal sea levels fluctuation drives adjacent coastal waterlevel to vibrate and achieve dynamic stability after the cycle of average water level.The position obtained doves not consider higher steady-state level of tidal action,namely the inshore water level under the influence of ultra high tides. In the existingregional groundwater mathematical models, the tides caused by sea level fluctuationsis often ignored. The prediction of the location of the groundwater table and the actualsituation may be somewhat different.
     In this paper, numerical simulation is combined with the physical experimentcontrast analyses to find an equivalent of the coast and a method for determiningboundary condition. We described the tidal boundary within short time series into asine function form, and the tide for a long time sequence boundary is described as alimited form of Fourier series, to study the cyclical fluctuation characteristics underthe induction of tidal water level in coastal areas. This paper examines respectivelyfor the two circumstances, the no-leaky flow and the leaky flow to establish aone-dimensional mathematical model for describing the nearshore groundwatermovement. According to the inversion of the measured data of the model parameters,a three dimensional mathematical model is established and identified. The finitedifference method is used to discrete the model, and using a calculation program, thenumerical solution is obtained, and the numerical solution and the measured data arecompared. The results show that the coastal aquifer groundwater levels change withthe tide, groundwater levels affected by the tide in the coastal aquifer and the tidehave similar characteristics with the same period of T=24.7h. The amplitudeattenuation effect is obvious and the tidal efficiency decays with the distance from theshore with a negative exponent function attenuation. In the distance of500m from the coast, the amplitude is1.35268m, and tidal efficiency is0.54107. In the distance of2000m, the amplitude is0.26736m, and tidal efficiency is0.10694. Groundwaterlevels reach the peaks and valleys with a time lag effect. The time lag increaseslinearly with the distance from the caost. In the distance of500m from the coast, lagtime is1.825h, and in2000m distance, the lag time is9.825h. In the distance of4389m far from the shore, the groumdwater levels can be thought to not be affectedby the fluctuation of the tide. The initial water level and two kinds of linear tilt andnuances are considered, the tidal swings in farthest distance are also different. Theseconclusions may provide a reference basis for the reasonable evaluation ofgroundwater resources in coastal areas.
引文
Ataie A B, Volker R E. Numerical and experimental study of seepage in unconfined aquiferswith a periodic boundary condition [J]. Journal of Hydrology,1999,222:165-184.
    Anderson M P,Woessner W W. Applied groundwater modeling-simulation of flow andadective transport [M]. New York: Academic Press Inc,1992,145-152.
    Dahan O, Mcgraw D. Multi variable mixing cell model as a calibration and validation tool forhydrogeologic groundwater modeling [J]. Journal of Hydrology,2004,293:115-136.
    Dominick T F,Wilkins B,Roberts H.Mathematical model for beach groundwaterfluctuations[J], Water Resources Research,1971,7:1626-1635.
    Ewing R E. Multidisciplinary interactions in energy and environmental modeling [J]. Journal ofComputational andApplied Mathematics,1996,74:193-215.
    Erskine, AD. The effect of tidal fluctuation on a coastal aquifer in the UK [J]. Ground Water,1991,29(4):556-562.
    Fang C S,Wang S N,Harrison w.Groundwater flow in a sandy tidal beach:2. Twodimensional finite element analysis[J].Water Resources Research,1972,8:121-128.
    Ghassemi F, Molson J W, Falkland A. Three-dimensional simulation of the Home Islandfreshwater lens: preliminary results [J]. Environmental Modelling&Software,1999,14:181-190.
    Harrison W,Fang C S,Wang S N.Groundwater flow in a sandy tidal beach:1.Onedimensional finite element analysis[J].Water Resources Research,1971,7:1313-1322.
    Juan C S, Kolm K E. Conceptualization, characterization and numerical modeling of theJackson Hole alluvial aquifer using ARC/INFO and MODFLOW[J]. Engineering Geology,1996,42:119-137.
