用户名: 密码: 验证码:
城市污水污泥中重金属的生物沥滤技术试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化进程的加快,各城市(城镇)污水处理厂相继建成,大大减轻了城市生活污水和工业废水对水环境的污染。但是,城市污水处理率的提高也带来了新的问题,即城市污水污泥如何安全处理和处置。一方面,城市污泥中含有丰富的氮、磷、钾和有机质等植物性营养元素,是很好的肥源和良好的土壤改良剂,具有广阔的资源化农用前景。而另一方面,城市污泥中存在的高浓度有毒有害重金属元素,则严重制约了城市污泥资源化农用。在我国由于城市污水处理工艺、城市污水性质和城市经济类型的差异,使得我国多数城市污水厂的剩余污泥中的Cu、Zn等重金属元素普遍超过《农用污泥污染物控制标准》GB 4248-84的相关标准,因此,采取有效的措施对城市污泥中高浓度重金属的生物毒性和含量加以控制显得十分迫切和必要。
     针对这一课题,不少学者提出一些新颖的城市污泥中重金剔除技术和方法,其中生物沥滤技术被众多学者誉为城市污泥的绿色洁净化技术,其处理成本较低、处理效果好、易于大规模推广等特点,成为当前污泥(沉积物)中重金属污染治理的热点。目前,对于生物沥滤法去除污泥中重金属的研究仍以纯菌种的玻皿实验为主,而对该技术的工程应用时的实际情况缺乏系统研究。因此,从生物沥滤的工程应用角度出发,按工程化运行特点对这一技术进行全面研究显得十分重要。
     本文以桂林城市污水处理厂的剩余污泥为研究对象,以有效去除和降低城市污泥中高浓度重金属含量和生物毒性为目标,在研究氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)和氧化硫硫杆菌(Acidithiobacillus thiooxidans)两类沥滤微生物的生长特征基础上,从生物沥滤装置的选择、工艺流程的设计、沥滤运行参数优选、沥后污泥潜在生物毒性评价等几个方面对工程中应用生物沥滤技术这一课题进行了系统地研究。
     本文对桂林城市污水污泥成分进行详细分析,得出桂林城市污泥有机质和总养分分别为426g/kg和99.1g/kg,具有较高的农用价值。污泥中Cu、Zn、Cd含量超过我国污泥农用的相关标准,是研究生物沥滤去除的主要对象。采用Tessier连续提取法对污泥中重金属化学形态进行了分析,污泥中Cu、Pb、Ni、Cr主要以稳定性较好的硫化物及有机结合态(Organ)和残渣态(Resd)形式存在,Zn和Cd以不稳定态形式存在为主,污泥中各重金属的潜在生物有效性强弱为:Cd>Zn>Ni>Pb>Cu>Cr。
     为提高生物沥滤技术去除城市污泥重金属的工程应用价值,本研究在分析我国中小城镇污水处理厂现有污水污泥处理设施完善程度的基础上首次提出了采用序批式生物反应器为沥滤主体构筑物的生物沥滤除污泥重金属工艺。
     文中对分别采用氧化亚铁硫杆菌和氧化硫硫杆菌进行生物沥滤的各主要影响因素进行了研究,确定了以二沉池出泥(剩余污泥)为沥滤对象时的生物沥滤各运行参数。其中氧化亚铁硫杆菌沥滤体系的最佳运行条件为:底物投加量10g/L、温度25℃、曝气强度0.4L/(min·L)、接种量为30%。氧化硫硫杆菌沥滤体系的最佳运行条件为:底物投加量3g/L、硫颗粒平均粒径165um、温度20~30℃、曝气强度1.0 L/(min·L)、接种量10%。并对两嗜酸菌沥滤在最佳运行条件下的工程运行周期进行了分析,确定氧化亚铁硫杆菌和氧化硫硫杆菌沥滤体系的适宜运行周期和多批次运行的稳定性进行了分析,表明此两沥滤体系的最佳运行周期为2天和3天,经多批次运行时污泥的酸化和重金属去除效果较好且运行稳定。
     为了解嗜酸微生物的微观生长特征,研究以桂林城市污泥为培养介质,经多次富集纯化得到污泥土著氧化硫硫杆菌和氧化亚铁硫杆菌,并根据嗜酸菌生长及代谢底物特点,引入Michaelis-Menten方程,推导出嗜酸菌的生长动力学方程。得到氧化亚铁硫杆菌生长动力学参数Ks=13.763g/L,μm=0.169 h-1;氧化硫硫杆菌的生长动力学参数Ks=1.836 g/L,μm=0.075 h-1。
     为研究沥滤过程中污泥中重金属迁移及各化学形态释放特征,对沥滤过程中污泥中重金属的含量和化学形态进行了分析,结果表明经过生物沥滤处理后,污泥中主要高浓度重金属Cu、Zn和Cd的残余浓度均符合《农用污泥污染物控制标准》GB 4248-84的相关标准,沥滤后污泥中Cu, Zn和Cd均能以化学性质较稳定的硫化物及有机物结合态(Organ态)和残渣态(Resd态)形式存在,并对Cu、Zn、Cd的各化学形态在沥滤体系中的释放能力进行分析研究。
     采用了当前较为先进的沉积物质量基准法(SQGs)和Hakanson指数法对沥滤前后污泥中重金属的潜在生物毒性进行了定性和定量的评价,结果表明A.ferrooxidans菌对Cu、Cd的脱毒作用强于A.thiooxidans菌;沥滤前、后污泥中Cu、Zn、Cd、Pb、Cr、Ni的潜在生态危害性强弱表现为:Cd>Cu>Zn>Ni>Pb>Cr和Cd>Cu>Zn>Pb>Ni>Cr。沥滤后污泥的综合潜在生态危害指数下降91.0%以上,且A.ferrooxidans菌沥后污泥的潜在生物毒性最弱,其综合潜在生态危害指数为84.75,是生物沥滤去除城市污泥重金属工程应用的适合菌种。
The water environment pollution caused by the discharge of industrial wastewater and urban wastewater in china has been controlled effectively with sewage treatment plants’building and operation in many cities of china. But another problem was arised with the increase of urban sewage treatment rate,that is how to treat sewage sludge safely.
