用户名: 密码: 验证码:
低分子量有机酸对La、Gd和Y在番茄和美洲商陆体内贮存和运输的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,有关低分子量有机酸在植物忍耐或超积累金属中作用的研究,已取得了许多进展。人们普遍认为低分子量有机酸不仅对重金属元素在植物体内的解毒有作用,而且参与重金属元素的吸收、运输、贮存等过程,这是植物忍耐或超积累重金属的重要生物学机制。虽然目前对于植物耐受重金属的机制进行了较为深入的研究,可是关于植物对稀土耐性机理方面的研究还相当薄弱。据此,本研究设置了一系列的培养实验,通过外源加入稀土元素及外源加入有机酸的实验,旨在深入研究低分子量有机酸在植物耐受稀土元素方面的相关机理,为稀土元素污染的植物修复提供理论依据。主要研究内容如下:(1)稀土元素处理下番茄体内低分子量有机酸含量的变化;(2)外源有机酸处理对稀土元素在番茄体内贮存及分异的影响,对番茄体内有机酸含量变化的影响及相关的机理;(3)稀土元素处理下美洲商陆体内低分子量有机酸含量的变化;(4)外源有机酸处理对稀土元素在美洲商陆体内贮存及分异的影响,对商陆体内有机酸含量变化的影响及相关机理的研究。主要结果如下:
     1.单一稀土元素处理条件下,番茄和美洲商陆各组织中相关有机酸的含量都随外加稀土元素浓度的增加而增加,并且商陆各组织中的苹果酸、柠檬酸和琥珀酸含量都比番茄相应有机酸含量显著增加,商陆体内相对较高的有机酸含量水平为超量累积稀土元素提供可能性。通过相关性分析发现,三羧酸循环(TCA循环)中主要的三种有机酸苹果酸、柠檬酸和琥珀酸对稀土元素在番茄和美洲商陆体内贮存和运输过程起重要作用。
     2.混合稀土元素处理条件下,稀土元素在番茄和美洲商陆体内都发生显著的分异:根系中富集以Gd为代表的中稀土元素,茎中富集以La为代表的轻稀土元素,叶中则重稀土元素Y富集特征显著。
     3.通过外源有机酸处理对植物体内稀土元素的贮存、运输以及分异所产生的影响发现,番茄和美洲商陆根系对稀土元素的吸收以水合离子状态为主,外源加入有机酸能与稀土元素形成螯合物,阻碍稀土离子向植物根系的运输,显著降低了稀土元素在植物根系的贮存,但却更有效地将稀土元素转移至商陆地上部尤其是叶片,这在一定程度上显示了美洲商陆超积累植物的特性。
     4.通过研究外源有机酸处理对番茄和美洲商陆体内有机酸含量的影响分析稀土元素在植物体内分异的机理如下:根系细胞壁中的P043-更容易而且主要与中稀土元素Gd进行选择性的沉淀作用,在根系中的琥珀酸则对稀土元素在细胞内的贮存有作用;在稀土元素向地上部运输的过程中,低分子量有机酸起着不可忽视的作用,木质部导管中苹果酸或柠檬酸优先与重稀土元素Y结合,导致重稀土元素Y随苹果酸或柠檬酸优先向上转移至叶片中,并与琥珀酸结合储存在叶片细胞中,使得叶片中相对富集重稀土元素,而轻稀土元素则更多的被固定在茎部。
     从研究的结果来看,无论是在普通植物番茄还是超积累植物美洲商陆体内,低分子量有机酸对稀土元素的贮存、运输及分异都有显著的作用。
Recently, many advances had been obtained in researches on the effects of low molecular weight organic acids (LMWOAs) on heavy metals tolerance or hyperaccumulation in plants. It is well known that LMWOAs not only played important role in metals detoxification, but also participated in metals uptake, transportation and accumulation in plants which were important biological mechanisms of plant tolerance or hyperaccumulation of heavy metals. Little research had focused on the mechanisms of plants tolerance to rare earth elements (REEs), although many further studies were about heavy metals. To further study the mechanisms of LMWOAs on plants tolerance to REEs and to provide theoretic evidences on the phytoremediation of REEs contamination. We had designed a series of cultivated experiments, and mainly focused on:(1), Roles of REEs on organic acids concentrations in tomato plants (Lycopersicon esculentum);(2), Effects and relative mechanisms of extraneous LMWOAs on REEs accumulation and fractions and LMWOAs concentrations in tomato plants;(3), Roles of REEs on LMWOAs concentrations in phytolacca plants (Phytolacca americana L.);(4), Effects and relative mechanisms of extraneous LMWOAs on REEs accumulation and fractions and LMWOAs concentrations in phytolacca plants. The main results were shown as below:
     1. Concentrations of correlative LMWOAs in tomato and phytolacca plants tissues increased when exposed in rare earth elements solutions. Concentrations of malic, citric and succinic acids in phytolacca plants increased obviously than in tomato plants when plants were exposed at the same REE level. Higher concentrations of organic acids in phytolacca plants provided the possibility for REEs hyperaccumulation. Pearson correlation coefficients were calculated to determine the relationships between REE concentrations and LMWOAs concentrations in tomato and phytolacca plants tissues, separately. The results indicated that malic, citric and succinic acids played important roles in REEs accumulation and transportation in plants.
     2. The fractionations of REEs in plants were investigated using solution culture of tomato and phytolacca plants with extraneous mixed REEs. The results showed that significant fractionations of REEs exist in plants organs. Gd (representative of middle REEs) enrichment was observed in roots, La (representative of light REEs) enrichment and Y (representative of heavy REEs) enrichment were found in stems and leaves, respectively.
     3. The effects of extraneous LMWOAs on accumulation, transportation and fractionation of the REEs were studied. The results indicated that extraneous LMWOAs could reduce the REEs accumulations in tomato and phytolacca roots under hydroponic condition. The REEs should be absorbed by plant roots mostly in the form of free ions. Extraneous LMWOAs could form steady complexes with REE ions, straightly holding back the diffusion of REE ions to plants roots, and finally lead to the obvious reduction of REE ions uptake in roots. While compared to tomato plants, extraneous LMWOAs additions promoted REEs transportation to aerial parts, especially accumulation in leaves in phytolacca plants more effectively. The results above revealed some hyperaccumulation feature of phytolacca plants.
