用户名: 密码: 验证码:
取向碳纳米管材料的制备方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科技的发展,纳米材料已成为多学科交叉研究的基础,在化学、物理、能源、生物医学等诸多领域扮演越来越重要的角色。在各种纳米材料中,碳纳米管因为独特的结构和优异的化学物理性能,近二十年来吸引了科学界持久的兴趣。碳纳米管是由石墨层卷曲而成的中空纳米管体,根据石墨层数分成单壁和多壁两种,直径为0.4-100nm。碳纳米管具有优异的力学、电学、光学和热稳定性能。长期以来,碳纳米管主要作为各种纳米器件进行研究,但结构的可控性差严重限制其大规模应用,所以近年来更多的注意力转向碳纳米管宏观本体材料。然而,因为碳纳米管无规分布,获得的本体材料性能远低于单根碳纳米管,如何制备取向碳纳米管本体材料变得越来越迫切。
     本学位论文通过化学气相沉积法合成高质量取向碳纳米管阵列,在此基础上研究取向碳纳米管阵列的可纺性,并进一步研究取向碳纳米管材料在储能和光电转换两个能源领域中的应用。主要研究内容如下:
     1、首次通过无水辅助化学气相沉积法合成超长取向碳纳米管阵列。通过优化合成温度、合成时间,控制碳源、载气、还原气体的比例和流速,改进催化剂制备工艺,获取高质量取向碳纳米管阵列。在总流速保持不变的情况下,调节还原气体氢气和碳源乙烯的比例,成功合成超长取向碳纳米管阵列(高度达到4mm)。本方法具有较好的普适性,生长过程简单可控,制备效率高。
     2、比较系统地研究了碳纳米管阵列的可纺性。绝大部分报道的碳纳米管阵列是不可纺的,而文献报道的可纺阵列其高度往往小于0.9mm。另一方面,碳纳米管阵列以及纤维的物理性能与阵列高度紧密相关,一般阵列越高取向碳纳米管材料性能越好。本论文研究了催化剂制备过程的沉积速度和厚度、各种气体比例、流速、合成温度和时间等实验参数对碳纳米管阵列可纺性的影响,总结出一系列普适性的规律,获取了制备可纺碳纳米管阵列的最佳参数,在此基础上成功合成具有良好可纺性能碳纳米管阵列。以可纺阵列为初始材料,通过干法纺丝连续制备取向碳纳米管纤维,研究了碳纳米管纤维优异的力学和导电性能,发现其拉伸强度最高达到1GPa,室温导电率在102-103S/cm。
     3、研究直流辉光等离子对取向碳纳米管阵列刻蚀工艺以及功能化的取向碳纳米管阵列在储能方面的应用。利用直流辉光等离子体对碳纳米管阵列顶部进行刻蚀,在不破坏碳纳米管阵列整体形状的前提下打开碳纳米管端口,系统地比较氧气、氩气、氧-氩混合气体等离子体对刻蚀效率的影响,结果表明氧-氩混合气体等离子体刻蚀效果最好。采用刻蚀过的碳纳米管阵列作为超级电容器的电极材料,发现此电容器的容量大幅度提高。
     4、研究取向碳纳米管纤维在光电转换领域的应用。首次基于取向碳纳米管纤维优异的力学、电学性能和较高的比表面积制备出新型纤维状太阳能电池。N719染料分子通过溶液物理吸附到碳纳米管表面制备出碳纳米管/染料敏化分子复合纤维,以该复合纤维作为工作电极,以铂作为对电极组装电池,构建出新型染料敏化太阳能电池,并对其结构进行了初步优化。获得了光电转化效率为1.69%,并且具有较好的稳定性。
With the development of nanotechnology, nanomaterials have become the basis of multidisciplinary research. They play an increasingly important role in chemistry, physics, energy, biomedicine, and many other fields. Because of the unique structure and excellent chemical and physical properties, carbon nanotubes have been continuously attracting increasing interest in the scientific community in the past two decades. Intuitively, carbon nanotubes are hollow nano-tubes, their diameters are in0.4-100nm. According to the graphite layers, carbon nanotubes are divided into two kinds of single-walled and multi-walled. Carbon nanotubes have excellent mechanical, electrical and optical properties and thermal stability. Carbon nanotubes are mainly studied as a variety of nano-scale devices, but the complexity and controllability of the structure severely limit their large-scale application, so more and more attention is turned to carbon nanotubes macroscopic bulk materials in recent years. However, because of random distribution,the carbon nanotube bulk material properties are much lower than the single carbon nanotube. How to fabricate aligned carbon nanotube bulk materials has become more urgent.
     Chemical vapor deposition synthesis of high-quality aligned carbon nanotube array was studied in this dissertation. And then we further fabricated aligned carbon nanotube fibers on this basis. We focused on two aspects research of the aligned carbon nanotubes in energy field. Firstly, we etched carbon nanotube arrays by using DC glow plasma technology to synthesize end-functionalized carbon nanotube arrays, to improve the comprehensive performance of their application in supercapacitors. Secondly, the novel dye-sensitized solar cells based on carbon nanotube fibers as working electrode have high photoelectric conversion efficiency. The main content was detailed in the following.
