用户名: 密码: 验证码:
基于光纤光栅技术的沥青路面车辙预估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青混合料的永久变形(车辙)是柔性路面体系最重要的几种破坏类型之一。车辙直接影响沥青路面的使用性能和舒适性,对汽车行驶的安全性造成危害,而且车辙深度不断积累会造成路面的严重病害。因此合理地预估车辙在我国现阶段的路面设计和管理中是十分必要的。本文应用非线性粘弹流变模型理论,结合光纤光栅实测信息,研究在实际车辆荷载作用下的沥青路面永久变形的发展规律和车辙预估的方法,主要的工作包括以下几点:
     首先,从粘弹力学和模型理论的基本概念入手,介绍了粘弹流变学的一些基本元件和组合模型。通过对沥青混合料应变曲线变形特征的分析,明确了其蠕变破坏曲线中需包含的衰减蠕变、等速蠕变和加速蠕变三个典型阶段,并有针对性地利用可用于非线性分析的变截面粘壶元件,建立了适用于描述沥青混合料非线性变形特征的五参数粘弹模型。
     其次,针对提出的非线性粘弹模型,从试验分析出发进一步对其功能特性进行分析。通过室内重复加载蠕变试验获取用于沥青路面车辙分析和计算的相关参数,继而进行了模型变形曲线的特性分析和流动性能分析,对模型曲线的阶段蠕变规律和流动数指标分别进行了计算和验证,进一步对动态粘弹参数进行了拟合计算和分析,并提出了反映沥青混合料加速变形能力的加速指标η_N。
     再次,针对光纤光栅传感器路用过程中存在的传感器封装材料与沥青混合料难以协同变形、传感器埋设的成活率低和荷载的作用位置识别等问题,通过采用试验标定、工艺改进和模块设计等方法,使光纤光栅传感器能适用于道路工程施工和运营过程中的各种恶劣工况,并经过一系列室内试验和野外试验路埋设和监测的验证,说明光纤光栅传感器有着较为可靠的路用性能。
     最后,将非线性粘弹模型理论和光纤光栅实测技术进行了系统的融合,集成了光纤光栅传感器实测的应变、加载时间和温度等路面响应信息和待测沥青路面的结构、气候和交通量等环境信息建立了基于光纤光栅实测信息的沥青路面车辙预估方法和计算流程,并依托ALF加速加载试验进行了沥青路面车辙预估的试验修正和计算,预估的结果与ALF加速加载试验的结果基本一致,这验证了基于光纤光栅实测信息的沥青路面车辙预估方法的正确性。
     本文在沥青路面实测分析应用技术和光纤光栅传感器路用技术方面所做的一系列工作,将有助于推广光纤光栅实测技术在道路工程,特别是道路健康监测和分析系统中的应用,促进工程研究领域内研究方法和工具的更新,以对沥青路面的车辙研究理论和分析技术提供支持和帮助。
Permanent deformation (rutting) of HMA is one of the major structural failures of flexible pavements. Significant rutting may influence the functional performance and comfort of asphalt pavements, and endanger the security of running cars. The increased rutting also causes severe diseases of the pavement structure. So predicting the potential rutting level practically and reasonably is important in the design and management of the asphalt pavement. According to non-linear viscoelasticity rheology theory and monitoring informations from Fiber Bragg grating (FBG) sensors, a calculation method of rutting prediction in asphalt pavement using Fiber Bragg grating sensing technology is introduced in this paper. The content of paper mainly contain following aspects:
     Firstly, base on the general concept of viscoelastic mechanics and model theory, some basic elements and models in viscoelasticity rheology theory is presented. By the analysis of creep curve's character in asphalt mixture, make sure a typical deformation curve should consist of three stages, including decaying creep, stable creep and accelerated creep. Ulteriorly, a non-linear element which acutally is a cross-section viscous element is brought forward to build a 5-element viscoelasticity model, which is applicable for describing deformation's character of asphalt mixture.
     Secondly, in response to the non-linear 5-element viscoelastic model raised, a series of researches are carried out based on test results to further analysis of their functional properties. Through unxial repeated loading creep test, viscoelastic parameters which would be used for asphalt pavement rutting's analysis and calculation are obtained and analysed, and 5-element model's creep deformation character and flow performance are computed and validated, as a evaluate indexη_Nis brought forward to distinguish the differences of asphalt mixtures' deformation characteristic.