     4. Through the influences of extraneous LMWOAs on the concentrations of LMWOAs in tomato and phytolacca plants, we concluded the mechanisms of REEs fractionations in plants:The fractionation pattern in plant root system was caused by cell walls phosphate precipitation. Under the neutral pH conditions, the precipitation process may take place easily between Gd (representative of middle REEs) ions and phosphates, also succinic acid had an important role in REE accumulation in roots. The transfer of REE ions to the aerial parts was mainly through the xylem vessels. Combination with ligands was an ideal way for REEs to transfer upwards. There was a large amount of LMWOAs in xylem vessels, and the complexation with REE ions was the main transportation way for REE ions in the xylems vessels. Based on our research, malic acid or citric acid can combine with Y (representative of heavy REEs) ions preferentially in xylem vessels of tomato and phytolacca plants and tranferred Y to the aerial parts of plants more conveniently. When Y ions were unloaded from the xylem to the leaf cells, succinic acid contributed to Y ions accumulation in leaves. While in these processes, more La (representative of light REEs) ions can be easily fixed in transportation route stems.
     The researches mentioned above had showed that LMWOAs played important roles in REEs accumulation, transportation and fractionation not only in nonhyperaccumulator tomato plants but also in hyperaccumulator phytolacca plants.
引文
Adriano D C, Wenzel W W, Blum W E H. Role of phytoremediation in the establishment of a global soil remediation network. In:Proceedings international seminar on use plants for environmental remediation. Kosaikaikan, Tokyo, Japan,1997,3-25.
    Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery,1989,1 (2):81-126
    Bell P F, Chaney R L, Angle J S. Free metal activity and total metal concentrations as indices of
    Blaylock M J, Salt D E, Dushenkov S, et al. Enhanced accumulation of Pb in Indian mustard by soil applied chelating agents. Environ. Sci. Technol.,1997,31:860-865.
    Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferoud rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor.,1977,7:49-57.
    Chapman P G. Ecological risk assessment (ERA) and hormesis. Sci. Total Environ.,2002,288:131-140.
    Ding S M, Liang T, Yan J C, et al. Fractionations of rare earth elements (REEs) in plants and their conceptive model. Sci. in China (Series C),2007,50 (1):47-55.
    Ding S M, Liang T, Zhang C S, et al. Accumulation and fractionation of rare earth elements (REEs) in wheat: controlled by phosphate precipitation, cell wall absorption and solution complexation. J. Exp. Bot., 2005a,56 (420):2765-2775.
    Ding S M, Liang T, Zhang C S, et al. Fractionation mechanisms of rare earth elements (REEs) in hydroponic wheat:an application for metal accumulation by plants. Environ. Sci. Technol.,2006,40 (8):2686-2691.
    Ding S M, Liang T, Zhang C S, et al. Role of ligands in accumulation and fractionation of rare earth elements in plants:Examples of phosphate and citrate. Biol. Trace Elem. Res.,2005b,107 (1):73-88.
    Ding S M. Fractionation of rare earth elements in wheat and its micro-mechanisms. Doctor Dissertation of Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China,2005c.
    Ebbs S D, Kochian L V. Phytoextraction of zinc by oat (Avena sativa), bareley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ. Sci. Technol.,1998,32 (6):802-806.
    Ebbs S D, Lasat M M, Brady D J, et al. Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual.,1997,26:1424-1430.
    Fu F F, Akagi T, Shinotsuka K. Distribution pattern of rare earth elements in fern-implication for intake of fresh silicate particles by plants. Biol. Trace Elem. Res.,1998,64 (1-3):13-26.
    Fu F F, Akagi T, Yabuki S, et al. The variation of REE (rare earth elements) patterns in soil-grown plants:a new proxy for the source of rare earth elements and silicon in plants. Plant Soil,2001,235 (1):53-64.
    Garbisu C, Alkorta I. Phytoextraction:a cost-effective plant-based technology for the removal of metals from the environment. Bioresour. Technol.,2001,77:229-236.
    Greger M. Metal availability and bioconcentration in plants. In:Prasad MVN and Hagemeyer J (eds), Heavy Metal Stress in Plants from Molecules to Ecosystems. Berlin:Springer,1999.
    Grill E, Winnacker E L, Zenk M H. PHytochelatins:a class of heavy metal binding peptides from plant are functionally anaologous to metallothioneins. Proc. Natl. Acad. Sci.,1987,84:439-443.
    Gu Z M, Wang X R, Gu X Y, et al. Effects of fulvic acid on the bioavailability of rare earth elements and GOT enzyme activity in wheat (Triticum aestivum). Chemosphere,2001,44:545-551.
    Han F, Shan X Q, Zhang J, et al. Organic acids promote the uptake of lanthanum by barley roots. New Phytol.,2005,165:481-492.
    Henderson P. Rare earth element geochemistry. In:Fyfe W S (Ed.), Developments in geochemistry 2. Amsterdam:Elsevier,1984.6.
    Hong F S, Wei Z G, Zhao G W, et al. Extended X-ray absorption fine-structure study of the bound form of lanthane in chlorophyll-a from Dicranopteris dichotoma. Biol. Trace Elem. Res.,2001,82:239-245.
    Huang J W, Chen J J, Berti W R, et al. Phytoremediation of lead contaminated soils:role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol.,1997,31:800-805.
    Huang J W, Cunningham S D. Lead phytoextraction:species variation in lead uptake and translocation. New Phytol.,1996,134:75-84.
    Ichihashi H, Morita H, Tatsukawa R. Rare earth elements (REEs) in naturally grown plants in relation to their variation in soils. Environ. Pollut.,1992,76:157-162.
    Jiang X J, Luo Y M, Zhao Q G, et al. Soil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemosphere,2003,50:813-818.
    Jones D L, Darrah P R. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil,1994,166:247-257.
    Jones D L, Dennis P G, Owen A G,et al. Organic acid behavior in soils-misconceptions and knowledge gaps. Plant Soil,2003,248:31-41.
    Jones D L. Organic acids in the rhizosphere-a critical review. Plant Soil,1998,205:25-44.
    Kerkeb, L, Kramer U. The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea, Plant Physiol.,2003,131:716-724.
    Koyama M, Shirakawa M, Takada J, et al. Trace elements in land plant:concentration ranges and accumulators of rare earths, Ba, Ra, Mn, Fe, Co and heavy halogens. J. Radioanal. Nucl. Chem.,1987, 112:489-506.