     Firstly, long aligned carbon nanotube array by chemical vapor deposition synthesis without water-assisted was firstly fabricated in this thesis. By optimizing growth temperature, time, controlling the carbon source, carrier gas, reducing gas ratios and flow rates, improving the catalyst preparation process, we prepared high-quality aligned carbon nanotube array. In the case of the total flow rate remaining unchanged, by adjusting the ratio of reducing gas of hydrogen and carbon source of ethylene, we prepared super-long aligned carbon nanotube arrays (up to4mm in height). This method has good universality, and the growth process is simple and controllable for high preparation efficiency.
     Secondly, spinnability of carbon nanotube arrays was systematically studied. The majority of reported carbon nanotube arrays were not spinnable. The height of spinnable array was often less than0.9mm in the reported literature. On the other hand, the physical properties of carbon nanotube array and fiber are closely related to height of the array. Higher qulity of aligned carbon nanotubes array material, better the performance. In this thesis, the deposition rate and thickness of catalyst, the proportion of various gases, the reaction temperature and time can impact spinnability of the carbon nanotube arrays, and we summed up a series of universal law, gained best synthesis parameters of spinnable carbon nanotube arrays. With spinnable array as initial material, aligned carbon nanotube fibers were continuously fabricated by dry spinning. We mainly study the excellent mechanical and electrical properties of carbon nanotube fibers, tensile strength was up to1GPa, and conductivity was up to102-103S/cm at room temperature.
     And then, aligned carbon nanotube arrays were studied in the application of energy storage. DC glow discharge plasma was used to etch the end cap of carbon nanotube array. Without destroying the overall shape of carbon nanotube arrays, we can open carbon nanotube ends by using plasma etching. Comparison of oxygen, argon, oxygen-argon mixture plasma etching efficiency, which showed that oxygen-argon mixture plasma etching was best. Carbon nanotube arrays were etched as electrode materials to build a super-capacitor, and we found that capacity of the capacitor was greatly improved.
     Finally, aligned carbon nanotube fibers were studied in the application of the photoelectric conversion. With excellent mechanical and electrical properties and high specific surface area, aligned carbon nanotube fibers were used as the working electrode to build a novel dye-sensitized solar cell. The typical build process included three parts: adsorption of N719dye molecules through the solution process to form the carbon nanotube composite fiber; carbon nanotube composite fiber was closely adhered to the fluorine-doped indium tin oxide conductive glass, and platinum was used as counter electrode of the cell; and finally they were packaged after injection of electrolyte. Photoelectric conversion efficiency of the novel fiber solar cells was up to1.69%, and it has very good stability.
引文
[1]S. Iijima. Helical microtubules of graphitic carbon[J]. Nature,1991, 354(6348):56-58.
    [2]D. Bethune, C. Klang, M. De Vries, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls[J]. Nature,1993,363:605-607.
    [3]S. Iijima, T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature,1993,363:603-605.
    [4]T. Guo, P. Nikolaev, A. G. Rinzler, et al. Self-assembly of tubular fullerenes[J]. The Journal of Physical Chemistry B,1995,99(27):10694-10697.
    [5]T. A., R. Lee, P. Nikolaev, et al. Crystalline ropes of metallic carbon nanotubes[J]. Science,1996,273:483-487.
    [6]M. Bockrath, D. H. Cobden, P. L. McEuen, et al. Single-electron transport in ropes of carbon nanotubes [J]. Science,1997,275(5308):1922.
    [7]S. J. Tans, M. H. Devoret, H. Dai, et al. Individual single-wall carbon nanotubes as quantum wires[J]. Nature,1997,386(6624):474-477.
    [8]J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, et al. Electronic structure of atomically resolved carbon nanotubes[J]. Nature,1998,391(6662):59-62.
    [9]慈立杰,魏秉庆,梁吉.碳纳米管的制备[J].新型炭材料,1998,13(2):65-71.
    [10]D. T. Colbert, J. Zhang, S. M. McClure, et al. Growth and Sintering of Fullerene Nanotubes[J]. Science,1999,266:1218-1222.
    [11]杨占红,李新海,李晶.碳纳米管纯化技术研究[J].中南工业大学学报,1999,30(4):389-391.
    [12]徐东升.以多孔硅为模板制备取向碳纳米管[J].中国科学:B辑,2000,30(4):289-293.
    [13]梁二军,张红瑞.碳纳米管的热解法制备,电子显微镜观察及拉曼光谱研究[J].光散射学报,2001,13(4):205-209.
    [14]Y. Wang, M. J. Kim, H. Shan, et al. Continued growth of single-walled carbon nanotubes [J]. Nano letters,2005,5(6):997-1002.
    [15]M. Meyyappan. Carbon nanotube-Science and Applications[M]. CRC Press. 2005.
    [16]K. Koziol, J. Vilatela, A. Moisala, et al. High-performance carbon nanotube fiber[J]. Science,2007,318(5858):1892.
    [17]M. Lin, J. P. Y. Tan, C. Boothroyd, et al. Dynamical observation of bamboo-like carbon nanotube growth[J]. Nano letters,2007,7(8):2234-2238.
    [18]V. a. M. S. Shanov,UC Researchers Shatter World Records with Length of Carbon Nanotube Arrays[OL]. The National Science Foundation, USA, 2007-03-10, [2007-03-10]. http://www.nsf.gov/news/news summ.jsp?cntn id=108992&org=NSF&from=n ews.
    [19]C. Lam, J. T. James, R. McCluskey, et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks[J]. CRC Critical Reviews in Toxicology,2006,36(3):189-217.