     Thirdly, aiming at some FBG sensors' practical problems which would met frequently in road engineering's application, inluding poor coordinated working, low livability and loading position, some methods including calibration test, process improvement and modular design are attempted to make FBG sensors suit for various diagusting condition in the process of road building and management. And a series of indoor test and field monitoring' results testify that the application of FBG sensor in road engineering has excellently reliable performance.
     Finally, non-linear viscoelasticity model theory and monitoring technology of FBG sensors are integrate into a systemic technique, which captures the effect parameters about peak strain, temperature, load time form FBG sensors and pavement strucure, weather, traffic volume from othor way. All these informations will contribute to a calculation and analysis method of rutting prediction in asphalt pavement. In the end, accelerated loading facility (ALF) is used to validate the effect of calculation results of this rutting prediction method. The final results show that it is completely feasible to predict and calculate the rutting deformation in asphalt pavement using Fiber Bragg grating sensing technology.
     In this paper, some research about monitoring and analyzing process of asphalt pavement and FBG application technology, will do good for promoting the development of FBG technology in road engineering, accelerate scientific research methods and tools updating in engineering fields, and supply sufficient data and technical supports for rutting theoretical investigation and analysis of asphalt pavement.
引文
1.黄菲,黄晓明.沥青路面车辙预估方法介绍.石油沥青.2005,19(6):1-6
    2.汤文,孙立军.基于遗传算法的沥青路面永久变形预估方法.武汉理工大学学报2008,30(12):48-51
    3.李强,佘小红,邱延峻.沥青混凝土路面永久变形预测研究综述.公路.2004,(5):3-7
    4.谭积青.沥青路面车辙病害处治方法研究.中外公路.2005,(4):53-55
    5.A.Hosfra,A.J.Klomp.Permanent Deformation of Flexible Pavements under Simulated Road Traffic Condition.Proc.Third International Conference on the Structural Design of Asphalt Pavements.London,1972:613-621
    6.J.Eisenmann,A.Hilmer.Influence of Wheel Load and Inflation Pressure on the Rutting Effect at Asphalt Pavement-Experimental and theoretical Investigations.Proc.Sixth International Conference on the Structural Design of Asphalt Pavements.Michigan,Ann Arbor,1987:392-403
    7.W.D.O.Paterson.Road deterioration and maintenance effects:models for planning and management.The Highway Design and Maintenance Standard Series,Published for The World Bank,The John Hopkins University Press,Baltimore,1987:300
    8.P.Krugle,J.Mounce,W.Bentenson.Asphalt pavement rutting in the western states.Special Study 26-Texas State Department of Highways and Public Transportation.Dallas,Texas,1990:56-60
    9.J.B.Sousa.Modeling Permanent Deformation of Asphalt-aggregate Mixture.AAPT.1994:97-101
    10.J.B.Sousa,S.L.Weissman,J.A.Deacon,et al.Permanent Deformation Response of Asphalt Aggregate Mixes(SHRP-A-415).Final Report:National Research Program Council.Washington DC.1994:68-73