     As we know, sewage sludge is the potential fertilizer source and soil amendment for agricultural production, because of the abundant Nitrogen, Phosphorus, Kalium and organic matters. At the same time, the exist of high content heavy metals in sewage sludge had severely restricted the popularization and application of the technology of municipal sludge agricultural resources use. Actually, the contents of Cu , Zn , Cd of sewage sludge were exceed the relevant limits of the control standards for pollutants in sludges from agricultural use(GB4248-84) in most cities of china .So it was an important and urgent mission for us to take effective measures to control the concentration and biotoxicity of the high content heavy metals. Most researches have been carried out for the problem, and many new technologies on removing heavy metals from municipal sludge were exploited. Among which the bioleaching was praised as a green sludge cleaning technology and become the research focus on heavy metal pollution control. Presently, bioleaching as a new technology on removing heavy metals from sludge was systematic studied rarely. Most researches on bioleaching were operated in glassware with pure strain, however, the systematic research based on the engineering application of bioleaching was in scarce. Therefore, to promote the application value of bioleaching, it is very important to implement research from the viewpoint of engineering application.
     The sewage sludge from Guilin sewage treatment plant was taken and studied. The research aims are to effectively remove the poisonous heavy metals and reduce the biological toxicity. Based on the studies of the growth characters of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxians, one systematic research about the engineering applying was conducted from the four aspects: the selection of bioleaching reactor, the design of bioleaching process, the optimization of bioleaching parameters and the potential toxicity assessment of treated sludge.
     The analysis of sludge components showed higher agricultural value for Guilin sewage sludge , and the contents of organic matter and total nutrition were 426g/kg and 99.1g/kg.respectively.Cu, Zn, Cd existed in Guilin sewage sludge were selected as the main removal objects in this study due to the contents of those elements exceeding the agricultural standard. The Tessier method was adopted to continually extract various chemical speciations of sludge heavy metals. The results showed that most Cu, Pb, Ni, Cr in sludge existed in their forms of sulfide, organic combination and residual, and the majority of Zn, Cd were bound to the unstable forms, as exchangeable, carbonates and Fe-Mn oxides. The heavy metal stability was decided as Cd>Zn>Ni>Pb>Cu>Cr.
     Through the status analysis of sewage sludge treatment facilities, the Sequence Batch Reactor(SBR) was adopted as the main reactor for bioleaching heavy metals from sewage sludge. The surplus sludge was the treatment object in this study. The major effect factors of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were researched signally. The bioleaching optimum operation parameters for Acidithiobacillus ferrooxidans are as follows: substrate dosage,10g/L;temperature,25℃; aeration rate, 0.4L/(min·L); inoculation volume, 30%. The bioleaching optimum condition for Acidithiobacillus thiooxidans is that: substrate dosage was 3g/L, average particle size of elemental sulfur was 165um, temperature was 20~30℃,aeration rate was 1.0 L/(min·L),inoculation volume was 10% the further study on optimum operation period and stability of bioleaching under the optimum treatment condition indicated that the proper operation periods were 2 days for Acidithiobacillus ferrooxidans and 3days for Acidithiobacillus thiooxidans.
     In this experiment, the indigenous Acidithiobacillus ferrooxidans and indigenous Acidithiobacillus thiooxidans were attained from Guilin sewage sludge by enrichment and purification. The Michaelis-Menten Modle was introduced into derive the equations of bioleaching Acidophile, the kinetic constants of saturation constant (Ks) and specific growth rate(μm) for Acidithiobacillus ferrooxidans were 13.763 g/L and 0.169 h-1, that for Acidithiobacillus thiooxidans were 1.836 g/Land 0.075h-1.