    [20]J. Cao, Q. Wang, D. Wang, et al. Suspended carbon nanotube quantum wires with two gates[J]. Small,2005,1(1):138-141.
    [21]J. Cui, R. Sordan, M. Burghard, et al. Carbon nanotube memory devices of high charge storage stability[J]. Applied Physics Letters,2002,81:3260.
    [22]L. Chico, V. H. Crespi, L. X. Benedict, et al. Pure carbon nanoscale devices: nanotube heteroj unctions [J]. Physical Review Letters,1996,76(6):971-974.
    [23]H. Peng, D. Chen, J. Y. Huang, et al. Strong and ductile colossal carbon tubes with walls of rectangular macropores[J]. Physical Review Letters,2008, 101(14):145501.
    [24]H. Peng, X. Sun. Macroporous carbon nanotube arrays with tunable pore sizes and their template applications [J]. Chemical Communications,2009, (9):1058-1060.
    [25]余颖,曾艳.聚苯乙烯/碳纳米管复合材料的力学性能与结构[J].华中师范大学学报:自然科学版,2002,36(3):319-322.
    [26]X. Wang, W. Li, Z. Chen, et al. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell[J]. Journal of Power Sources,2006,158(1):154-159.
    [27]王敏炜,李凤仪.碳纳米管——新型的催化剂载体[J].新型炭材料,2002,17(3):75-79.
    [28]W. A. De Heer, A. Chatelain, D. Ugarte. A carbon nanotube field-emission electron source[J]. Science,1995,270(5239):1179-1180.
    [29]R. H. Baughman, A. A. Zakhidov, W. A. De Heer. Carbon nanotubes-the route toward applications[J]. Science,2002,297(5582):787-792.
    [30]L. X. Zheng. Connell, S. K. Doom et al. Ultralong single-wall carbon nanotubes[J]. Nat. Mater.,2004,3:673-676.
    [31]B. H. Hong, J. Y. Lee, T. Beetz, et al. Quasi-continuous growth of ultralong carbon nanotube arrays[J]. Journal of the American Chemical Society,2005, 127(44):15336-15337.
    [32]C. J. Lee, J. H. Park, J. Park. Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition [J]. Chemical physics letters, 2000,323(5-6):560-565.
    [33]T. W. Odom, J. L. Huang, P. Kim, et al. Atomic structure and electronic properties of single-walled carbon nanotubes[J]. Nature,1998, 391(6662):62-64.
    [34]B. J. Landi, R. P. Raffaelle, S. L. Castro, et al. Single-wall carbon nanotube-polymer solar cells [J]. Progress in Photovoltaics:Research and Applications, 2005,13(2):165-172.
    [35]M. F. Yu, O. Lourie, M. J. Dyer, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science,2000, 287(5453):637.
    [36]Q. Li, Y. Li, X. Zhang, et al. Structure-Dependent Electrical Properties of Carbon Nanotube Fibers[J]. Advanced Materials,2007,19(20):3358-3363.
    [37]G. X. Chen, H. S. Kim, B. H. Park, et al. Multi-walled carbon nanotubes reinforced nylon 6 composites [J]. Polymer,2006,47(13):4760-4767.
    [38]J. P. LU, J. HAN. Carbon nanotubes and nanotube-based nano devices[J]. International journal of high speed electronics and systems,1998,9(1):101-123.
    [39]J. Che, T. Cagin. Thermal conductivity of carbon nanotubes [J]. Nanotechnology,2000,11:65.
    [40]J. Hone. Phonons and thermal properties of carbon nanotubes [J]. Carbon Nanotubes,2001:273-286.
    [41]J. Qiu. Multifunctional multiscale composites:Processing, modeling and characterization[M]. ProQuest.2008.
    [42]J. Hone, M. Whitney, C. Piskoti, et al. Thermal conductivity of single-walled carbon nanotubes[J]. Physical Review B,1999,59(4):2514-2516.
    [43]R. Saito, M. Fujita, G. Dresselhaus, et al. Electronic structure of graphene tubules based on C60[J]. Physical Review B,1992,46(3):1804.
    [44]N. Hamada, S. Sawada, A. Oshiyama. New one-dimensional conductors: Graphitic microtubules[J]. Physical Review Letters,1992,68(10):1579-1581.
    [45]S. Frank, P. Poncharal, Z. Wang, et al. Carbon nanotube quantum resistors[J]. Science,1998,280(5370):1744.
    [46]Z. Yao, H. W. C. Postma, L. Balents, et al. Carbon nanotube intramolecular junctions[J]. Nature,1999,402(6759):273-276.
    [47]H. Geng, D. S. Lee, K. K. Kim, et al. Effect of Carbon Nanotube Types in Fabricating Flexible Transparent Conducting Films[J]. Journal of the Korean Physical Society,2008,53(2):979-985.
    [48]J. Misewich, R. Martel, P. Avouris, et al. Electrically induced optical emission from a carbon nanotube FET[J]. Science,2003,300(5620):783-786.
    [49]M. Freitag, Y. Martin, J. Misewich, et al. Photoconductivity of single carbon nanotubes[J]. Nano letters,2003,3(8):1067-1071.
    [50]A. Hogele, C. Galland, M. Winger, et al. Photon antibunching in the photoluminescence spectra of a single carbon nanotube [J]. Physical Review Letters,2008,100(21):217401.