    Kramer U, Cotter-Howells J D, Charnock J M et al. Free histidine as a metal chelator in plants that accumulate nickel. Nature,1996,379:635-638.
    Kramer U, Pickering I J, Prince R C, et al. Subcellular localization and speciation of nickel in hyperaccumulator and nonaccumulator Thlaspi species. Plant Physiol.,2000,122:1343-1353.
    Kumar B P, Shivakumar K. Alterations in collagen metabolism and increased fibroproliferation in the heart in cerium-treated rats implications for the pathogenesis of endomyocardial fibrosis. Biol. Trace Elem. Res.,1998,63:73-79.
    Lee J, Reeves R D, Brook s R R, et al. Isolation and identification of a citrate complex of nickel from nickel accumulating plants. Phytochemistry,1977,16:1503-1505.
    Lee J, Reeves R D, Brook s R R, et al. The relation between nickel and citric acid in some nickel-accumulating plants. Phytochemistry,1978,17:1033-1035.
    Li S Q, Hu B, Jiang Z C, et al. Selective separation of La3+ and lanthanum organic complexes with nanometer-sized titanium dioxide and their detection by using fluorination-assisted electrothermal vaporization ICP-AES with In-situ matrix removal. Environ. Sci. Technol.,2004,38 (7):2248-2251.
    Liang P, Hu B, Jiang Z C, et al. Nanometer-size titanium dioxide micro-column on-line preconcentration of La, Y, Yb, Eu, Dy and their determination by inductively coupled plasma atomic emission spectrometry. J. Anal At. Spectrum.,2001,16 (8):868-874.
    Liang T, Ding S M, Zhang C S, et al. Fractionation of rare earth elements in plants I. Fractionation patterns and their forming mechanisms in different organs of Triticum aestivum. Rare Earth,2005,23 (2): 224-229.
    Ma J F, Hiradate S. Form of aluminum for uptake and translation in buckwheat (Fagopyrum esculentum Moench). Planta,2000,211:355-360.
    Marschner H. Mineral nutrition of higher plants. London:Academic Press,1995:65-69. micronutrient availability to barley [Hordeum vulgare (L.)'Klages']. Plant Soil,1991,130:51-62.
    Ozaki T, Ambe S, Enomoto S, et al. Multitracer study on the uptake mechanism of yttrium and rare earth elements by autumn fern. Radiochim. Acta.,2002,90 (5):303-307.
    Ozaki T, Enomoto S, Minai Y, et al. A survey of trace elements in pteridophytes. Biol. Trace Elem. Res., 2000a,74 (3):259-273.
    Ozaki T, Enomoto S, Minai Y, et al. Beneficial effect of rare earth elements on the growth of Dryopteris erythrosora. J. Plant Physiol.,2000b,156 (3):330-334.
    Ozaki T, Enomoto S, Minai Y, et al. Determination of lanthanides and other trace elements in ferns by instrumental neutron activation analysis. J. Radioanal. Nucl. Chem.,1997,217 (1):117-124.
    Porru S, Placidi D, Quarta C, et al. The potencial role of rare earths in the pathogenesis of interstitial lung disease:a case report of movie projectionist as investigated by neutron activation analysis. J. Trace Elem. Med. Biol.,2001,14 (4):232-236.
    Raskin I, Smith R D, Salt D E. Phytoremediation of metals:using plants to remove pollutants from the environment. Curr. Opin. Biotechnol.,1997,8:221-226.
    Robinson W O. The occurrence of rare earths in plants and soils. Soil Sci.,1943,56:1-3.
    Salt D E, Prince R C, Baker A J, et al. Zinc ligands in the metal hyperaccumulator thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ. Sci. Technol.,1999,33 (5):713-717.
    Salt D E, Smith R D, Raskin I. Phytoremediation. Annu. Rev.Plant Physiol. Plant Mol. Biol.,1998,49: 643-668.
    Shan X Q, Lian J, Wen B. Effect of organic acids on adsorption and desorption of rare earth elements. Chemosphere,2002,47:701-710.
    Shan X Q, Wang H O, Zhang S Z, et al. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma., Plant Sci.,2003,165:1343-1353.
    Sun H, Wang X R, Wang Q, et al. The effects of chemical species on bioaccumulation of rare earth elements in wheat grown in nutrient solution. Chemosphere,1997,35:1699-1707.
    Sun J X, Zhao H, Wang Y Q. Study on the concentrations of trace rare earth elements and their distribution in wheat and rice samples by RNAA. J. Radioanal. Nucl. Chem.,1994,179:377-383.
    Thomas W A. Accumulation of rare earths and circulation of cerium by mockernut hickory trees. Can. J. Bot., 1975,53:1159-1165.
    Wang H O, Shan X Q, Zhang S Z, et al. Preliminary characterization of a light rare earth element binding peptide of a natural perennial fern Dicranopteris dichotoma. Anal. Bioanal. Chem.,2003a,376:49-52.
    Wang X P, Shan X Q, Zhang S Z, et al. Distribution of rare earth elements among chloroplast components of hyperaccumulator dicranopteris dichotoma. Anal. Bioanal. Chem.,2003b,376:913-917.
    Wang Y Q, Jiang P, Guo FQ, et al. REE bound DNA in natural plant. Sci. in China (Series B),1999a,42 (4): 357-362.
    Wang Y Q, Sun J X, Chen H M, et al. Determination of the contents and distribution characteristics of REE in natural plants by NAA. J. Radioanal. Nucl. Chem.,1997,219(1):99-103.
    Wang Y Q, Sun J X, Chen H M, et al. REE bound polysaccharides in leaves of Dicranopteris dichotoma by MAA. Sci. in China (Series B),1998,41(3):266-271.
    Wang Y Q, Sun J X, Guo F Q, et al. Study on binding of REEs with water-soluble polysaccharides in fern. Biol. Trace Elem. Res.,1999b,71-72:103-108.
    Wang Z W, Zhang S Z, Shan X Q. Effects of low-molecular-weight organic acids on uptake of lanthanum by wheat roots. Plant Soil,2004,261:163-170.
    Wei Z G, Hong F S, Yin M, et al. Off-line separation and determination of rare earth elements associated with chloroplast pigments of hyperaccumulator Dicranopteris dichotoma by normal-phase liquid chromatography and ICP-MS. Anal. Bioanal. Chem.,2004,380:677-682.
    Wei Z G, Hong F S, Yin M, et al. Structural differences between light and heavy rare earth element binding chlorophylls in naturally grown fern Dicranopteris linearis. Biol. Trace Elem. Res.,2005a,106: 279-297.