     The characteristics of transfer and release of different speciations were discussed by the analysis of the content of Cu, Zn, Cd in fresh sewage sludge and treated sludge. The result showed that the residual contents of Cu, Zn, Cd all are accord with control standard for pollutants in sludges from agricultural use (GB4248-84). The organic combination and residual were the major speciations of Cu, Zn and Cd in bioleached sludge. The Sediment Quality Guidelines (SQGs) and Hakanson index method were used to assess the potential biological toxicity of fresh sludge and bioleached sludge. The assessment results showed that the detoxication efficiency of Acidithiobacillus ferrooxidans was better than that of Acidithiobacillus thiooxidans. The potential biological toxicities of main heavy metals were in the following order: Cd>Cu>Zn>Ni>Pb>Cr(fresh sludge)and Cd>Cu>Zn>Pb>Ni>Cr(bioleached sludge). The synthetic potential biological risk indexes of sludge were decreased by more than 90% through the bioleaching process. The sludge bioleached by Acidithiobacillus ferrooxidans was at the low potential biological toxicity, the synthetic potential biological risk index was 84.75. So the Acidithiobacillus ferrooxidans was considered as the proper bioleaching bacteria for removing heavy metals from sewage sludge.
引文
[1]于晓东.“十一五”全国城镇污水处理及再生利用设施建设规划的总体思路[J].中国科技成果2005, 23.
    [2]曾祥文,王海霞.我国污水处理厂污泥处置的回顾与展望[J].工业安全与环保, 2007, 33(7): 20-22.
    [3]李兵,尹庆美,张华,等.污泥的处理处置方法与资源化[J].安全与环境工程, 2004, 11(4): 52-56.
    [4]李艳霞,陈同斌,罗维,等.中国城市污泥有机质及养分含量与土地利用[J].生态学报, 2003, 23(11): 2464-2474.
    [5]马芳,刘晓丹.浅谈城市污泥资源化利用的途径[J].中国资源综合利用, 2007, 25(8): 16-18.
    [6]昝元峰,王树众,沈林华,等.污泥处理技术的新进展[J].中国给水排水, 2004, 20(6): 25-28.
    [7]刘涛,魏先勋,翟云波,等.剩余污泥的资源化利用[J].资源节约与环保, 2006, 22(3): 37-40.
    [8]李亚东,李海波.利用剩余活性污泥水解蛋白质制备蛋白质泡沫灭火剂的研究[J].湖北大学学报:自然科学版, 2005, 27(1): 91-93.
    [9]周立祥,胡霭堂,戈乃玢,等.城市污泥土地利用研究[J].生态学报, 1999, 19(2): 185-193.
    [10]郭媚兰,王逵,张青喜,等.太原市污水污泥农业利用研究[J].农业环境保护, 1993, 12 (6) : 254~262, 285.
    [11]张学洪,李金城,解庆林,等.城市污水污泥有机复合肥水稻施肥试验[J].广西科学. 2000, 7 (3) : 232-234.
    [12]张增强,唐新保.污泥堆肥化处理对重金属形态的影响[J].农业环境保护. 1996, 15(4): 188-190.
    [13] Fang M, Wong J W C, Ma K K, et al. Co-composting of sewage sludge and coal ash: nutrient transformations [J]. Bioresource Technology, 1999, 67: 19-24.
    [14] Nissen L R, Rico M I, Alvarez J M, Novillo J. Synthetic zeolites as amendments for sewage sludge-based compost [J]. Chemosphere, 2000, 41(3): 265-269.
    [15] Zorpas A A, Constantinides T, Vlyssides A G, Haralambous I, Loizidou M. Heavy metal uptake by natural zeolite and metals partitioning in sewage sluge compost [J]. Bioresource Technology, 2000, 72(2): 113-119.
    [16] Logan TJ, et al. Field assessment of trace element uptake by six vegetables from N-Viro soil [J]. Water Environ. Water Environ. Res. , 1997, 69(1): 28-33.
    [17] H Dinel, T Pare, M Schnitzer, N Pelzer. Direct land application of cement kiln dust- and lime-sanitized biosolids: extractability of trace metals and organic matter quality [J]. Geoderma, 2000. 96(4): 307-320(14).
    [18] Obrador A , Rico M I , Alvarez J M, et al. Influence of thermal treatment on sequential extraction and leaching behaviour trace metals in a contaminated sewage sludge [J] . Bioresource Technology, 2001 , 76(3) : 259-264.
    [19] Liang Q. The effects of clay amendment and composting on metal speciation in digested sludge[J]. Water Res, 1997. 31(5): 931-964.
    [20] Wozniak D J, Huang J Y C. Variables affecting metals removal from sludge [J]. J Water Pollut Control Fed, 1982, 54(12): 1574-1580.
    [21] Tyagi R D, Couillard D, Tran F T. Heavy metals removal from anaerobiocally digested sludge by chemical and microbiological methods [J]. Environ Pollut, 1988, 50: 295-316
    [22] Yoshizaki S, Tomida T. Principle and process of heavy metal removal from sewage sludge[J]. Environ Sci Technol, 2000, 34(8): 1572-1575.
    [23]吴忠艳,田宏君,王丽影,等.生化剩余活性污泥中重金属脱除技术的研究[J].石油化工环境保护. 2002, 25(2);43-46.