    [51]王罗新,易长海,邹汉涛,等.椅式(8,8)单壁碳纳米管内偶氮苯的顺反异构化[J].物理化学学报,2010,26(1):149-154.
    [52]A. Jorio, M. Pimenta, A. Souza Filho, et al. Characterizing carbon nanotube samples with resonance Raman scattering [J]. New Journal of Physics,2003, 5:139.
    [53]林克芝,徐艳辉.碳纳米管电化学储能的研究进展[J].电源技术,2002,26(4):314-320.
    [54]W. Li, S. Xie, L. X. Qian, et al. Large-scale synthesis of aligned carbon nanotubes[J]. Science,1996,274(5293):1701-1703.
    [55]Z. Ren, Z. Huang, J. Xu, et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass[J]. Science,1998,282(5391):1105.
    [56]S. Fan, M. G. Chapline, N. R. Franklin, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties [J]. Science,1999, 283(5401):512.
    [57]N.Wang, Z. K. Tang, G. D. Li, et al. Single-walled 4 A carbon nanotube arrays[J]. Nature,2000,408:50-51.
    [58]A. C. Dupuis. The catalyst in the CCVD of carbon nanotubes-a review[J]. Progress in Materials Science,2005,50(8):929-961.
    [59]韦进全,慈立杰,魏秉庆,等.用浮动催化裂解法制取单壁碳纳米管[J].清华大学学报(自然科学版),2001,41(8):9-11.
    [60]韩道丽,赵元黎,赵海波,等.化学气相沉积法制备定向碳纳米管阵列[J].物理学报,2007,56(10):5958-5964.
    [61]M. Kumar, Y. Ando. A simple method of producing aligned carbon nanotubes from an unconventional precursor-Camphor[J]. Chemical physics letters,2003, 374(5-6):521-526.
    [62]Q. Zhang, J. Q. Huang, M. Q. Zhao, et al. Radial growth of vertically aligned carbon nanotube arrays from ethylene on ceramic spheres[J]. Carbon,2008, 46(8):1152-1158.
    [63]R. A. Afre, T. Soga, T. Jimbo, et al. Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor:Turpentine oil[J]. Chemical physics letters,2005,414(1-3):6-10.
    [64]N. Jeong, Y. Seo, J. Lee. Vertically aligned carbon nanotubes synthesized by the thermal pyrolysis with an ultrasonic evaporator[J]. Diamond and related materials,2007,16(3):600-608.
    [65]K. Dasgupta, S. Kar, R. Venugopalan, et al. Self-standing geometry of aligned carbon nanotubes with high surface area[J]. Materials Letters,2008, 62(12-13):1989-1992.
    [66]C. M. Seah, S. P. Chai, A. R. Mohamed. Synthesis of aligned carbon nanotubes[J]. Carbon,2011,49(14):4613-4635.
    [67]Y. Chen, J. Yu. Growth direction control of aligned carbon nanotubes[J]. Carbon,2005,43(15):3183-3186.
    [68]D. C. Li, L. Dai, S. Huang, et al. Structure and growth of aligned carbon nanotube films by pyrolysis[J]. Chemical physics letters,2000, 316(5-6):349-355.
    [69]S. Huang, X. Cai, C. Du, et al. Oriented long single walled carbon nanotubes on substrates from floating catalysts[J]. The Journal of Physical Chemistry B, 2003,107(48):13251-13254.
    [70]W. Merchan-Merchan, A. V. Saveliev, L. A. Kennedy. High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control[J]. Carbon,2004,42(3):599-608.
    [71]C. P. Arana, I. K. Puri, S. Sen. Catalyst influence on the flame synthesis of aligned carbon nanotubes and nanofibers[J]. Proceedings of the Combustion Institute,2005,30(2):2553-2560.
    [72]F. Xu, X. Liu, S. D. Tse. Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames[J]. Carbon, 2006,44(3):570-577.
    [73]W. Merchan-Merchan, A. V. Saveliev, L. A. Kennedy. Flame nanotube synthesis in moderate electric fields:From alignment and growth rate effects to structural variations and branching phenomena[J]. Carbon,2006, 44(15):3308-3314.
    [74]F. Xu, H. Zhao, S. D. Tse. Carbon nanotube synthesis on catalytic metal alloys in methane/air counterflow diffusion flames[J]. Proceedings of the Combustion Institute,2007,31(2):1839-1847.
    [75]L. Yuan, K. Saito, W. Hu, et al. Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes [J]. Chemical physics letters,2001, 346(1-2):23-28.
    [76]L. Yuan, K. Saito, C. Pan, et al. Nanotubes from methane flames[J]. Chemical physics letters,2001,340(3-4):237-241.
    [77]L. Yuan, T. Li, K. Saito. Synthesis of multiwalled carbon nanotubes using methane/air diffusion flames[J]. Proceedings of the Combustion Institute,2002, 29(1):1087-1092.
    [78]L. Yuan, T. Li, K. Saito. Growth mechanism of carbon nanotubes in methane diffusion flames[J]. Carbon,2003,41(10):1889-1896.
    [79]C. Pan, Y. Liu, F. Cao, et al. Synthesis and growth mechanism of carbon nanotubes and nanofibers from ethanol flames[J]. Micron,2004,35(6):461-468.