    11.J.A.Epps,C.L.Monismith,S.B.Seeds,et al.WesTrack Performance-Interim Findings.Journal of the Association of Asphalt Paving Technologists.AAPT,Boston.1998,67:738-77
    12.M.W.Witczak,K.Kaloush.Simple Performance Test For Superpave Mix Design.Transportation Research Board NCHRP Report 465.Washington,D.C.,National Research Council,2002:105
    13.贾娟,张肖宁.沥青混合料车辙试验方法的比较分析.公路.2004,(11):199-202
    14.陈祥义,吴剑.国外沥青混合料抗车辙性能试验方法评价.中外公路.2007,27(1):141-146
    15.袁峻,贾璐,孙立军.沥青混合料抗永久变形特性试验方法评价.重庆交通大学学报.2008,27(4):584-589
    16.苏凯,孙立军.沥青混凝土永久变形预估方法研究.建筑材料学报.2007,10(5):510-515
    17.彭妙娟,许志鸿.沥青混凝土路面永久变形实验方法评述.同济大学学报.2007,34(6):761-765
    18.鲁正兰,孙立军.沥青路面车辙预估方法的研究.同济大学学报.2007,35(11):1476-1480
    19.苏凯,孙立军.高等级沥青混凝土路面车辙预估方法研究综述.公路.2006,(6)18-24
    20.黄晓明,张裕卿.沥青混合料高温性能试验方法.公路交通科技.2008,25(5):1-8
    21.沈金安.沥青及沥青混合料路用性能.人民交通出版社.2005:201-210
    22.关伟.沥青路面车辙形成机理及影响因素分析.山西交通科技.2006,(5):30-33
    23.朱云升.重载交通沥青路面车辙预估研究.同济大学工学博士学位论文.2007:6-8,106-145
    24.张浩然.沥青混合料车辙变形的计算机模拟.长安大学硕士学位论文.2003:5-6
    25.A.Wijeratne,M.Sargious.Prediction of Rutting in Virgin and Recycled Asphalt Mixtures for Pavements using Triaxial Tests.AAPT.1987,56:111-121
    26.A.R.Archilla,S.Medanat.Development of asphalt Pavement Rutting Model from Experimental Data.79th Annual TBR Meetting.Washington D.C.National Research Council,2000:425-445
    27.V.Jacob.Prediction of Rutting in Asphalt Pavements.Proceedings of the Association of Asphalt Paving Technologist.1983,52:489
    28.AASHTO.AASHTO 2002 Guide for Design of Pavement Structures.Washington:AASHTO.2004,3(3):46-50
    29.彭妙娟,许志鸿.沥青路面车辙预估方法.同济大学学报.2004,32(11):1457-1460
    30.W.J.Kenis.Predictive Design Procedure,VESYS User's Manual:an Interim Design Method for Flexible Pavement using the VESYS Structural Subsystem.Transportation Federal Highway Administration Office,Washington DC,1978:15-30
    31.徐世法.高等级道路沥青路面车辙的预估、控制和防治.同济大学工学博士学位论文.1992:10-20
    32.Nanni,C.C.Yang,K.Pan,et al.Fiber-optic Sensors for Concrete Strain/Stress Measurement.ACI materials Journal.1991,88(3):257-264
    33.A.T.Alavie,R.Maaskant,M.M.Ohn.Application and Characterization of Intracore Grating Sensors in CFRP Prestressed Concrete Girder.SPIE.1994,2191:103-110
    34.C.C.Changa,J.Gregg,V.Sandeep,A.Bryan.Development of Fiber Bragg Grating Based Soil Pressure Transducer for Measuring Pavement Response.SPIE.2000,3986:480-488
    35.C.Wang,Z.Zhou,J.P.Ou.Technique of Early Curing Monitoring of Concrete Structures based on Fiber Bragg Grating.Pacific Science Review.2003,5(1):128-132
    36.李宏男,李东升,赵柏东.光纤健康监测方法在土木工程中的研究与应用进展.地震工程与工程振动.2002,22(6):76-83
    37.C.Wang,Z.Zhou,Z.C.Zhang,J.P.Ou.Early-age Performance Monitoring of Cement-based aterialsm by using Optical FBG Sensors.Proceeding of the 2nd International Conference on Structural Health Monitoring and Intelligent Infrastructures.China,2005:513-520
    38.J.L.Li,Z.Zhou,J.P.Ou.Interface Transferring Mechanism and Error Modification of Bonding FBG Strain Sensor.Proceeding of Asian Pascifc Fundamental Problems of Optical and Microelectronics(APCOM 2004).Khabarovsk,Russia,2004:265-275