    Wei Z G, Hong F S, Yin M, et al. Subcellular and molecular localization of rare earth elements (REEs) and structural characterization of yttrium bound chlorophyll a in naturally grown fern Dicranopteris dichotoma. Microchem. J.,2005b,80:1-8.
    Wei Z G, Wong J W C, Chen D Y. Speciation of heavy metal binding non-protein thiols (NPTs) in Agropyron elongatum by size-exclusion HPLC-ICP-MS. Microchem. J.,2003,74:207-213.
    Wei Z G, Wong J W C, Zhao H Y, et al. Separation and determination of heavy metals associated with low molecular weight chelators in xylem saps of Indian mustard (Brassica juncea) by size exclusion chromatography and atomic absorption spectrometry. Biol. Trace Elem. Res.,2007,118:146-158.
    Wei Z G, Yin M, Zhang X, et al. Rare earth elements in naturally grown fern dicranopteris linearis in relation to their variation in soils in south-Jiangxi region (southern China). Environ. Pollut.,2001,114:345-355.
    Yang L H, Wang X R, Sun H, et al. The effect of EDTA on rare earth elements bioavailability in soil ecosystem. Chemosphere,1999,38:2825-2833.
    Zhang H, Feng J, Zhu W F, et al. Chronic toxicity of rare earth elements on human beings implications of blood biochemical indices in REE-high regions, South Jiangxi. Biol. Trace Elem. Res.,2000,73:1-17.
    Zhu W F, Xu S Q, Zhang H, et al. Investigation on the intelligence quotient of children in the areas with high REE background (I)-REE bioeffects in the REE-high areas of southern Jiangxi province. Chin. Sci. Bull., 1996,41 (23):1977-1981.
    陈祖义.稀土的hormesis效应及其农用对农业生态环境的潜在影响.农村生态环境,2004,20(4):1-5.
    丁士明,梁涛,闫军才,等.有机配体对稀土元素在小麦体内积累和分异的影响.生态学报,2005,25(11):2888-2894.
    郭繁清,王玉琦,孙景信,等.天然植物铁芒萁叶中稀土结合蛋白的初步研究.核化学与放射化学,1996,18(3):133-139.
    洪法水,魏正贵,赵贵文.稀土在天然植物铁芒萁体内结合形式的光谱学研究.高等学校化学学报,2001,22(11):1790-1794.
    洪法水,魏正贵,陶冶,等.天然植物铁芒萁内稀土元素的分布及叶绿素镧结构的表征.植物学报,1999,41(8):851-854.
    侯学煜.中国境内酸性土,钙质土和盐碱士的指示植物.北京:科学出版社,1955.
    胡浩,潘杰,曾清如,等.低分子有机酸淋溶对土壤中重金属Pb Cd Cu和Zn的影响.农业环境科学学报,2008,27(4):1611-1616.
    季红兵,王立军,董云社,等.稀土元素的环境生物地球化学循环研究现状.地理科学进展,2004,23(1):51-61.
    贾文竹,邸贵田.稀士与农业.北京:中国农业出版社,1998.13.
    李凡庆,毛振伟,朱育新,等.铁芒萁植物体中稀土元素含量分布的研究.稀土,1992a,13(5):16-19.
    李凡庆,朱育新,毛振伟,等.电感耦合等离子体发射光谱法测定植物体铁芒萁中的稀土元素.分析化学,1992b,20:981.
    李添进,周锦超,吴兆洪.香港蕨类植物分布新记录和名称修订(一).热带亚热带植物学报,1999,7:195-201.
    李文学,陈同斌.超富集植物吸收富集重金属的生理和分子生物学机制.应用生态学报,2003,14(4):627-632.
    倪嘉瓒.稀土生物无机化学.北京:科学出版社,1999.290.
    彭安,朱建国.稀土元素的环境化学及生态效应.北京:中国环境科学出版社,2003.
    秦仁昌.中国植物志(第二卷).北京:科学出版社,1959.
    苏锵.稀土生物无机化学.郑州:河南科学技术出版社,1993.
    孙铁珩,周启星,李培军.污染生态学,北京:科学出版社,2001.
    唐世荣.超积累植物在时空、科属内的分布特点及寻找方法.农村生态环境,2001,17(4):56-60.
    王夔.金属离子与生命.上海:上海科技教育出版社,2001.44.
    王庆仁,崔岩山,董艺婷.植物修复-重金属污染土壤整治有效途径.生态学报,2001,21(2):722-727.
    王玉琦,孙景信,张智勇,等.用分子活化分析研究天然植物体内稀土元素的赋存状态.核技术,2001,24(9):721-726.
    韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报,2001,21(7):1196-1204.
    魏正贵,宛寿康,张巽,等.感耦等离子体发射光谱法研究土壤-铁芒萁系统中稀土元素的分布、累积和迁移特征.应用生态学报,2001a,12(6):863-866.
    魏正贵,尹明,张巽,等.稀土元素在赣南非稀土矿区和不同稀土矿区土壤-铁芒萁系统中的分布、累积和迁移.生态学报,2001b,21(6):900-906.
    魏正贵.土壤-植物体系稀土元素分布及植物体内稀土结合生物大分子的研究.合肥:中国科学技术大学博士学位论文,2000.
    肖海清,张智勇,李福亮,等.中子活化分析法研究蕨类植物中稀土元素的分布特征.核技术,2003,26(6):420-424.
    闫军才,梁涛,张自立,等.PO3-4和柠檬酸对稀土元素在小麦体内积累和分异的影响.环境科学,2005,26(5):169-173
    杨元根.稀土元素的农业地球化学研究.地质地球化学,1998,24(4):39-41.
    张玉秀,柴团耀,Gerard BURKARD植物耐重金属机理研究进展.植物学报,1999,41(5):453-457.
    张智勇,李福亮,王玉琦,等.土壤-植物体系稀土元素的分异现象.中国稀土学报,2002,20(1):94-96.
    张智勇,王玉琦,孙景信,等.稀土超量积累植物铁芒其中稀土元素的赋存状态.稀土,2000,21(3):42-46.
    赵贵文,洪法水,魏正贵,等.天然蕨类植物铁芒萁叶绿素a中轻稀土元素赋存状态的EXAFS研究.自然科学进展,1999,9(12):1133-1135.