    [80]S. Nakazawa, T. Yokomori, M. Mizomoto. Flame synthesis of carbon nanotubes in a wall stagnation flow[J], Chemical physics letters,2005, 403(1-3):158-162.
    [81]S. Woo, Y. Hong, O. Kwon. Flame-synthesis limits and self-catalytic behavior of carbon nanotubes using a double-faced wall stagnation flow burner[J]. Combustion and Flame,2009,156(10):1983-1992.
    [82]潘春旭,L. Yuan扩散火焰合成碳纳米管研究[J].新型炭材料,2001,16(3):24-27.
    [83]M. D. Rumminger, G. T. Linteris. The role of particles in the inhibition of counterflow diffusion flames by iron pentacarbonyl[J]. Combustion and Flame, 2002,128(1-2):145-164.
    [84]M. J. Height, J. B. Howard, J. W. Tester, et al. Flame synthesis of single-walled carbon nanotubes[J]. Carbon,2004,42(11):2295-2307.
    [85]R. L. Vander Wal, L. J. Hall. Ferrocene as a precursor reagent for metal-catalyzed carbon nanotubes:competing effects [J]. Combustion and Flame,2002,130(1-2):27-36.
    [86]R. L. Vander Wal, L. J. Hall. Flame synthesis of Fe catalyzed single-walled carbon nanotubes and Ni catalyzed nanofibers:growth mechanisms and consequences [J]. Chemical physics letters,2001,349(3-4):178-184.
    [87]R. L. Vander Wal. Fe-catalyzed single-walled carbon nanotube synthesis within a flame environment [J]. Combustion and Flame,2002,130(1-2):37-47.
    [88]R. L. Vander Wal, J. Lee, G. M. Berger. Optimization of flame synthesis for carbon nanotubes using supported catalyst[J]. The Journal of Physical Chemistry B,2002,106(51):13122-13132.
    [89]S. Hofmann, C. Ducati, J. Robertson, et al. Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition[J]. Applied Physics Letters,2003,83:135.
    [90]Y. Li, W. Kim, Y. Zhang, et al. Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes[J]. The Journal of Physical Chemistry B,2001,105(46):11424-11431.
    [91]C. L. Cheung, A. Kurtz, H. Park, et al. Diameter-controlled synthesis of carbon nanotubes[J]. The Journal of Physical Chemistry B,2002,106(10):2429-2433.
    [92]H. Peng, X. Sun, F. Cai, et al. Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres[J]. Nature nanotechnology, 2009,4(11):738-741.
    [93]Q. Li, X. Zhang, R. F. DePaula, et al. Sustained growth of ultralong carbon nanotube arrays for fiber spinning[J]. Adv. Mater,2006,18:3160-3163.
    [94]T. Chen, S. Wang, Z. Yang, et al. Flexible, Light-Weight, Ultrastrong, and Semiconductive Carbon Nanotube Fibers for a Highly Efficient Solar Cell[J]. Angewandte Chemie International Edition,2011,50(8):1815-1819.
    [95]K. Hata, D. N. Futaba, K. Mizuno, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J]. Science,2004, 306(5700):1362.
    [96]T. Yamada, A. Maigne, M. Yudasaka, et al. Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts[J]. Nano letters,2008,8(12):4288-4292.
    [97]P. B. Amama, C. L. Pint, L. McJilton, et al. Role of water in super growth of single-walled carbon nanotube carpets[J]. Nano letters,2008,9(1):44-49.
    [98]T. Yamada, T. Namai, K. Hata, et al. Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts [J]. Nature nanotechnology,2006,1(2):131-136.
    [99]J. Hu, C. Yang, J. Huang. Vertically-aligned carbon nanotubes prepared by water-assisted chemical vapor deposition[J]. Diamond and related materials, 2008,17(12):2084-2088.
    [100]S. Patole, P. Alegaonkar, H. C. Shin, et al. Alignment and wall control of ultra long carbon nanotubes in water assisted chemical vapour deposition[J]. Journal of Physics D:Applied Physics,2008,41:155311.
    [101]H. Liu, Y. Zhang, R. Li, et al. Aligned synthesis of multi-walled carbon nanotubes with high purity by aerosol assisted chemical vapor deposition: Effect of water vapor[J]. Applied surface science,2010,256(14):4692-4696.
    [102]H. Nishino, S. Yasuda, T. Namai, et al. Water-assisted highly efficient synthesis of single-walled carbon nanotubes forests from colloidal nanoparticle catalysts[J]. The Journal of Physical Chemistry C,2007,111(48):17961-17965.
    [103]D. N. Futaba, K. Hata, T. Yamada, et al. Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis[J]. Physical Review Letters,2005,95(5):56104.
    [104]S. Patole, P. Alegaonkar, H. C. Lee, et al. Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes[J]. Carbon,2008,46(14):1987-1993.
    [105]S. Chakrabarti, K. Gong, L. Dai. Structural evaluation along the nanotube length for super-long vertically aligned double-walled carbon nanotube arrays[J]. The Journal of Physical Chemistry C,2008,112(22):8136-8139.
    [106]Y. H. Yun, V. Shanov, Y. Tu, et al. Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition[J]. The Journal of Physical Chemistry B,2006, 110(47):23920-23925.
    [107]S. Patole, J. Park, T. Lee, et al. Growth interruption studies on vertically aligned 2-3 wall carbon nanotubes by water assisted chemical vapor deposition[J]. Applied Physics Letters,2008,93:114101.