    Jiao J J, Tang Z H. An analytical solution of groundwater response to tidal fluctuation in a leakyconfined aquifer [J]. water resource research,1999,35(3):747-751.
    Jacob, C E. Flow of ground water. In: H. Rose (ed), Engineering hydraulics[J]. John Wiley&Son Inc., New York,1950:321-386.
    Jeng D S, Li L, Barry D A. Analytical solution for tidal propagation in a coupled semiconfnedphreatic coastal aquifer [J]. Advances in Water Resources,2002,25(5),586–588.
    Li L, Barry D A, Stagnitti F, et al. Beah water table fluctuations due to spring-neap tides:moving boundary effects [J]. Advances in Water Resources,2000,23:817-824.
    Li S G, Mclanghlin D. A computationally practical method for stochastic groundwatermodeling [J]. Advances in Water Resources,2003,26:1137-1148.
    Li L,Barry D A, Paniaratchi B.Numerical modelling of tide-induced beach wolter tablefluctuations[J].Coastal Engineering,1997,105-123.
    Li H L, Jiao J J. Analytical studies of groundwater-head fluctuation in coastal confined aquiferoverlain by a semi-permeable layer with storage [J]. Advance in water Resources,2001,(24):565-575.
    L.Li and Barry. Tidal fluctuation in a leaky confined aquifer dynamic effects of an overlyingphreatic aquifer [J]. water resource research,2001,37(4):1095-1098.
    Li H L, Jiao J J. Tidal-induced groundwater fluctuation in a coastal leaky confined aquifersystem extending under the sea [J]. water resource research,2001,37(5):1165-1171.
    Li H L, Jiao J J. Analytical studies of groundwater-head fluctuation in a coastal confined aquiferoverlain by a leaky layer with storage [J]. Advances in Water Resources,2001b,24(5):565-573.
    Li H L, Jiao J J. Tidal groundwater level fluctuation in L-shaped leaky coastal aquifer system[J]. Journal of hydrology.2002,:234-243.
    Li H L, Jiao J J. Analytical solution of tidal groundwater flow in coastal two-aquifer system [J].Advance in water Resources,2002,(25):417-426.
    Li H L, Jiao J J. Tide-induced groundwater level fluctuation in coastal aquifers bounded byL-shaped coastlines [J]. Water Resource Research,2002,38(3):1024-1029.
    Li H L, Jiao J J. tide-induced seawater–groundwater circulation in a multi-layered coastal leakyaquifer system [J]. Journal of hydrology,2003:211-224.
    Li G M, Chen C X. Determining the length of confined aquifer roof extending under the sea bythe tidal methed [J]. Journal of Hydrology,1991a,123:97-104.
    Li H L, Jiao J J, Tang Z H. Semi-numerical simulation of groundwater flowinduced by periodic forcing with a case-study at an island aquifer [J]. Journal ofHydrology,2006,327:438-446.
    Mazzia A, Puttii M. Mixed-finite element and finite volume discretization for heavy brinesimulations in groundwater [J]. Journal of Computational and AppliedMathematics,2002,147:191-213.
    Mehl S, Hill M C. Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes [J]. Advances in WaterResources,2002,25:497-511.
    Nielsen, P. Tidal dynamics of the water table in beaches [J]. Water Resources Research,1990,26(9),2127-2134.
    Cartwright N,Nielsen P,Dunn S.Water table waves in an unconfined aquifer:Experimentsand modelling[J].WaterResources Research,2003,39(12):1330-1341.
    Olsthoorn T N. A comparative review of analytic and finite difference models used at theAmsterdam Water Supply [J]. Journal of Hydrology,1999,226:139-143.
    Osman Y Z, Bruen M P. Modelling stream-aquifer seepage in an alluvial aquifer: an improvedloosing-stream package for MODFLOW [J]. Journal of Hydrology,2002,264:69-86.
    Porter D W, Gibbs B P. Data fusion modeling for groundwater systems [J]. Journal ofContaminant Hydrology,2000,42:303-335.