    郑洁敏,唐世荣,陈子元,等.蕨类植物对无机污染物的吸收.核农学报,2005,19(2):155-159.
    周启星.复合污染生态学,北京:中国环境科学出版社,1995.
    Han F, Shan X Q, Zhang J, et al. Organic acids promote the uptake of lanthanum by barley roots. New Phytol.,2005,165:481-492.
    Morita A, Horie H, Fujii Y, et al. Chemical forms of aluminum in xylem sap of tea plants(Camellia sinensis L.). Phytochemistry,2004,65:2775-2780.
    Shan X Q, Wang H O, Zhang S Z, et al. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci.,2003,165:1343-1353.
    Wei Z G, Hong F.S., Yin M., et al. Subcellular and molecular localization of rare earth elements and structural characterization of yttrium bound chlorophyll a in naturally grown fern Dicranopteris dichotoma, Microchem. J.,2005,80:1-8.
    Wei Z G, Wong J W C, Hong F S, et al. Determination of inorganic and organic anions in xylem saps of two contrasting oilseed rape(Brassica juncea L.) varieties:Roles of anions in long-distance transport of cadmium Microchem. J.,2007,86 (1):53-59.
    丁士明,梁涛,闫军才,等.有机配体对稀土元素在小麦体内积累和分异的影响.生态学报,2005,25(11):2888-2894
    胡忻,戴乐美,王晓蓉,等.镧在小麦幼苗富集与幼苗营养生长的关系.中国环境科学,2002,22(2):137-141
    李合生.植物生理生化实验原理和技术.高等教育出版社,2000.
    魏正贵,张惠娟,李辉信,等.稀土元素超积累植物研究进展.中国稀士学,2006,24(1):1-11.
    朱广廉,钟诲文,张爱琴.植物生理学实验.北京大学出版社.1990.
    Anderson J M, Ingram J S I. Tropical soil biology and fertiliy—A handbook of methods.2nd ed. London: UK. C. A.B. International Press,1993,67-70.
    Chaney R L, et al. Phytoremediation of soil metals. Curr. Opin. Biotechnol.,1997,8:279-284
    Ding S M. Fractionation of rare earth elements in wheat and its micro-mechanisms. Ph.D. thesis, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China,2005a.
    Ding S M, Liang T, Zhang CS, et al. Role of ligands in accumulation and fractionation of rare earth elements in plants:examples of phosphate and citrate. Biol. Trace Elem. Res.,2005b,107 (1): 73-88.
    Ding S M, Liang T, Zhang C S, et al. Fractionation mechanisms of rare earth elements (REEs) in hydroponic wheat:an application for metal accumulation by plants. Environ. Sci. Technol.,2006,40: 2686-2691.
    Guo B S. Recent research advance of rare earth elements in the field of biology. Chinese Rare Earth, 1999,20:64-68.
    Han F, Shan X Q, Zhang J, et al. Organic acids promote the uptake of lanthanum by barley roots. New Phytol.,2005,165:481-492.
    Hue N V, Craddock G R, Adams F. Effect of organic acids on aluminum toxicity in subsoils. Soil Sci. Soc. Am. J.,1986,50:28-34.
    Kramer U, Pickering I J, Prince R C, et al. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol.,2000,122:1343-1353.
    Li S Q, Hu B, Jiang Z C, et al. Selective separation of La3+ and lanthanum organic complexes with nanometer-sized titanium dioxide and their detection by using fluorination assisted electrothermal vaporization ICP-AES with in-situ matrix removal. Environ. Sci. Technol.,2004,38 (7): 2248-2251.
    Liang T, Ding S M, Song W C, et al. A review of fractionations of rare earth elements in plants. J. Rare Earths,2008,26:7-15.
    Ma J F, Hiradate S. Form of aluminum for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta,2000,211:355-360.
    Ma J F, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat II. Oxalic acid detoxifies aluminum internally. Plant Physiol.,1998,117:753-759.
    Ma J F, Hiradate S, Nomoto K, et al. Internal detoxification mechanism of A1 in Hydrangea. Identification of Al form in the leaves. Plant Physiol.,1997a,113:1033-1039
    Ma J F, Zheng S J, Hiradate S, et al. Detoxifying aluminum with buckwheat. Nature,1997b,390: 569-570.
    Marschner H. Mineral nutrition of higher plants. Academic, Cambridge,1995.
    Mcgrath S P, Chaudri A M, Giller K E. Long-term effects of land application of sewage sludge:Soils, microorganisms and plants, Trans.15th Wold Congress of Soil Science, Acapulco, Mexico,1994,3: 517-533.
    Ni J Z (ed) In:The use of rare earth elements in agriculture and medicine, in bioinorganic chemistry of rare earth elements. Science Press, Beijing,1995,13-55.
    Nigam R, Srivastava S, Prakash S, et al. Cadmium mobilisation and plant availability—the impact of organic acids commonly exuded from roots. Plant Soil,2001,230:107-113.
    Pineros M A, Magalhaes J V, Carvalho A V M, et al. The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol.,2002,129: 1194-1206.
    Sagner S, Kneer R, Wanner G, et al. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry,1998,47:339-347.
    Salt D E, Prince R C, Pickering I J, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol.,1995,109:427-433.
    Senden M H M N, Vander A J G M, Verburg T G, et al. Citric acid in tomato plant roots and its effect on cadmium uptake and distribution. Plant Soil,1995,171:333-339.
    Shan X Q, Wang H O, Zhang S Z, et al. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci.,2003,165:1343-1353.
    Srivastava S, Prakash S, Srivastava M M. Chromium mobilization and plant availability—the impact of organic complexing ligands. Plant Soil,1999,212:203-208.
    Stephan C. Molecular mechanisms of plant metal tolerance and homeostasis. Planta,2001,212: 475-486.
    Tatar E, Mihucz V G, Kmethy B, et al. Determination of organic acids and their role in nickel transport within cucumber plants. Microchem. J.,2000,67:73-81.
    Wang Z W, Zhang S Z, Shan X Q. Effects of low-molecular-weight organic acids on uptake of lanthanum by wheat roots. Plant Soil,2004,261:163-170.
    Wei Z G, Hong F S, Yin M, et al. Subcellular and molecular localization of rare earth elements (REEs) and structural characterization of yttrium bound chlorophyll a in naturally grown fern Dicranopteris dichotoma. Microchem. J.,2005,80:1-8.