    [108]X. Li, X. Zhang, L. Ci, et al. Air-assisted growth of ultra-long carbon nanotube bundles[J]. Nanotechnology,2008,19:455609.
    [109]G. Y. Xiong, D. Wang, Z. Ren. Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia[J]. Carbon,2006,44(5):969-973.
    [110]B. Zhao, D. N. Futaba, S. Yasuda, et al. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts[J]. ACS nano,2008,3(1):108-114.
    [111]D. N. Futaba, K. Hata, T. Namai, et al.84% Catalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach[J]. The Journal of Physical Chemistry B,2006, 110(15):8035-8038.
    [112]L. Zhu, Y. Xiu, D. W. Hess, et al. Aligned carbon nanotube stacks by water-assisted selective etching[J]. Nano letters,2005,5(12):2641-2645.
    [113]H. Ago, N. Uehara, N. Yoshihara, et al. Gas analysis of the CVD process for high yield growth of carbon nanotubes over metal-supported catalysts[J]. Carbon,2006,44(14):2912-2918.
    [114]T. Hiraoka, T. Yamada, K. Hata, et al. Synthesis of single-and double-walled carbon nanotube forests on conducting metal foils[J]. Journal of the American Chemical Society,2006,128(41):13338-13339.
    [115]M. Zhang, S. Fang, A. A. Zakhidov, et al. Strong, transparent, multifunctional, carbon nanotube sheets[J]. Science,2005,309(5738):1215.
    [116]H. Peng, Y. Zhu, D. E. Peterson, et al. Nanolayered carbon/silica superstructures via organosilane assembly[J]. Advanced Materials,2008, 20(6):1199-1204.
    [117]H. Peng, M. Jain, D. E. Peterson, et al. Composite carbon nanotube/silica fibers with improved mechanical strengths and electrical conductivities [J]. Small,2008,4(11):1964-1967.
    [118]H. Peng. Aligned carbon nanotube/polymer composite films with robust flexibility, high transparency, and excellent conductivity [J]. Journal of the American Chemical Society,2008,130(1):42-43.
    [119]H. Peng, X. Sun. Highly aligned carbon nanotube/polymer composites with much improved electrical conductivities [J]. Chemical physics letters,2009, 471(1-3):103-105.
    [120]X. Sun, T. Chen, S. Huang, et al. Chromatic polydiacetylene with novel sensitivity [J]. Chem. Soc. Rev.,2010,39(11):4244-4257.
    [121]L. Li, Z. Yang, H. Gao, et al. Vertically Aligned and Penetrated Carbon Nanotube/Polymer Composite Film and Promising Electronic Applications[J]. Advanced Materials,2011:
    [122]S. Huang, L. Li, Z. Yang, et al. A New and General Fabrication of an Aligned Carbon Nanotube/Polymer Film for Electrode Applications [J]. Advanced Materials,2011,23(40):4707-4710.
    [123]Z. Chen, J. Appenzeller, Y. M. Lin, et al. An integrated logic circuit assembled on a single carbon nanotube[J]. Science,2006,311(5768):1735-1735.
    [124]I. Y. Y. Bu, S. P. Oei. Hydrophobic vertically aligned carbon nanotubes on Corning glass for self cleaning applications [J]. Applied surface science,2010, 256(22):6699-6704.
    [125]J. Yang, R. Zhang, Y. Xu, et al. Direct electrochemistry study of glucose oxidase on Pt nanoparticle-modified aligned carbon nanotubes electrode by the assistance of chitosan-CdS and its biosensoring for glucose[J]. Electrochemistry Communications,2008,10(12):1889-1892.
    [126]尹峰,赵紫霞,吴宝艳,等.基于多壁碳纳米管和聚丙烯胺层层自组装的 葡萄糖生物传感器[J].分析化学,2007,35(7):1021-1024.
    [127]W. D. Zhang, B. Xu. A solid-state pH sensor based on WO3-modified vertically aligned multi walled carbon nanotubes [J]. Electrochemistry Communications,2009,11 (5):1038-1041.
    [128]M. Penza, R. Rossi, M. Alvisi, et al. Characterization of metal-modified and vertically-aligned carbon nanotube films for functionally enhanced gas sensor applications[J]. Thin solid films,2009,517(22):6211-6216.
    [129]L. Yang, Y. Xu, X. Wang, et al. The application of β-cyclodextrin derivative functionalized aligned carbon nanotubes for electrochemically DNA sensing via host-guest recognition[J]. Analytica chimica acta,2011,689(1):39-46.
    [130]K. Jiang, Q. Li, S. Fan. Nanotechnology:Spinning continuous carbon nanotube yarns[J]. Nature,2002,419(6909):801-801.
    [131]X. Zhang, K. Jiang, C. Feng, et al. Spinning and Processing Continuous Yarns from 4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays[J]. Advanced Materials,2006,18(12):1505-1510.
    [132]K. Liu, Y. Sun, L. Chen, et al. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties [J]. Nano letters,2008,8(2):700-705.
    [133]C. Feng, K. Liu, J. S. Wu, et al. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes[J]. Advanced Functional Materials,2010,20(6):885-891.
    [134]W. Fu, L. Liu, K. Jiang, et al. Super-aligned carbon nanotube films as aligning layers and transparent electrodes for liquid crystal displays[J]. Carbon, 2010,48(7):1876-1879.