    Scheibe T, Yabusakis. Scaling of flow and transport behavior in heterogeneous groundwatersystems[J]. Advances in Water Resources,1998,22(3):223-238.
    Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in anestuary [J]. Water Resource Research,1997,33(6):1429-1435.
    Teo H T, Jeng D S, Seymour B R, et al. A new analytical solution for water table fluctuations incoastal aquifers with sloping beaches [J]. Advances in Water Resources,2003,26:1239-1247.
    Turner I L, Bruce P C,Acworth R I.The effects of tides and waves on water-table elevations incoastal zones[J].Hydrogeology Journal,1996,4(2):51-69.
    Tang Z H, Jiao J J. A two-dimension analytical solution for groundwater flow in a leakyconfined aquifer system near open tidal water [J]. hydrological Processes,2001,15:573-585.
    Van der Kamp, G. Salt-water intrusion in a layered coastal aquifer at York Point, Prince EdwardIsland [J]. NHRI Paper No.14, IWD Scientific Series No.121,1981.
    Winston R B. MODFLOW related freeware and shareware resources on the internet [J].Computers&Geosciences,1999,25:377-382.
    Wingle W L, Poeter E P, Mckenna S A. Uncert: geostatistics, uncertainty analysis andsualization software applied to groundwater flow and contaminant transport modeling [J].Computers&Geosciences,1999,25:365-376.
    XueY, Xie C. A three-dimensional miscible transport model for seawater intrusion inChina [J]. Water Resources Research,1995,31(4):903-912.
    Zhou X. Determination of aquifer parameters based on measurements of tidal effects on acoastal aquifer near Beihai, China [J]. Hydrological Processes,2008,22(16):3176-3180.
    陈葆仁,洪再吉,陈新洪.应用地下水动态观测系列频谱分析方法推求水文地质参数[J].水文地质工程地质,1983,(6):23-30.
    陈崇希,唐仲华.地下水流动问题数值方法[M].武汉:中国地质大学出版社,1990.
    陈崇希.地下水不稳定井流计算方法[M].北京:地质出版社,1990.
    陈崇希,林敏.地下水动力学[M].武汉:中国地质大学出版社,1999.
    陈娟,李欲如.潮汐对沿海潜水水位的影响研究[J].水利科技与经济,2005,11(12):708-710.
    陈娟,庄水英,李凌.潮汐对地下水波动影响的数值模拟[J].水利学报,2006,37(5),630-633.
    陈家军,王红旗,张征.地质统计学方法在地下水水位估值中应用[J].水文地质工程地质,1998,6:7-10.
    陈君.海洋灾害知多少[J].海洋世界,2005,12:15-20.
    陈瑞阁,周训.潮汐引起滨海承压含水层地下水位变化的数值模拟[J].水利科技与经济,2012,18(12):4-7.
    陈瑞阁,周训,赵敬波,等.海潮引起初始水位倾斜的滨海承压含水层地下水位变化的数值模拟[J].地质通报,2013,32(7):1099-1104.
    陈锁忠,马千程.苏锡常地区GIS与地下水开采及地面沉降模型系统集成分析[J].水文地质工程地质,1999,5:26-29.
    陈劲松,万力. MODFLOW中不同方程组求解方法差异分析[J].工程勘察,2002(2):25-32.
    陈宗镛.潮汐学[M].北京:科学出版社,1980.
    方生,陈秀玲.地下水开发引起的环境问题与治理[J].地下水,200l,23(1):8-11.
    高佩玲,雷廷武,张石峰.新疆阿图什哈拉峻地区地下水系统模型研究[J].水利学报,2004(4):61-66.
    郭巧娜,李海龙,夏玉强,等.滨海多层含水层系统中海潮引起的地下水位波动[J].地下水,2007,(2):27-31.
    郝竹青,丁寿楠,于广津.莱州市防潮堤除险加固显成效[J].水利天地,2007,(3):36-36.