    [24] Wu Q. T, Nyirandege. P, Mo C. H. Removal of heavy metals from sewage sludge by low costing chemical method and recycling in agriculture [J]. Journal of Environmental Sciences. 1998, 10(1): 122-128.
    [25] R. L Jenkins, B. J Scheybeler, M. L Smith. Metals Removal and Recovery municipal sludge [J]. Journal of Water Pollution Control Federation. 1981, 53(1): 25-32.
    [26] Veeken A H M. Hamelers H V M. Removal of heavy metals from sewage sludge by extraction with organic acids[J]. Wat Sci Tech. 1999, 40(1): l29-136.
    [27]廖凌.电修复法和植物修复法联合治理污泥重金属[D].广州:华南农业大学. 2002.
    [28]袁华山,刘云国,李欣.电动力修复技术去除城市污泥中的重金属研究[J].中国给水排水. 2006, 22(3): 101-104.
    [29] Hinchman, Ray R. and M. Cristina Negri. 1997. Providing the baseline science and data for real-life phytoremediation application-partnering for success, Chapter 1. 5. In: Proceedings of the 2nd Intl. Conference, 1997. 9-12.
    [30] Cunningham SD, Ow DW. Promises and prospects of phytorelmediation [J]. Plant Physiol, 1996, (110): 715-719.
    [31] Salt D E, Smith R D, Raskin I. Phytoremediation [J]. Annu Rev Plant Physiol Plant Mol Boil,1998, 49: 643-668.
    [32] T. G. Kazi, M. K. Jamali, A. Siddiqui, An ultrasonic assisted extraction method to release heavy metals from untreated sewage sludge samples [J]. Chemosphere. 2006, 63: 411-420.
    [33] Sengupta S, SenGupta A K. Characterizing a new class of sorptive/desorptive ion exchange membranes for econtamination of heavy-metal-laden sludges [J]. Environ Sci Technol, 1993, 27(10): 2133-2140.
    [34] Olver JW, Kreye WC, King PH. Heavy metal release by chlorine oxidation of sludges, Journal Water Pollution Control Federation. 1975, 47(10): 2490-2497.
    [35]杨苏才,南忠仁,曾静静.土壤重金属污染现状与治理途径研究进展[J].安徽农业科学, 2006 , 34(3) : 549-552.
    [36]俞协治,成杰民.蚯蚓对土壤中铜、镉生物有效性的影响[J ].生态学报, 2003 , 23(5) : 922 -928.
    [37]白春节,低繁殖量蚯蚓养殖法处理剩余污泥的可行性研究[J].安全与环境学报. 2006, 6(6): 9-12.
    [38]刘小丽.蚯蚓处理对城市污泥肥效及重金属生物有效性的影响[D]华中农业大学, 2003 .
    [39] Loser C, Seidel H, Hoffmann P, Zehnsdorf A. Remediation of heavy metal-contaminated sediments by solid-bed bioleaching[J]. Environ Geology, 2001, 40(4-5): 643-650.
    [40]周立祥,方迪,周顺桂,王电站,王世梅.利用嗜酸性硫杆菌去除制革污泥中铬的研究[J].环境科学, 2004, 25(I): 62-66.
    [41]华玉妹,陈英旭.污泥中重金属生物沥滤的工艺参数优选和反应机制探讨[J].环境科学学报. 2004, 24(3): 423-427.
    [42]朱南文,蔡春光,吴志超,等.污泥中重金属的生物沥滤及其机理分析[J].上海交通大学学报, 2003, 37(5): 801-804.
    [43] Temple KL, Colmer A. R. The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans[J]. J Bacteriol 1951, 62: 605-611.
    [44] Kelly, D. P. , Wood, A. P. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov and Thermithiobacillus gen. nov[J]. International Journal of Systematic and Evolutionary Microbiology. 2000, 50: 511-516.
    [45] Wolfgang Sand, Tilman Gehrke, Peter-Georg. Jozsa, et al. (Bio) chemistry of bacterial leaching-direct vs. indirect bioleaching [J]. Hydrometallurgy. 2001, 59: 159–175.
    [46] Fowler, T. A. , Holmes, P. R. , Crundwell, F. K. On the kinetics and mechanism of the dissolution of pyrite in the presence of Thiobacillus ferrooxidans [J]. Hydrometallurgy 2001,59: 257-270.
    [47] Guangji Zhang, Zhaoheng Fang. The contribution of direct and indirect actions in bioleaching of pentlandite [J]. Hydrometallurgy. 2005, 80: 59-66.
    [48] Rohwerder, T, Gehrke, T, Kinzler, K, et al. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation [J]. Appl Microbiol Biotechnol, 2003, 63: 239-248.
    [49] Sand W. , Gerle T. , Hallman R, et al. Sulphur chemistry, biofilm, and the (in)direct attack mechanism: a critical evaluation of bacterial leaching[J]. Applied Microbiology and Biotechnology. 2001, 43(6): 961-966.
    [50] Rohwerder T, Sand W. The sulfane sulfur of per sulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphillum spp [J]. Microbiology. 2003, 149: 1699-1709.