    [135]L. Xiao, Z. Chen, C. Feng, et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers [J]. Nano letters,2008,8(12):4539-4545.
    [136]H. Nishijima, S. Kamo, S. Akita, et al. Carbon-nanotube tips for scanning probe microscopy:Preparation by a controlled process and observation of deoxyribonucleic acid[J]. Applied Physics Letters,1999,74:4061.
    [137]S. Akita, Y. Nakayama, S. Mizooka, et al. Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope [J]. Applied Physics Letters, 2001,79:1691.
    [138]H. Tanaka, S. Akita, L. Pan, et al. Daisylike field-emission images from standalone open-ended carbon nanotube[J]. Japanese Journal of Appied Physics Part2 Letters,2004:197-199.
    [139]T. Chen, Z. Cai, Z. Yang, et al. Nitrogen-Doped Carbon Nanotube Composite Fiber with a Core-Sheath Structure for Novel Electrodes[J]. Advanced Materials,2011,23(40):4620-4625.
    [140]O. Suekane, A. Nagataki, Y. Nakayama. Current-induced curing of defective carbon nanotubes[J]. Applied Physics Letters,2006,89:183110.
    [141]M. Zhang, K. R. Atkinson, R. H. Baughman. Multifunctional carbon nanotube yarns by downsizing an ancient technology [J]. Science,2004, 306(5700):1358.
    [142]C. Wang, K. Ryu, A. Badmaev, et al. Metal Contact Engineering and Registration-Free Fabrication of Complementary Metal-Oxide Semiconductor Integrated Circuits Using Aligned Carbon Nanotubes[J]. ACS nano,2011, 5(2):1147-1153.
    [143]L. Qu, L. Dai, M. Stone, et al. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off[J]. Science,2008,322(5899):238-242.
    [144]A. Cao, P. L. Dickrell, W. G. Sawyer, et al. Super-compressible foamlike carbon nanotube films[J]. Science,2005,310(5752):1307.
    [145]J. E. Trancik, S. C. Barton, J. Hone. Transparent and catalytic carbon nanotube films[J]. Nano letters,2008,8(4):982-987.
    [146]H. Zhu, H. Zeng, V. Subramanian, et al. Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes [J]. Nanotechnology,2008, 19:465204.
    [147]W. J. Lee, E. Ramasamy, D. Y. Lee, et al. Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes [J]. ACS Applied Materials & Interfaces,2009,1(6):1145-1149.
    [148]J. G. Nam, Y. J. Park, B. S. Kim, et al. Enhancement of the efficiency of dye-sensitized solar cell by utilizing carbon nanotube counter electrode[J]. Scripta Materialia,2010,62(3):148-150.
    [149]J. Van De Lagemaat, T. M. Barnes, G. Rumbles, et al. Organic solar cells with carbon nanotubes replacing InO:Sn as the transparent electrode[J]. Applied Physics Letters,2006,88:233503.
    [150]S. Tanaka, K. Mielczarek, R. Ovalle-Robles, et al. Monolithic parallel tandem organic photovoltaic cell with transparent carbon nanotube interlayer[J]. Applied Physics Letters,2009,94(11):113506.
    [151]S. L. Kim, S. R. Jang, R. Vittal, et al. Rutile TiO 2-modified multi-wall carbon nanotubes in TiO 2 film electrodes for dye-sensitized solar cells[J]. Journal of applied electrochemistry,2006,36(12):1433-1439.
    [152]C. Y. Yen, Y. F. Lin, S. H. Liao, et al. Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells[J]. Nanotechnology,2008,19:375305.
    [153]E. Ramasamy, W. J. Lee, D. Y. Lee, et al. Spray coated multi-wall carbon nanotube counter electrode for tri-iodide< span>< img height=[J]. Electrochemistry Communications,2008,10(7):1087-1089.
    [154]M. Gratzel. Recent advances in sensitized mesoscopic solar cells[J]. Accounts of chemical research,2009,42(11):1788-1798.
    [155]A. J. Miller, R. A. Hatton, S. R. P. Silva. Interpenetrating multiwall carbon nanotube electrodes for organic solar cells[J]. Applied Physics Letters,2006, 89:133117.
    [156]A. B. Dalton, S. Collins, E. Munoz, et al. Super-tough carbon-nanotube fibres[J]. Nature,2003,423(6941):703-703.
    [157]K. Koziol, J. Vilatela, A. Moisala, et al. High-performance carbon nanotube fiber[J]. Science,2007,318(5858):1892-1895.
    [158]H. Peng, M. Jain, Q. Li, et al. Vertically aligned pearl-like carbon nanotube arrays for fiber spinning[J]. Journal of the American Chemical Society,2008, 130(4):1130-1131.
    [159]Y. Luo, Z. Gong, M. He, et al. Fabrication of high-quality carbon nanotube fibers for optoelectronic applications [J]. Solar Energy Materials and Solar Cells, 2012,97:78-82.
    [160]Z. Pan, H. Zhu, Z. Zhang, et al. Patterned growth of vertically aligned carbon nanotubes on pre-patterned iron/silica substrates prepared by sol-gel and shadow masking[J]. The Journal of Physical Chemistry B,2003, 107(6):1338-1344.
    [161]Y. J. Jung, B. Wei, R. Vajtai, et al. Mechanism of selective growth of carbon nanotubes on SiO2/Si patterns[J]. Nano letters,2003,3(4):561-564.