    39.J.L.Li,Z.Zhou,J.P.Ou.Interface Transferring Mechanism and Error Modification of FRP-OFBG Strain Sensors based on Findley's Power Low Creep Model.Proceeding of the 2nd International Conference on Structural Health Monitoring and Intelligent Infrastructures.China,2005:545-555
    40.吕辰刚.光纤光栅在健康结构检测中的应用.天津大学硕士学位论文.2004:1
    41.Li Ji-Long,Zhou Zhi,Ou Jin-Ping.Interface Transferring Mechanism and Error Modification of Embedded FBG Strain Sensor Based on Creep Part Ⅰ:Linear Viscoelasticity.SPIE.2005,5765:1061-1072
    42.J.L.Li,Z.Zhou,J.P.Ou.Interface Strain Transfer Mechanism and Error Modification for Adhered FBG Strain Sensor.SPIE.2005,5851:278-287
    43.余有龙.光纤光栅传感器及其网络化技术.黑龙江科学技术出版社.2003:113-116
    44.Inaudi.Monitoring of a Concrete Arch Bridge during Construction.Smart Structures and Materials.2002:4696-5017
    45.F.Ansari,L.Yuan.Mechanics of Bond and Interface Shear Transfer in Optical Fibre Sensors.J Eng Mech.1998,124(4):385-394
    46.牟琳.光纤光栅振动传感系统及其应用.山东大学工学硕士学位论文.2006:7-19
    47.Y.Fu,J.T.DeWolf.Effect of Differential Temperature on a Curved Post-Tensioned Concrete Bridge.Advances in Structural Engineering.2004,7(4):183-195
    48.G.Duck,G.Renaund.The Mechanical Load Transfer into a Distributed Optical Fibre Sensor due to a Linear Strain Gradient:Embedded and Surface Bonded Case.J Smart Mater Struc.1999,8:175-181
    49.G.meltz,W.W.Morey,H.Glenn.Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method.Opt.Lett.1989,14:823-825
    50.B.O.Guan,H.Y.Tam,S.Y.Liu.Temperature Independent Fiber Bragg Grating Tilt Sensor.IEEE Photonics Technology Letters.2004,16(1):224-226
    51.H.L.Ho,W.Jin,C.C.Chan,et al.A fiber Bragg Grating Sensor for Static and Dynamic Measurands.Sensors and Actuators.2002,96:21-24
    52.周智.土木工程结构光纤光栅智能传感元件及其监测系统.哈尔滨工业大学工学博士学位论文.2003:10-20
    53.K.O.Hill,Y.Fuji,D.C.Jonson,B.S.Kawasaki.Photosensitivity in Optical Fiber Wave Guides:Application to Reflection Filter Fabrication.App.Phys.lett.1978,32:647-649
    54.周智,欧进萍.土木工程健康监测用智能传感材料比较研究.建筑技术.2002,33(2):270-272
    55.J.M.Ko,Y.Q.Ni,T.H.T.Chan.Dynamic Monitoring of Structural Health in Cable-Supported Bridges.Proceedings of SPIE on Smart Systems for Bridges,Structures and Highways.1999,3671:161-172
    56.C.K.Lau,W.P.N.Mak,K.Y.Wong,et al.Structural Health Monitoring of Three Cable-Supported Bridges in Hong Kong.Pennsylvania Technomic Publishing Co,1999:450-460
    57.瞿伟廉,姜德生,袁润章.智能材料结构系统在土木工程中的应用.地震工程与工程振动.1999,19(3):42-46
    58.P.L.Fuhr,D.R.Huston,T.P.Ambrose.Embedded Sensors Results from the Winooski one Hydroelectric Dam.SPIE.1994,2191:446-456
    59.姜德生.智能材料与结构、器件.武汉工业大学出版社.2000:60-84
    60.S.Takashima,H.Asanuma,H.Niitsuma.A Water Flowmeter using Dual Fiber Bragg Grating Sensors and Cross-correlation Technique.Sensors and Actuators.2004,106:66-74
    61 T.Iwashima,A.Inoue.M.Shifgematsu.Temperature Compensation Technique for Fiber Bragg Grating using Liquid Crystalline Polymer Tubes.Electronics letters.1997,33(5):417-419