    White P J. The pathways of calcium movement to the xylem. J. Exp. Bot.,2001,5:891-899.
    Yang X E, Bligar V C, Foster J C, et al. Accumulation and transport of nickel in relation to organic acids in ryegrass and maize grown with different nickel levels. Plant Soil,1997,196:271-276.
    Zheng S J, Ma J F, Matsumoto H. High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol.,1998,117:745-751
    丁士明,梁涛,闫军才,等.有机配体对稀土元素在小麦体内积累和分异的影响.生态学报,2005,25(11):2888-2894
    何振立.土壤微生物量及其在养分循环和环境质量评价中的意义.士壤,1997,(1):8-21.
    季红兵,王立军,董云社等.稀士元素的环境生物地球化学循环研究现状.地理科学进展,2004,23(1):51-61.
    刘恩玲,王亮,孙继,等.土壤——番茄体系中Cd、Pb的累积特征研究.土壤通报,2009,40(1):189-193.
    龙新宪,杨肖娥,叶正钱.超积累植物的金属配位体及其在植物修复中的应用,植物生理学通讯,2003,39(1):71-77.
    沈博礼,张丽静.稀土元素对植物体内细胞分裂的影响.新疆大学学报,1992,9(1):68-71.
    宋勤飞,樊卫国,刘国琴.铅在番茄中的积累及对其生长和生理的影响农业环境科学学报,2006,25(增刊):87-91.
    孙琴,倪吾钟,杨肖娥.有机酸在植物解铝毒中的作用及生理机制.植物学通报,2002,19(4):496-503.
    王宏康.土壤中金属污染的研究进展.环境化学,1991,10(5):35-42.
    吴兆明.稀土元素对植物生理功能的影响.北京:中国农业科学出版社,1988,45-71.
    闫军才,梁涛,张自立,等.PO3-4和柠檬酸对稀土元素在小麦体内积累和分异的影响.环境科学,2005,26(5):169-173
    杨元根,袁可能,何振立.稀土对微生物量影响的初步研究.地质地球化学,1999,27(1):108-111.
    杨元根.稀土元素的农业地球化学研究.地质地球化学,1996,24(4):39-43.
    俞慎,李振高.熏蒸提取法测定土壤微生物量研究进展.土壤学进展,1994,22(6):42-50.
    朱永懿,陈景坚,杨俊诚,等.长期喷施稀士对土壤和春小麦中放射性活度的影响.农业环境与发展,1993,3:34-37.
    Byrne R H, Liu X, Schijf J. The influence of phosphate coprecipitation of rare earth distributions in natural waters. Geochim. Cosmochim. Ac.,1996,60 (17):3341-3346.
    Byrne R H, Li B Q. Comparative complexation behaviour of the rare earth. Geochim. Cosmochim. Ac., 1995,59:4575-4589.
    Clemens S, Palmgren M G, Kramer U. A long way ahead:understanding and engineering plant metal accumulation.Trends Plant Sci.,2002,7 (7):309-315.
    Ding S M, Liang T, Yan J C, et al. Fractionations of rare earth elements (REEs) in plants and their conceptive model. Sci. in China (Series C),2007,50 (1):47-55.
    Ding S M, Liang T, Zhang C S, et al. Accumulation and fractionation of rare earth elements (REEs) in wheat:controlled by phosphate precipitation, cell wall absorption and solution complexation. J. Exp. Bot.,2005,56 (420):2765-2775.
    Ding S M, Liang T, Zhang C S, et al. Fractionation mechanisms of rare earth elements (REEs) in hydroponic wheat:an application for metal accumulation by plants. Environ. Sci. Technol.,2006, 40 (8):2686-2691.
    Ishikawa S, Wagatsuma T, Ikarashi T. Comparative toxicity of Al3+, Yb3+, and La3+ to root-tip cells differing in tolerance to high Al3+ in terms of ionic potentials of dehydrated trivalent cations. Soil Sci. Plant Nutr.,1996,42:613-625.
    Kramer U, Pickering I J, Prince R C, et al. Subcellular localization and speciation of nickel in hyperaccumulator and nonaccumulator Thlaspi species. Plant Physiol.,2000,122:1343-1353.
    Liang T, Ding S M, Song W C, et al. A review of fractionations of rare earth elements in plant. J. Rare Earths,2008,26:7-15.
    Liang T, Ding S M, Zhang C S, et al. Mechanisms of fractionations of rare earth elements (REEs) in plants Ⅰ. Fractionation patterns and their mechanisms of REEs in different organs of wheat. J. Rare Earths,2005,23 (2):224-229.
    Lolkema P C, Donker M H, Schouten A J, et al. The possible role of metallothioneins in copper tolerance of silene cucubalus. Planta,1984,162:174-179.
    Ma J F, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat Ⅱ. Oxalic acid detoxifies aluminum internally. Plant Physiol.,1998,117:753-759.
    Ma JF, Ryan PR, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci.,2001,6:273-278.
    Marschner H. Mineral nutrition of higher plants (2sd ed.). Aca-demic Press. San Diego. CA, USA,1995.
    Parker D R, Judith F P. Reevaluating the free-ion activity model of trace metal availability to higher plants. Plant Soil,1997,196:223-228.
    Pellet D M, Grunes D L, Kochian L V. Organic acid exudations an aluminum-tolerance mechanism in maize (Zea mays L.). Planta,1995,196:788-795.
    Quiquampoix H, Ratcliffe R G, Ratkovic S, et al.'H and 31P NMR investigation of gadolinium uptake in maize roots. J. Inorg. Biochem.,1990,38:265-275.
    Rauser W E. Structure and function of metal chelators produced by plants—the case for organic acids,amino acids,phytin and metallothioneins.Cell Biochem. Biophys.,1999,31:19-48.
    Robert H B, Liu X W, Johan S. The influence of phosphate coprecipitation on rare earth distributions in natural waters. Geochim. Cosmochim. Ac.,1996,60 (17):3341-3346.
    Ryan PR, Ditomaso JM, Kochain LV. Aluminum toxicity in root:an investigation of spatial sensitivity. J. Exp. Bot.,1993,44:437-446.
    Shan X Q, Wang H O, Zhang S Z, et al. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci.,2003,165:1343-1353.
    Sun H, Wang X R, Wang Q, et al. The effects of chemical species on bioaccumulation of rare earth elements in wheat growth in nutrient solution. Chemosphere,1997,35 (8):1699-1707.