    [51] A. Schippers, W. Sand., Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulphur [J]. Appl. Environ. Microbiol. 1999, 65(1): 319-321.
    [52] Travis. L, Takeuchi, Suzuki. I. Cell Hydrophobicity and sulfur adhesion of Thiobacillus thiooxidans [J]. Appl. Environ. Micro. 1997, 63(5): 2058-2061.
    [53] Liu H. L. , Chen B. Y. , Lan Y. W. SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans[J]. Appl. Microbiol. Biotechnol. 2003, 62: 414-420.
    [54] Tyagi R D, Blais J F, Auclair J C, et al. Bacterial leaching of toxic metals from municipal sludge: influence of sludge characteristics [J]. Water environment Research. 1993, 65(3): 196-204.
    [55] R. D. Tyagi, J. F. Blais, N. Meunier, et al. Simultaneous sewage sludge digestion and metal leaching-effect of sludge solids concentration[J]. Wat. Res. 1997, 31(1): 105-118.
    [56] Ayumi Ito, Teruyuki Umita, Jiro aizawa, et al. Removal of heavy metals from anaerobically digested sewage sludge by a new chemical method using ferric sulfate [J]. Wat. Res. 2000, 34(3): 751-758.
    [57] Chen S. Y, Lin J. G. Bioleaching of heavy metals from livestock sludge by indigenous sulfur-oxidizing bacteria: effects of sludge solids concentration [J]. Chemosphere, 2004, 54(3): 283-289.
    [58] IS Kim, Jong-Un Lee, Am Jang. Bioleaching of heavy metals from dewatered sludge by Acidithiobacillus ferrooxidans [J]. Journal of Chemical Technology Biotechnology, 2005, 80(12): 1339-1348.
    [59]吴烈,潘志平.含重金属离子废水的生物处理[J].中国给水排水. 2001, 17(10): 31-34.
    [60] Tyagi R D, Blais J F, Deschenes L, et al. Comparison of microbial sulfuric acid production in sewage sludge from added sulfur and thiosulfate [J]. J Environ Qual, 1994, 23: 1065- 1069.
    [61]华玉妹,陈英旭.污泥中重金属生物沥滤的工艺参数优选和反应机制探讨[J].环境科学学报. 2004, 24(3): 423-427.
    [62] Chen Y. S, Lin J. G. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration [J]. Water Research, 2004, 38: 3205-3214.
    [63] Wong. J. W. C., Xiang. L. , Gu. X. Y. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source [J]. Chemosphere. 2004, 55: 101- 107.
    [64]周顺桂,周立祥,方迪,等.黄铁矿与硫粉配合提高污泥重金属的淋滤效果[J].中国环境科学. 2004, 24(1): I10-114.
    [65] Heinz Seidel. Rainer Wennrich, Petra Hoffmann, et al. Effect of different types of elemental sulfur on bioleaching of heavy metals from contaminated sediments [J]. Chemosphere, 2006, 62: 1444-1453.
    [66] Tyagi R D, Sreekrishnan T R, Blais J F, et al. Kinetics of heavy metal bioleaching from sewage sludge : temperature effect[J]. Wat Res. 1994, 28: 2367-2375.
    [67] J. F. Blais, Tyagi R D, Auclair J C. Bioleaching of Metals from sewage sludge: Effect of Temperature [J]. Water Research, 1993, 27(1): 111-120.
    [68] Anderson BC, Brown ATF, Watt WE, Marsalek J. Biological leaching of trace metals from stormwater sediments: influential variables and continuous reactor operation [J]. Water Sci Technol 1998;38: 73–81.
    [69] Tsai L. J, Yu K. C, Chen S. F, et al. effect of temperature on removal of heavy metals from contaminated river sediments via bioleaching [J]. Water Research, 2003, 37: 2449-2457.
    [70] Jain D. K, Tyafi R. D, Bacterial leaching of heavy metal from anaerobic sewage sludge by sulfur-oxidizing bacteria [J]. Enzym. Microb Technol, 1992, 14: 376-383.
    [71] Liu, M S; Branion, R M R; Duncan, D W. The Effects of Ferrous Iron, Dissolved Oxygen, and Inert Solids Concentrations on the Growth of Thiobacillus ferrooxidans [J]. Can. J. Chem. Eng, 1988, 66(3): 445-451.
    [72] Meknassi Y. F, Tyagi R. D, Narasiah K. S, et al. Simultaneous sewage sludge digestion and metal leaching: effect of aeration [J]. Process Biochemistry, 2000, 36: 263-273.
    [73] Holugue L, Herrera L, Phillips OM, et al. CO2 fixation by mineral-leaching bacteria:charcteristics of the ribulose biphosphate carboxylase-oxygenase of Thiobacillus ferrooxidans [J]. Biotechnology and Applied Biochemistry, 1987, 9: 497-505.
    [74] J. Haddadin, D. Morin, P. Ollivier and M. Fick. Effect of different carbon dioxide concentrations on ferrous iron and pyrite oxidation by a mixed culture of iron and/or sulfur-oxidizing bacteria [J]. Enzyme and Microbial Technology, 1993, 15(10): 832-841.