    62.C.Wang,Z.Zhou,Q.L.Hu,et al.Construction Control of Mass Concrete of Nanjing 3 rd Yangtze Bridge using FRP-packaged FBG Sensors.SPIE.2005,5855:1012-1015
    63.Y.Zhao,J.Yang,P.B.Jin,et al.Experimental Research on a Novel Fiber-optic Cantilever-type Inclinometer.Optics and Laser Technology.2005,37:555-559
    64.周智,田石柱,欧进萍.光纤传感器在土木工程中的应用.建筑结构.2002,32(5):65-68
    65.Z.Zhou,C.G.Lan,T.M.Lin,et al.A Novel Ice-pressure Sensor based on Dual FBGs.SPIE.2005,5765:1121-1128
    66.Z.Zhou,J.Liu,H.Li,et al.A New Kind of High Durable Traffic Weighbridge based on FBG Sensors.SPIE.2005,5855:735
    67.Z.Zhou,J.P.Ou.Techniques of Temperature Compensation for FBG Strain Sensors used in Long-term Structural Monitoring.SPIE.2005,5851:167-172
    68.Z.Zhou,Z.C.Zhang,J.P.Ou.Applications of FRP-OFBG Sensors on Bridge Cables.SPIE.2005,5765:668-677
    69.周智,欧进萍.FBG智能传感器及其在土木工程中的应用研究.功能材料增刊,2004:152-157
    70.W.W.Morey,G.Meltz,W.H.Glenn.Fibre Optic Bragg Grating Sensors.SPIE,1989,1169:98-107
    71 Y.J.Rao.Recent Progress in Applications of in Fiber Bragg Grating Sensors,Optics and Lasers in Engineering.1999:297-324
    72.C.I.Merzbacher,A.D.Kersey,E.J.Friebele.Fiber Optic Sensors in Concrete Structures:a review,Optical Fiber Sensor Technology.1998,3:21-33
    73.R.C.Tennyson,T.Coroy,G.Duck,et al.Fiber Optic Sensors in Civil Engineering Structures.J.Civ.Eng.2000:880-889
    74.B.Filippo,R.Andrea,G Nestore,et al.Discontinuous Brillouin Strain Monitoring of Small Concrete Bridges:Comparison between Near-to-surface and Smart FRP Fiberinstallation Techniques.Proc.SPIE.2005,5765:612-623
    75.F.Bastianini,F.Matta,N.Galati,et al.A Brillouin Smart FRP Material and a Strain Data Post Processing Software for Structural Health Monitoring through Laboratory Testing and Field Application on a Highway Bridge.Proceedings of 12th SPIE Int.Symp.on Smart Structures & Materials.2005,5765:6-10
    76.张启伟.桥梁结构模型修正与损伤识别.同济大学工学博士学位论文.1999:9-15
    77.P.M.Nellen,P.Anderegg,R.B.Bronnimann,et al.Application of Fiber Optical and Resistance Strain Gauges for Long-term Surveillance of Civil Engineering Structures.SPIE.1997,3043:77-86
    78.P.L.Fuhr,S.Spammer.Fiber Optic Sensors in the Waterbury Bridge.SPIE.1998,3489:124-129
    79.J.Sein,E.Udd,W.Schulz.Health Monitoring of an Oregon Historical Bridge with Fiber Grating Strain Sensors.SPIE.1999,3671:128-134
    80.M.S.Chueng,G.S.Tadros,T.G.Brown,et al.Field Monitoring and Research on Performance of the Confederation Bridge.Canadian Journal of Civil Engineering,1997,24(6):951-962
    81 P.M.Nellen,R.Bronnimann,A.Fank.Structurally Embedded Fiber Bragg Gratings:Civil Engineering Applications.SPIE.1999:3860:44-54
    82.周智.系列光纤传感制品研制与开发及其工程应用.哈尔滨工业大学博士后研究工作报告.2006:2-3
    83.柳春图.海洋石油平台结构的安全性监测与评估技术的若干进展.中国力学学会现代力学与科技进步学术大会.北京.1997:397-400
    84.K.T.Lau,C.C.Chan,L.M.Zhou,et al.Srain Monitoring in Composite-Strengthened Concrete Structures Using Optical Fiber Sensors.Composites:Part B.2001,32:33-45
    85.K.T.Lau,L.B.Yuan,L.M.Zhou,et al.Strain Monitoring in FRP Laminates and Concrete Beams Using FBG Sensors.Composite Structures.2001,51:9-20