    Tagami K, Uchida S. Transfer of REEs from nutrient solution to radish through fine roots and their distribution in the plant. J. Alloys Compd.,2006,408-412.
    Wang Z W, Zhang S Z, Shan X Q. Effects of low-molecular-weight organic acids on uptake of lanthanum by wheat roots. Plant Soil,2004,261:163-170.
    Wei Z G, Hong F S, Yin M, Li H X, et al. Subcellular and molecular localization of rare earth elements and structural characterization of yttrium bound chlorophyll a in naturally grown fern Dicranopteris dichotoma. Microchem. J.,2005,80:1-8.
    Wei Z G, Yin M, Zhang X. Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in South-Jiangxi region (Southern China). Environ. Pollut.,2001,114:345-355.
    陈梅,陈亚华,沈振国,等.外源有机酸对小麦幼苗铝毒的缓解作用植物生理与分子生物学学报,2003,29(4):281-288.
    丁士明,梁涛,闫军才,等.有机配体对稀土元素在小麦体内积累和分异的影响.生态学报,2005,25(11):2888-2894.
    丁士明,梁涛,闫军才,等.稀土元素在植物中的分异及其概念模型.中国科学C辑生命科学,2006,36(4):312-319.
    李朝苏,刘鹏,徐根娣,等.外源有机酸对荞麦幼苗铝毒害的缓解效应.作物学报,2006,32(4):532-539.
    梁涛,丁士明,张自立,等.稀土元素在植物中的分异机制(Ⅰ)小麦不同器官中的稀土元素分异模式及形成机制,中国稀土学报,2005,23(2):239-244.
    龙新宪,杨肖娥,叶正钱.超积累植物的金属配位体及其在植物修复中的应用,植物生理学通讯,2003,39(1):71-77.
    彭安,朱建国.稀土元素的环境化学及生态效应.北京:中国环境科学出版社,2003.
    师瑞红,谢国生,曾汉莱,等.外源有机酸缓解水稻幼苗根系铝毒的生理机制.中国生态农业学报,2007,15(4):97-101.
    张智勇,李福亮,王玉琦,等.土壤-植物体系中稀土元素的分异现象.中国稀土学报,2002,20(1):94-96.
    Adriano D C, Wenzel W W, Blum W E H. Role of phytoremediation in the establishment of a global soil remediation network [A].In:Proceedings International Seminar on Use Plants for Environmental Remediation [C]. Kosaikaikan, Tokyo, Japan,1997,3-25.
    Ding S M Liang T, Zhang C S, et al. Fractionation mechanisms of rare earth elements (REEs) in hydroponic wheat:An application for metal accumulation by plants. Environ. Sci. Technol.,2006, 40 (8):2686-2691.
    Ding S M, Liang T, Yan J C, et al. Fractionations of rare earth elements (REEs) in plants and their conceptive model. Sci. in China (Series C),2007,50 (1):47-55.
    Ding S M, Liang T, Zhang C S, et al. Role of ligands in accumulation and fractionation of rare earth elements in plants:examples of phosphate and citrate. Biol. Trace Elem. Res.,2005a,107 (1): 73-88.
    Ding S M. Fractionation of Rare Earth Elements in Wheat and Its Micro-Mechanisms. Doctor Dissertation of Institute of Geographic Sciences and Natural Resources Research, CAS,2005b.
    Han F, Shan X Q, Zhang J, et al. Organic acids promote the uptake of lanthanum by barley roots. New Phytol.,2005,165:481-491.
    Jones D L. Organic acid in the rhizospherecritical review. Plant Soil,1998,205:25-44.
    Kraemer U, Cotter—Howells J D, Charnock J M, et al. Free histidine as a metal chelator in plants that accumulate nickel. Nature,1996,379:635-638.
    Kramer U, Pickering I J, Prince R C, et al. Subcellurlar localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol.,2000,122:1343-1353.
    Luo C L, Shen Z G, Lou L Q, et al. EDDS and EDTA enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environ. Pollut.,2006,144: 862-871.
    Marschner H. Mineral nutrition of higher plants. London:Academic Press,1995:65-69.
    Miyasaka C, Bute J G, Howell R K, et al. Mechanism of aluminum tolerance in snapbeans:root exudation of citric acid. Plant Physiol.,1991,96:737-743.
    Raskin I, Smith R D, Salt D E. Phytoremediation of metals:using plants to remove pollutants from the environment. Curr. Opin. Biotechnol.,1997,8:221-226.
    Salt D E, Prince R C, Baker A J M, et al. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ. Sci. Technol.,1999,33: 713-717.
    Salt D E, Smith R D, Raskin I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1998,49: 643-668.
    van Engelen D L, Sharpe-Pedler R C, Moorhead K K. Effect of chelating agents and solubility of cadmium complexes on uptake from soil by Brassica juncea. Chemosphere,2007,68:401-408.
    Vazquez M D, Poschenrieder C, Barcelo J, et al. Compartment of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens. Bot. Acta,1994,107:243-250.
    Vazquez M D, Vazquez M D, Poschenrieder C, et al. Localization of zinc and cadmium in Thlaspi caerulescens (Brassicacease):A metallophyte that can hyperaccumulate both metals. Plant Physiol., 1992,140:350-355.
    Wang H O, Shan X Q, Zhang S Z, et al. Preliminary characterization of a light rare earth element binding peptide of a natural perennial fern Dicranopteris dichotoma. Anal. Bioanal. Chem.,2003, 376:49-52.
    Wei Z G, Yin M, Zhang X, et al. Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi region (Southern China). Environ. Pollut.,2001, 114:345-355.
    Zhang Z Y,, Wang Y Q, Li F L, et al. Distribution characteristics of rare earth elements in plants from a rare earth ore area. J. Radioanal. Nucl. Chem.,2002,252 (3):461-465.
    陈为钧,魏正贵,陶冶.镧对烟草叶绿体光化学反应的影响.作物学报,2001,27(4):506-511.
    陈英旭,林琦,陆芳,等.有机酸对铅、镉植株危害的解毒作用研究.环境科学学报,2000,20(4):467-472.
    陈祖义.稀土的hormesis效应及其农用对农业生态环境的潜在影响.农业生态环境,2004,20(4):1-5.
    洪法水,魏正贵,陶冶,等.天然植物铁芒萁体内稀土元素的分布及其叶绿素镧的结构表征.植物学报,1999,41(8):851-854.