    [75] Nagpal, S; Dahlstrom, D; Oolman, T. Effect of carbon dioxide concentration on the bioleaching of a pyrite-arsenopyrite ore concentrate [J]. Biotechnology and Bioengineering, 1993, 41(4): 459-464.
    [76] L. C. Chan, X. Y. Gu, J. W. C. Wong. Comparison of bioleaching of heavy metals from sewage sludge using iron- and sulfur-oxidizing bacteria [J]. Advances in Environmental Research. 2003, 7(3): 603-607.
    [77] Tomonori I, Nakanishi A, Masafumi T, et al. Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria[J]. Chemosphere. 2005, 60: 1087-1094.
    [78]沈镭,张太平,贾晓珊.利用氧化亚铁硫杆菌和氧化硫硫杆菌去除污泥中重金属的研究[J].中山大学学报(自然科学版). 2005, 44(2): 111-114.
    [79] Jain D. K, Tyagi R. D. Bacterial leaching of heavy metal from anaerobic sewage sludge by sulfur oxidizing bacteria[J]. Enzym. Microb Technol, 1992, 14: 376-383.
    [80] Blais JF, Auclair JC, Tyagi RD. Cooperation between two Thiobacillus strains for heavy-metal removal from municipal sludge [J]. Can J Microbiol. 1992 Mar;38(3): 181-187.
    [81] TR Sreekrishnan, RD Tyagi, JF Blais. Kinetics of Heavy Metal Bioleaching from Sewage Sludg-I. Effects of Process Parameters [J]. Water research. 1993, 27(11): 1641-1651.
    [82] Wong J. W. C, Xiang L, Chan L. C. pH Requirement for the Bioleaching of Heavy Metals from Anaerobically Digested. Wastewater Sludge [J]. Water, Air, & Soil Pollution, 2002, 138(1-4): 25-35.
    [83]华玉妹,陈英旭,田光明.初始pH值对污泥中重金属生物沥滤的影响[J].农业环境科学学报. 2006, 25(1): 128-131.
    [84]王电站,周立祥.去除污泥中重金属铬的生物淋滤反应器设计与应用[J].环境污染治理技术与设备. 2005, 6(11): 66-70.
    [85]台桂花.科技助推城市突破污泥重围[N].中国环境报, 2005.
    [86]谷平,王嗜编译,污泥作肥安全吗[J].国外科技动态, 1999, 5: 17-19.
    [87] Li Y X, Wang M J and Wang J S. Heavy Metal in Contemporary China Sewage Sludges [J]. Toxicological and Environmental Chemistry , 1999, 69: 229-240.
    [88]杨毓峰,薛澄泽,袁红旭,等.城市污泥堆肥商品化应用问题的探讨[J].农业环境与发展, 2000, (1) : 6-8.
    [89]周立祥,胡霭堂,戈乃玢.城市生活污泥农田利用对土壤肥力性状的影响[J].土壤通报, 1994, 25 (3) : 126-129.
    [90]乔显亮,骆永明.污泥利用及其环境影响[J].土壤, 2000, 2: 79-85.
    [91]袁守军,朱家华.合肥市污水处理厂污泥处置途径探讨[J].合肥工业大学学报, 2001, 24 (4) : 538~542.
    [92]周立祥,张雪英,占新华,等.苏南地区城市污泥的基本性质及农业利用效果问题与对策[J].世界科技研究与发展, 2000, 22: 91-96.
    [93]许亚,韩晓梅,黄众.昆明市城市污水污泥的肥效及其资源化利用[J].云南环境科学, 1999, 18 (3) : 44-46.
    [94]朱广伟,陈英旭,周根娣,等.疏浚底泥的养分特征及污染化学性质研究[J].植物营养与肥料学报. 2001 , 7 (3) : 311~317.
    [95]廖宗文,林东教,江东荣,等.广州市污泥垃圾农用资源化的初步研究[J].自然资源学报, 1994, 9 (3) : 247-252.
    [96]蔡全英,莫测辉,吴启堂.城市污泥及其堆肥对盆栽通菜和萝卜产量的影响[J].农业环境科学学报, 2003, 22(1): 52-55.
    [97]莫测辉,吴启堂,蔡全英,等.论城市污泥农用资源化与可持续发展[J].应用生态学报, 2000, 11 (1) : 157-160.
    [98]王新,陈涛,梁仁禄,等.污泥土地利用对农作物及土壤的影响研究[J].应用生态学报, 2002, 13 (2) : 163-166.
    [99]周立祥,胡霭堂,胡忠明.厌氧消化污泥中有机氮的矿化[J].环境科学学报, 1997, 17 (3) : 359-364.
    [100]李国学,黄焕忠,黄铭洪.施用污泥堆肥对土壤和青菜重金属积累特性的影响[J].中国农业大学学报, 1998, 3 (1) : 113-118.