    86.蔡德所.大坝裂缝光纤监测技术研究及坝基稳定性分析.原哈尔滨建筑大学博士后研究报告.1998,10:14-31
    87.欧进萍,肖仪清,黄虎杰等.海洋平台结构实时安全监测系统.海洋工程.2001,19(2):1-6
    88.李宏伟,肖仪清,黄虎杰等.基于Internet网络的海洋平台结构远程实时安全监测.中国海洋油气(工程).2001,19(2):75-81
    89.陈少幸,张肖宁.沥青混凝土路面光栅应变传感器的试验研究.传感技术学报.2006,19(2):396-398
    90.Q.L.Hu,Z.Zhou,Li Hui,et al.Health Monitor on Asphalt Pavement of Highway Based on FBG Technique.Proc.of SPIE.2007,6595(35):1-6
    91.F.C.Chen,Y.Q.Tan,H.Liu,et al.Analysis of Strain in Asphalt Pavement using FRP-OFBG Sensors.ASCE:Proceedings of the Seventh International Conference of Chinese Transportation Professionals(ICCTP).2008:877-885
    92.陈凤晨,谭忆秋,柳浩等.基于光纤光栅传感器沥青路面结构应变场分析.2nd International Forum for Development and Industrialization of Optical Fiber Sensor (IFDI-OFS2006).2006.Harbin.China:11-17
    93.柳浩,谭忆秋,陈凤晨等.基于光纤光栅技术沥青路面粘弹特性的研究.2nd International Forum for Development and Industrialization of Optical Fiber Sensor (IFDI-OFS2006).2006,Harbin,China:17-25
    94.孙钧.岩土材料流变及其工程应用.中国建筑工业出版社.1999:15-37
    95.张肖宁.沥青与沥青混合料的粘弹力学原理与应用.人民交通出版社.2006:35-41
    96.李静.沥青混合料路用性能预测模型的研究.长安大学工学博士学位论文.2004:43-46
    97.封基良.纤维沥青混合料增强机理及其性能研究.东南大学工学博士学位论文.2006:2-5
    98.郑健龙,田小革,应荣华.沥青混合料热粘弹性本构模型的实验研究.长沙理工大学学报(自然科学版).2004,1(1):1-7
    99.万军.沥青混凝土路面车辙发展规律探讨.东南大学硕士学位论文.2006:47-51
    100.邓荣贵,周德培,张悼元等.一种新的岩石流变模型.岩石力学与工程学报. 2001,20(6):780-784
    101.陈沅江,潘长良,曹平等.一种软岩流变模型.中南工业大学学报.2003,34(1):16-20
    102.陈沅江,潘长良,曹平等.软岩流变的一种新力学模型.岩土力学.2003,24(2):209-214
    103.王小平.对改进西原模型的再认识.河海大学学报.2007,35(6):651-654
    104.聂忆华,张起森.长寿命沥青路面沥青层力学分析及其层位划分研究.公路交通科技.2008,25(5):13-17
    105.刘国华.河南省高速公路车辙产生层位分析.河南科学.2008,26(6):700-702
    106.王辉.重载高温区沥青路面结构与材料研究.中南大学工学博士学位论文.2008:29-36
    107.谭忆秋.沥青与沥青混合料.哈尔滨:哈尔滨工业大学出版社.2007:41-49
    108.李立寒.道路建筑材料.上海:同济大学出版社.1999:37-61
    109.张久鹏.基于粘弹性损伤理论的沥青路面车辙研究.东南大学工学博士学位论文.2008:5-6
    110.H.L.V.Quintus,T.A.Scherocman,C.S.Hughes,et al.Asphalt Aggregate Mixture Analysis System.Transportation Research Board NCHRP Report 388.National Research Council,Washington,D.C.,2000:35-53,135-179
    111.K.E.Kaliush.Simple performance test for permanent deformation of asphalt mixtures.Arizona State University.Arizona State,USA,2001:21-39
    112.G R.Chehab,E.O.Quinn,Y.R.Kim.Specimen geometry study for direct tension test based on mechanical tests and air void variation in SGC-compacted asphalt concrete specimens.Annual Meeting of the Transportati on Research Board,2000:125-132
    113.曹丽萍.沥青路面永久变形叠加方法研究.同济大学工学博士学位论文.2007:21-37
    114.黄仰贤.路面分析与设计.北京:人民交通出版社.1998:32-57
    115.王旭东,沙爱民,许志鸿.沥青路面材料动力特性与动态参数.北京:人民交通出版社.2002:27-43
    116.R.D.Barksdale.Laboratory Evaluation of Rutting in Base Course Materials.Proceedings,3rd International Conference on Asphalt Pavements.University of Michigan,Ann Arbor,USA,1972:161-174
    117.S.F.Brown,K.E.Cooper.The Mechanical Properties of Bituminous Materials for Road Bases and Base Courses.Proceedings of the Association of Asphalt Paving Technologists.1984:415-439
    118.M.G.Bouldin,R.Dongre,J.D'Angelo.Proposed Refinement of Superpave High-temperature Specification Parameter for Performance Graded Binders. Transportation Research Record:Asphalt Binders.2001:40-47