    [162]Q. Gong, Z. Li, D. Li, et al. Fabrication and structure:a study of aligned carbon nanotube/carbon nanocomposites[J]. Solid state communications,2004, 131(6):399-404.
    [163]Q. Zhang, W. Zhou, W. Qian, et al. Synchronous growth of vertically aligned carbon nanotubes with pristine stress in the heterogeneous catalysis process [J]. The Journal of Physical Chemistry C,2007, 111(40):14638-14643.
    [164]C. V. Nguyen, K.-J. Chao, R. M. D. Stevens, et al. Carbon nanotube tip probes:stability and lateral resolution in scanning probe microscopy and application to surface science in semiconductors.[J]. Nanotechnology,2001, 12:363-367.
    [165]L. Zhu, D. W. Hess, C. P. Wong. Monitoring carbon nanotube growth by formation of nanotube stacks and investigation of the diffusion-controlled kinetics[J]. The Journal of Physical Chemistry B,2006,110(11):5445-5449.
    [166]R. Andrews, D. Jacques, A. Rao, et al. Continuous production of aligned carbon nanotubes:a step closer to commercial realization[J]. Chemical physics letters,1999,303(5-6):467-474.
    [167]L. Zhang, Z. Li, Y. Tan, et al. Influence of a top crust of entangled nanotubes on the structure of vertically aligned forests of single-walled carbon nanotubes[J]. Chemistry of materials,2006,18(23):5624-5629.
    [168]P. Mahanandia, K. K. Nanda. A one-step technique to prepare aligned arrays of carbon nano tubes [J]. Nanotechnology,2008,19:155602.
    [169]C. Liu, Y. Chen, Y. Tzeng. Effects of carbon content in iron catalyst coatings on the growth of vertically aligned carbon nanotubes on smooth silicon surfaces by thermal chemical vapor deposition[J]. Diamond and related materials,2004, 13(4):1274-1280.
    [170]T. Chen, S. Wang, Z. Yang, et al. Flexible, Light-Weight, Ultrastrong, and Semiconductive Carbon Nanotube Fibers for a Highly Efficient Solar Cell[J]. Angewandte Chemie International Edition,2011,50(8):1815-1819.
    [171]K. Liu, P. Liu, K. Jiang, et al. Effect of carbon deposits on the reactor wall during the growth of multi-walled carbon nanotube arrays[J]. Carbon,2007, 45(12):2379-2387.
    [172]B. Vigolo, A. Penicaud, C. Coulon, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes[J]. Science,2000,290(5495):1331.
    [173]L. Zheng, X. Zhang, Q. Li, et al. Carbon-Nanotube Cotton for Large-Scale Fibers[J]. Advanced Materials,2007,19(18):2567-2570.
    [174]P. Ajayan. Nanotubes from carbon[J]. Chemical reviews,1999, 99(7):1787-1800.
    [175]B. W. Clare, D. L. Kepert. Opening of carbon nanotubes by addition of oxygen[J]. Inorganica chimica acta,2003,343:1-17.
    [176]S. Tsang, Y. Chen, P. Harris, et al. A simple chemical method of opening and filling carbon nanotubes[J]. Nature,1994,372:159-162.
    [177]W. S. Kim, J. Lee, T. W. Jeong, et al. Improved emission stability of single-walled carbon nanotube field emitters by plasma treatment[J]. Applied Physics Letters,2005,87:163112.
    [178]S. Huang, L. Dai. Plasma etching for purification and controlled opening of aligned carbon nanotubes [J]. The Journal of Physical Chemistry B,2002, 106(14):3543-3545.
    [179]D. M. Manos, D. L. Flamm. Plasma Etching:An Introduction[M]. Academic Press, Inc.(United States).1989.
    [180]J. Chen, Y. Cao. Development of novel conjugated donor polymers for high-efficiency bulk-heteroj unction photovoltaic devices [J]. Accounts of chemical research,2009,42(11):1709-1718.
    [181]P. M. Ajayan, J. M. Tour. Materials science:nanotube composites[J]. Nature, 2007,447(7148):1066-1068.
    [182]M. Moniruzzaman, K. I. Winey. Polymer nanocomposites containing carbon nanotubes[J]. Macromolecules,2006,39(16):5194-5205.
    [183]W. Wang, K. A. S. Fernando, Y. Lin, et al. Metallic single-walled carbon nanotubes for conductive nanocomposites [J]. Journal of the American Chemical Society,2008,130(4):1415-1419.
    [184]E. Kymakis, E. Koudoumas, I. Franghiadakis, et al. Post-fabrication annealing effects in polymer-nanotube photovoltaic cells[J]. Journal of Physics D:Applied Physics,2006,39:1058-1062.
    [185]A. F. Nogueira, B. S. Lomba, M. A. Soto-Oviedo, et al. Polymer solar cells using single-wall carbon nanotubes modified with thiophene pedant groups[J]. The Journal of Physical Chemistry C,2007,111(49):18431-18438.
    [186]S. Lee, J. Y. Kim, S. H. Youn, et al. Preparation of a nanoporous CaCO3-coated TiO2 electrode and its application to a dye-sensitized solar cell[J]. Langmuir,2007,23(23):11907-11910.
    [187]T. N. Murakami, S. Ito, Q. Wang, et al. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes[J]. Journal of the Electrochemical Society,2006,153:A2255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700