    [101]李慧君,孟昭福,谷胜意,张增强.西安市污水处理厂污泥施用于赤红壤中的探讨[J].农业环境科学学报, 2003, 22(5): 593-596.
    [102]丁竹红.胡忻.南京市城市污泥和工业污泥中典型矿质元素含量和形态分布研究[J].安全与环境学报. 2006, 6(1): 57-60.
    [103]谭启玲,胡承孝,赵斌,等.城市污泥的特性及其农业利用现状[J].华中农业大学学报. 2002, 21(6): 587-592.
    [104]陶俊杰,王海涛,王晓霞,等.城市污水处理厂污泥农用的可行性分析[J].市政技术. 2006, 24(2): 72-74.
    [105]卢敏洲,丁文,林晓红.漳州市城市污泥有机肥生产工艺和配方研究[J].福建热作科技. 2005, 30(2): 16-17.
    [106] USEPA. 2000. Guide to field storage of bio solids. EPA/832-B-00-007, 114.
    [107] USEPA. Biosolids generation, use, and disposal in the United States. E PA 5302R 2992009, 1999, 35.
    [108]全国农业技术推广中心.中国有机肥料养分志[M].北京:中国农业出版社, 1999.
    [109]李燕霞,王敏健,王菊思,等,城市固体废弃物堆肥化处理的影响因素[J].土壤与环境, 1999: 8(1): 61-65.
    [110] Feliciano D V. Sludge on land-but where are we going [J ] . J Water Pollu Cont Fed , 1993 , 9 : 1259-1266.
    [111] Wild S R , Jones KC. The effect of sludge treatment on the organic contaminant content of sewage sludges [J] . Chemosphere , 1989 , 19 : 1965-1977.
    [112]莫测辉,蔡全英,吴启堂.我国一些城市污泥中多环芳烃(PAHs)的研究[J].环境科学学报. 2001, 21(5): 613-618.
    [113] Zitomer D H, Speece R E. Sequential environments for enhanced biotransformation of aqueous contaminants [ J ]. Environ Sci Technol, 1993 , 27 (2) : 227-244.
    [114] Manoli E, Samara C. Occurrence and mass balance of polycyclic aromatic hydrocarbons in the thessaloniki sewage treatment plant[J]. J Environ Qual , 1999 , 28 : 176-187.
    [115]赵剑强,张希衡. 34种有机毒物对厌氧消化影响试验研究[J].中国环境科学, 1992 , 12(4) : 250-254.
    [116]蔡全英,莫测辉,吴启堂.部分城市污泥中氯苯类化合物的初步研究[J].环境化学, 2002. 21(2): 139-143.
    [117] Wild S R , Jones KC , Organic Chemical Entering Agricultural Soils in Sewage Sludges Screening for Their Potential to Crop Plants and Livestock[J]. Sci. Total Environ, 1992 , 119: 85-119.
    [118]莫测辉,蔡全英,吴启堂,等.微生物方法降低城市污泥的重金属含量研究进展[J].应用与环境生物学报. 2001, 7(5);511-515.
    [119]朱南文.上海城市污水厂污泥农用处置方法研究[J].中国给水排水. 2002, 18(10): 16-19.
    [120]张学洪,陈志强,吕炳南,等.污泥农用的重金属安全性试验研究[J].中国给水排水. 2000 , 16(12): 18-21.
    [121]吴启堂,林毅,曾泽思.城市污泥作复合肥粘结剂的研究[J].中国给水排水, 1992, 8( 4) : 20- 22.
    [122]孟昭福,张增强,张一平,等.几种污泥中重金属生物有效性及其影响因素的研究[J].农业环境科学学报. 2004, 23(1): 115-118.
    [123]乔显亮,骆永明.我国部分城市污泥化学组成及其农用标准初探[J].土壤, 2001(4):205-209.
    [124]周立祥.中国城市污泥土地利用策略及其污泥重金属环境化学行为的机理研究[R].北京:中国科学院地理研究所博士后报告. 1998.
    [125]叶子瑞.国内外污泥处置和管理现状[J].环境卫生工程. . 2002, 10(2): 85-88.
    [126] Tessier A, Campbell P G C, Bisson M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metal [J]. Anal Chem, 1979, 51(7): 844-859.
    [127] Lizama H M, Suzuki L. Synergistic competitive inhibition of ferrous iron oxidation by Thiobacillus ferrooxidans by increasing concentration. of ferric iron and cells [J]. Appl. Environ Microbiol. 1989, 55(5): 2588-2591.
    [128] Gabriel Meruane, Tomás Vargas . Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2. 5–7. 0[J]. Hydrometallurgy, 2003, 71: 149-158.
    [129] Couillard, D. , chartier, M. and Mercier, G, Optimisation de la solubilization biologique des metaux lourds dans les boues aerobies en mode cuvee, Rapport Scientifique No. 348, INRS-Eau, Universite du Quebec, 1999, pp. 212.
    [130] J. W. C. Wong, L. Xiang and L. C. Chan. pH Requirement for the Bioleaching of Heavy Metals from Anaerobically Digested Wastewater Sludge[J]. Water, Air, & Soil Pollution. 2002, 138: 1-4, 25 -35.