    119.M.W.Witczak,K.Kaloush,T.Pellinen,et al.Simple Performance Test for Superpave Mix Design.NCHRP Report 465,Transportation Research Board,National Research Council,National Academy Press.Washington DC,2002:465-471
    120.C.L.Monismith,N.Ogawa,C.R.Freeme.Permanent Deformation Characteristics of Subgrade Soils due to Repeated Loading.TRR.1975,537:1-5
    121.朱云升,郭忠印,王景.高温重载条件下沥青混合料的蠕变试验研究.建筑材料学报.2008,11(5):545-549
    122.张登良.沥青路面.北京:人民交通出版社.1999:35-55
    123.G Meltz.Overview of Fiber Grating Based Sensors.SPIE.2000,2838:2-22
    124.J.P.Ou,Z.Zhou.Techniques of Optical Fiber Bragg Grating Smart Sensors and Intelligent Monitoring Systems of Infrastructures.The First International Workshop on Advanced Smart Materials and Smart Structures Technology.Havaii,USA,2003:1-9
    125.J.P.Ou,Z.Zhou,B.Wang.Smart FRP-OFBG Bars and their Application in Reinforced Concrete Beams.Chinese High Technology Letters.2005(4):22-28
    126.王赫喆.工程化光纤光栅传感器及其在路面结构中的测试研究.哈尔滨工业大学硕士学位论文.2006:10-22
    127.谭忆秋,孙立军,陶志政等.重复荷载作用下沥青低温粘弹特性研究.同济大学学报.2002,(6):690-694
    128.周智,李冀龙,欧进萍.埋入式光纤光栅界面应变传递机理与误差修正.哈尔滨工业大学学报.2006,38(1):49-55
    129.周智,武湛君,欧进萍等.混凝上结构的光纤光栅智能监测技术.功能材料.2003,34(3):344-348
    130.赖小华,蒋智勇,刘小会.光纤Bragg光栅的传感原理及实验分析.井冈山学院学报.2006,12:20-23
    131.钟双英,刘崧,王银燕.光纤布拉格光栅的应变传感实验的研究.大学物理.2006,7:33-36.
    132.吕辰刚,武星,葛春风等.关于光纤光栅应力传感及解调的研究.传感技术学报.2004,17(1):146-149
    133.郭松科,杨振坤,童诗存等.光纤布拉格光栅传感特性及实验研究.中国测试技术.2006,2:76-78
    134.孙汝蛟,孙利民,弓俊青.土木工程用光纤布拉格光栅(FBG)传感器的性能评价研究.结构工程师.2005,21(5):80-88
    135.徐世法,朱照宏.高等级道路沥青路面车辙的预估方法.土木工程学报. 1993,26(6):28-36
    136.张登良,李俊.高等级道路沥青路面车辙研究.中国公路学报.1995,8(1):23-29
    137.孟书涛.半刚性基层沥青路面性能的加速加载试验研究.公路交通科技.1997,1:61-66
    138.P.E.Sebaaly,D.A.Anderson,N.Tabatabaee.Performance of Full-Scale Pavements under Accelerated Loading.Journal of Transportation Engineering,1989,115(4):370-388
    139.B.S.Tarunjit.Accelerated Load Testing of Full Scale Asphalt and Concrete Pavements Constructed of CCPS.Geological Society of America.2007,36(9):175-181
    140.R.A.Embacher,M.B.Snyder,T.D.ODDEN.Using the Minnesota Accelerated Loading Facility to Test Retrofit Dowel Load Transfer Systems.Transportation Research Record.2001,1796(158):134-141
    141.F.L.Roberts,L.N.Mohammad,L.Djakfar,et al.Design,Construction and Analysis of Pavements using Accelerated Loading Facility.1997,1590(122):73-79
    142.J.P.Mills,I.Newton,G.C.Pierson.(2001).Pavement Deformation Monitoring in A Rolling Load Facility.Photogrammetric Record.2001,17(97):7-24
    143.B.D.Steven,J.J.Pont,B.D.Pidwerbesky,et al.Accelerated Dynamic Loading of Flexible Pavements at CAPTIF.1999 International Conference on Accelerated Pavement Testing.1999:2-13.
    144.L.R.Teiborlang,M.Mazumdar,B.B.Pandey.Structural Behaviour of Cast in Situ Concrete Block Pavement.Journal of Transportation Engineering.2005,131(9):662-670
    145.朱孔源.车辆-柔性路面力学相互作用系统的研究.中国农业大学工学博士学位论文.2001:75-78
    146.陈少幸,张肖宁,徐全亮等.柔性基层沥青路面车辙预测模型试验分析.华南理工大学学报.2006,34(9):62-65
    147.孟书涛.沥青路面合理结构的研究.东南大学工学博士学位论文.2005:94-106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700