    李国敏.在线状感潮河流切割条件下承压水头动态及参数测定方法[J].工程勘察,1987,2:47-48.
    李国敏,通过潮汐效应确定延伸到海底的承压含水层顶板长度[J].水文地质工程地质,1988,(4),5-10.
    李国敏,陈崇希.利用岸边水头动态确定含水层在临海方向上的边界[J].地球科学,1991,16(5):581-589.
    李国敏.用地下水潮汐动态研究围洲岛玄武岩含水层的给水度[J].地学探索,1992,7:75-80.
    卢文喜.地下水运动数值模拟过程中边界条件问题探讨[J].水利学报,2003,3:33-36.
    李庆扬,王能超,易人义.数值分析[M].北京:清华大学出版社,2005.
    吕同富,康兆敏,方秀男.数值计算方法[M].北京:清华大学出版社,2008.
    苗霖田,吕婷婷.强潮汐对煤矿安全生产的影响[A].安全高效矿井建设与开采技术—陕西省煤炭学会学术年会论文集(2010)[C].西安:陕西省煤炭工业协会,2010:337-342.
    阮传侠.海岸带潮汐效应地下水位动态研究:[硕士学位论文].北京:中国地质大学,2005.
    阮传侠,周训,欧业成,等.海潮引起滨海含水层地下水位变化的初步研究[J].地质通报,2006,25(4):512-515.
    孙讷正.地下水流的数学模型和数值方法[D].北京:地质出版社,1981.
    宋兆基,徐流美.Matlab6.5在科学计算中的应用[M].北京:清华大学出版社,2005.
    汪成民,车用太.地下水位动态研究[M].北京:地震出版社,1988.
    魏连伟,邵景力,崔亚莉,等.模拟退火算法反演水文地质参数算例研究[J].吉林大学学报:地球科学版,2004,34(4):612-616.
    武强,徐华.地下水模拟的可视化设计环境[J].计算机工程,2003,29(6):69-70.
    吴顺唐,邓之光.有限差分方程概论[M].南京:河海大学出版社,1993.
    薛禹群,朱学愚.地下水动力学[M].北京:地质出版社,1979.
    薛禹群,谢春红,吴吉春,等.海水入侵、咸淡水界面运移规律研究[M].南京:南京大学出版社,1991.
    薛禹群,叶淑君,谢春红.多尺度有限元法在地下水模拟中的应用[J].水利学报,2004,7:7-13.
    叶玲玲.上海市地下水位与潮汐关系的初步探讨[J].上海地质,1982,(2):52-58.
    郑丹,王大国,韩光.潮汐循环作用下海水入侵模型的现状与展望[J].辽宁工程技术大学学报(自然科学版),2009,28(4):240-242.
    庄得新,聂清香.天文学[M].济南:山东大学出版社,2002.
    张明江,门国发,陈崇希,等.渭干河流域三维地下水流数值模拟[J].新疆地质,2004,22(3):238-243.
    庄水英.大小潮对沿海区域地下水模拟的影响:等效海岸边界条件的确定[D]:[硕士学位论文].南京:河海大学,2006.
    张祥伟,竹内邦良.大区域地下水模拟的理论和方法[J].水利学报,2004,6:7-13.
    周训,鞠秀敏,王举平,等.滨海含水层地下水动态特征[J].地下水,1997,19(1):15-18.
    周训,阮传侠,方斌,等.海潮及其影响下海岸带地下水位时间序列的周期性和滞后性[J].水文地质工程地质,2006,33(5):71-74.
    周训,金晓媚,梁四海,等.地下水科学专论[M].北京:地质出版社,2010.
    张昭栋,王宝银,高玉斌,等.中国地下水潮汐的观测研究和分析[J].地震学报,1989,11(4):392-401.
    张昭栋、郑金涵等.海潮对地下水的影响[J].地球物理学报,1990,33(Ⅱ):493-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700