    [131] Jain D. K, Tyafi R. D, Bacterial leaching of heavy metal from anaerobic sewage sludge by sulfur-oxidizing bacteria. Enzym. Microb Technol, 1992, 14: 376-383.
    [132] MODAK JMNATARAJAN K A. Biosorption of metals using nonliving biomass: A review [J]. Minemls and Metallurgical Processing, 1995, (12): 189-196.
    [133] Kyle MA, McClintock S A. The availability phosphorus in municipal wastewater sludge as a function of the phosphorus removal process and sludge treatment method [J]. Water Environment Research. 1995, 67: 282-289.
    [134]和苗苗,俞一统,华玉妹,等.生物淋滤法对污泥中Cu, Zn的去除效果及污泥养分损失研究[J].农业环境科学学报, 2006, 25(5): 1359-1364.
    [135]张再利,贾晓珊.两种硫杆菌对河涌底泥重金属的生物沥滤[J].中国环境科学, 2008, 28(7): 624-629.
    [136]周顺桂,胡佩,常明,等.生物淋滤法脱除城市生活垃圾焚烧飞灰中的重金属:底物浓度的影响[J].应用基础与工程科学学报, 2005, 13(2): 129-135.
    [137]罗奇祥,刘光荣,陶其骥,等.不同种植制度中作物施硫效应研究[J].安徽农业大学学报, 2000, zl(27): 100-105.
    [138] Gourdon R, Funtowicz N. Kinetic model of elemental sulfur oxidation by thiobacillus thiooxidans in bath slurry reactors [J]. Bioprocess Eng, 1998, 18: 241-249.
    [139] Konishi Y, Asai S, Yoshida N. Growth kinetics of thiobacillus thiooxidans on the surface of elemental sulfur[J]. Appl Environ Microbiol, 1995, 61: 3617-3622.
    [140] Sampson M I, Phillips C V, Blake R C. Influence of the attachment of adidophilic bacteria during the oxidation of mineral sulfides [J]. Min Eng, 2000, 13: 373-389.
    [141] Rohwerder T, Gehrke T, Kinzler K, et al. Bioleaching review part A: Progress in bioleaching fundamentals and mechanisms of bacterial metal sulfide oxidation [J]. Appl Microbiol Biotechnol, 2003, 63: 239-248.
    [142] Wolf Vishniac, Melvin Santer. The Thiobacilli [J]. Microbiology and Molecular Biology Reviews, 1957, 21 (3): 195-213.
    [143] Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacilus and Acidiphillium spp[J]. . Microbiology, 2003, 149: 1699-1709.
    [144] Kelly D P, Shergill J K, Lu W P , Wood A P . Oxidative metabolism of inorganic sulfur compounds by bacteria [J]. Antonie van Leeuwenhoek,1997,71: 95-107.
    [145] Tabita, R. , M. Silver, and D. G. Lundgren..The rhodanese enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans) [J]. Can. J. Biochem.1969,47(12): 1141-1145.
    [146] Chen S Y, Lin J G. Effect substrate concentration on bioleaching of metal-contaminated sediment[J]. Journal of Hazardous Materials. 2001, B82: 77-89.
    [147] R. E.布坎南, N. E吉本斯.伯杰细菌鉴定手册(第八版)[M].科学出版社. 1984 , 632.
    [148]王红武,李晓岩,赵庆祥.活性污泥的表面特性与其沉降脱水性能的关系[J].清华大学学报(自然科学版), 2004, 44(6): 766-769.
    [149] Hakanson Lars. An ecological risk index for aquatic pollution control. A sedimentological approach [J]. Water Research, 1980, 14: 975-1001.
    [150]刘文新,栾兆昆,汤鸿宵.乐安江沉积物中金属污染的潜在生态风险偏评价[J].生态学报, 1999, 19(2): 206-211.
    [151]李章平,陈玉成、扬学春,等.重庆市主城区土壤重金属的潜在生态危害评价[J].西南农业大学学报(自然科学版). 2006. 28(2): 227-230.
    [152]单丽丽,袁旭音,茅昌平,等.长江下游不同源沉积物中重金属特征及生态风险[J].环境科学. 2008. 29(9): 2399-2404.
    [153]范文宏,张博,陈静生,等.锦州湾沉积物中重金属污染的潜在生物毒性风险评价[J].环境科学学报, 2006, 26(6): 1000-1005.
    [154]李莲芳,曾希柏,李国学,等.北京市温榆河沉积物的重金属污染风险评价[J].环境科学学报. 2007, 27(2): 289-297.
    [155]任福民,周玉松,牛牧晨,等.污泥中重金属特征分析和生态风险评价[J].北京交通大学学报. 2007, 31(1): 102-105.
    [156]盛菊江,范德江,杨东方,等.长江口及其邻近海域沉积物重金属分布特征和环境质量评价[J].环境科学2008. 29(9): 2405-2412.
    [157]广西环境保护科研所.广西壮族自治区土壤环境背景值图集[M].成都地图出版社. 1992. 6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700