    林琦,陈英旭,陈怀满,等.有机酸对Pb、Cd的土壤化学行为和植株效应得影响.应用生态学报,2001,12(4):619-622.
    孙和和,刘鹏,蔡妙珍,等.外源有机酸对美人蕉耐性和Cr吸收、迁移的影响.水土保持学报,2008,22(2):75-79.
    魏正贵,张惠娟,李辉信,等.稀土元素超积累植物研究进展中国稀土学报2006,24(1)1-11.
    吴燕玉,王新,梁仁禄.重金属复合污染对土壤-植物系统的生态效应Ⅱ对作物,紫花苜蓿,树木元素吸收的影响.应用生态学报,1997,8:545-552.
    闫军才,梁涛,张自立,等.P03-4和柠檬酸对稀土元素在小麦体内积累和分异的影响.环境科学,2005,26(5):169-173
    杨居荣,贺建群,蒋婉茹.Cd污染对植物生理生化的影响.农业环境保护,1995,14(5):193-197.
    杨居荣,贺建群.农作物对Cd毒害的耐性机理探讨.应用生态学报,1995,6:87-91.
    杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制.植物营养与肥料学报,2002,8(1):8-15.
    张敬锁,李花粉,衣纯真.有机酸对活化土壤中的镉和小麦吸收镉的影响.土壤学报,1999a,36(1):61-66.
    张敬锁,李花粉,衣纯真.有机酸对水稻镉吸收的影响.农业环境保护,1999b,18(6):278-280.
    张信连,杨维东,刘洁生,等.稀土元素生物效应中的Hormesis现象.生物技术,2004,14(6):82-84.
    张智勇,李福亮,王玉琦,等.土壤-植物体系稀土元素的分异现象.中国稀士学报,2002,20(1):94-96.
    Assuncao A G L, Martins P D, Folter R, et al. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ.,2001,24: 217-226.
    Baker A J M. Metal tolerance. New Phytol.,1987,106:93-111.
    Byrne R H, Li B Q.Comparative complexation behaviour of the rare earth.Geochim. Cosmochim. Ac., 1995,59:4575-4589.
    Greger M. Metal availability and bioconcentration in plants. In:Prasad MVN and Hagemeyer J (eds), Heavy Metal Stress in Plants from Molecules to Ecosystems. Berlin:Springer,1999.
    Ichihashi H, Morita H, Tatsukawa R. Rare earth elements (REEs) in naturally grown plants in relation to their variation in soils. Environ. Pollut.,1992,76,157-162.
    Jones D L. Organic acid in the rhizospherecritical review. Plant Soil,1998,205:25-44.
    Nakamaru Y, Tagami K, Uchida S. Effect of nutrient uptake by plant roots on the fate of REEs in soil. J. Alloys Compd.,2006,408-416.
    Rae T D, Schmidt P J, Pufahl R A, et al. Undetectable intracellular free copper:The requirement of a copper chaperone for superoxide dismutase. Science,1999,284:805-808.
    Robert H B, Liu X W, Johan S. The influence of phosphate coprecipitation on rare earth distributions in natural waters. Geochim. Cosmochim. Ac.,1996,60 (17):3341-3346.
    Salt D E, Prince R C, Baker A J M, et al. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens determined using X-ray absorption spectroscopy. Environ. Sci. Technol.,1999,33: 713-717.
    Shan X Q, Wang H O, Zhang S Z, et al. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci.,2003,165:1343-1353.
    Srinivas D, Singh V P. Ameliorative effects of ethylenediamine tertraacetic acid on lead toxicity in okra (Abelmoschus esculentus L). In:The Canadian society of Plant Physiologists 34th Annual Meeting. Memorial Univ. of Newfoundland, NF Canada,1992.
    Sun H, Wang X R, Wang Q, et al. The effects of chemical species on bioaccumulation of rare earth elements in wehat grown in nutrient solution. Chemosphere,199735 (8):1699-1707.
    Vazquez M D, Barcelo J, et al. Localization of Zinc and Cadmium in Thiaspi caerulescens (Brassicacease), a metallophyte that can Hyperaccumulate both Metals. plant physiol.,1992,140: 350-355.
    Wang Q, Sun H, Wang H T, et al. Bioaccumulation of two species of rare earth elements in rice seedling. Chin. J. Environ. Sci.,1997,18 (6):50-52.
    Wang Z W, Zhang S Z, Shan X Q. Effects of low molecular weight organic acids on uptake of lanthanum by wheat roots. Plant Soil,2004,261:163-170.
    Wei Z G, Yin M, Zhang X., et al. Rare earth elements in naturally grown fern Dicranoperis linearis in relation to their variation in soils in South-Jiangxi region (Southern China). Environ. Pollut.,2001, 114:345-355.
    陈梅,陈亚华,沈振国,等.外源有机酸对小麦幼苗铝毒的缓解作用.植物生理与分子生物学学报,2003,29(4):281-288.
    李凡庆,毛振伟,朱育新,等.铁芒萁植物体中稀土元素含量分布的研究.稀士,1992a,13(5):16-19.
    李凡庆,朱育新,毛振伟,等.电感耦合等离子体发射光谱法测定植物体铁芒萁中的稀土元素.分析化学,1992b,20:981.
    李文学,陈同斌.超富集植物吸收富集重金属的生理和分子生物学机制.应用生态学报,2003,14(4):627-631.
    倪嘉瓒.稀土生物无机化学.北京:科学出版社,1999.290.
    任立民,刘鹏,蔡妙珍,等.水蓼、小飞蓬、杠板归和美洲商陆对锰毒的生理响应.水土保持学报,2007,21(3):81-85.
    铁柏清,袁敏,唐美珍.美洲商陆(Phytolacca americana L.)——一种新的Mn积累植物.农业环境科学学报,2005,24(2):340-343.
    王宏康.土壤中金属污染的研究进展,环境化学,1991,10(5):35-42.
    魏正贵,宛寿康,张巽,等.感耦等离子体发射光谱法研究土壤-铁芒萁系统中稀土元素的分布、累积和迁移特征.应用生态学报,2001a,12(6):863-866.
    魏正贵,尹明,张巽,等.稀土元素在赣南非稀士矿区和不同稀土矿区士壤-铁芒萁系统中的分布、累积和迁移.生态学报,2001b,21(6):900-906.
    张智勇,李福亮,王玉琦,等.土壤-植物体系稀土元素的分异现象.中国稀土学报,2002,20(1):94-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700