用户名: 密码: 验证码:
三角鲂转录组分析与不同地理种群遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三角鲂(Megalobrama terminalis),属鲤科(Cyprinidae)、鲂属(Megalobrama),主要分布在东南沿海,长江水系、黄河水系、黑龙江水系以及俄罗斯远东地区,是鲂属中分布最广泛的鱼类。但野生三角鲂资源量逐年减少,为了保护三角鲂的野生资源,同时建立三角鲂良种选育平台,本实验室以钱塘江三角鲂原种为亲本,建立了50个全同胞家系。F1代5月龄时,随机在1个家系中选取200尾个体,测量体长体重后,分别选取体重的前5%(10尾)个体的肌肉、肝脏和脑组织提RNA,各组织的RNA等量混合成1个样品L,同样分别选取体重的后5%(10尾)个体的肌肉、肝脏和脑组织提RNA,各组织的RNA等量混合成1个样品S。L和S的总RNA提取mRNA后,本实验室按照Ion Torrent测序仪200bp读长的转录组测序指南,构建出L和S的cDNA文库;制备318芯片后,经本实验室的Ion Torrent测序仪测序。采用生物信息学方法比较分析三角鲂F1代中L和S两个转录组;利用微卫星搜索软件搜索三角鲂F1代转录组中的SSR序列,筛选出三角鲂的分子标记,用于三角鲂不同地理种群的遗传多样性研究。具体研究结果如下:
     (1)依据Ion Torrent测序仪200bp读长的转录组测序指南和相关试剂盒,构建了三角鲂F1代L和S的cDNA文库。经检测,L和S cDNA文库浓度分别为5.06ng/μL和34.8ng/μL,均大于5ng/μL,符合Ion Torrent RNA-Seq测序要求,文库长度均约200bp,表明三角鲂F1代L和S的cDNA文库构建成功。
     (2)利用318芯片,在Ion Torrent PGMTM测序仪上测序,获得了三角鲂F1代L和S的转录组数据。其中,L和S分别获得2,163,601个raw reads和3,893,877个raw reads。下机序列两次去除引物、接头及短序列后,L获得1,987,905cleaned reads;S得到3,795,177cleaned reads。L所有cleaned reads成功拼接出27,673contigs,其中N50为156bp,平均长度为164bp (101bp-2,824bp); S所有cleaned reads成功拼接出78,370contigs,其中N50为152bp,平均长度为162bp(101bp-3,376bp)。与NR蛋白数据库比对,L和S分别比对上15,786和38,923contigs,鉴定出10,800和21,718个unique protein。 GO注释中,L和S分别有3486个contigs、7134个contigs注释上,这些contigs被分为三大生物类别。KEGG分析中,L有28个生长相关的转录本,S有117个生长相关的转录本。三角鲂F1代转录组序列经微卫星搜索软件搜索,L有118个微卫星序列,S有383个微卫星序列,L和S中可用于设计微卫星引物的序列分别为46和143个。利用三角鲂的SSR序列开发了81对微卫星引物,最终筛选出2个可以稳定扩增出目的条带的微卫星位点。
     (3)利用本实验室开发的30个多态性较高的团头鲂微卫星位点,在三角鲂中跨种扩增,筛选出能稳定扩增出目的条带的位点13个,其中有11个位点在三角鲂中具有多态性。基于三角鲂转录组开发的2个微卫星位点及跨种扩增筛选出的11个微卫星位点的观测杂合度(Ho)与期望杂合度(He)的分布范围分别为0.7000-0.9667和0.6480-0.8264;多态信息含量(PIC)为0.5710-0.7885,均大于0.5,表明这13个位点可用于三角鲂遗传多样性研究。
     (4)利用13个位点对三角鲂钱塘江、北江、金沙河水库及黑龙江等4个群体分析遗传多样性。三角鲂4个群体的平均有效等位基因数在4.0196与4.4093之间,观测杂合度分布于0.4至0.9667之间,期望杂合度分布在0.6073到0.8661范围内。固定指数Fst的遗传分化研究指出,北江群体与钱塘江群体、北江群体与金沙河群体间均存在中等程度的遗传分化(0.05     以上研究结果为三角鲂后期选育个体大、生长快的良种工作奠定基础。
Megalobrama terminalis, belonging to Family Cyprinidae, Genus Megalobrama, is the most widely distributed of bream genus which mainly distrubuted in the southeast coast area, Yangtze River, Yellow River, Heilongjiang River and the Russian Far East. However, due to the decreasing of the wild resource of M. terminalis, thus, in order to protect the wild resources and establish the breeding program of this species. In our laboratory,50full-sib families were bred using the broodstock original from Qiantang River. After,200five-month-old fishes from a family of F1generation were randomly selected for measuring body weight and length, of which,10(5%) fishes have highest growth rate (L) and10(5%) fishes have lowest growth rate (S) were sampled. The tissues of muscles, liver and brain were collected, extracted RNA and equally pooled into two separate samples of L and S, respectively. The Ion Torrent sequencing with the read length of200bp was used in this present study following to manufacture's instruction. Briefly, after mRNA was isolated from total RNA of L and S, cDNA libraries of L and S were synthesized,318chip preparation, and sequencing using the Ion Torrent sequencer. Bioinformatics analysis was used to compare the differences between two transcriptomes of M. terminalis L and S in F1generation; using software for microsatellite searching to find out the SSRs in M. terminalis transcriptomes, discovery molecular markers in M. terminalis, study on genetic diversity of M. terminalis by using different geographic populations. The present study results were revealed following:
     (1) Based on the Ion Torrent sequencing with read length of200bp instruction and related kits, two cDNA libraries of L and S in F1generation of M. terminalis were constructed. After measuring, the concentration of cDNA library of L and S was5.06ng/μL and34.8ng/μL, respectively, which were higher than5ng/μL, accordance with the requirements of Ion Torrent RNA-Seq sequencing; and the length of the libraries was about200bp in average, which showed that the cDNA libraries of L and S in F1generation of M. terminalis were successfully constructed.
     (2) Using318chips, the transcriptomes of M. terminalis L and S in Fi generation were achieved from the Ion Torrent PGMTM sequencing. The L and S obtained2,163,601and3,893,877raw reads, respectively. After removal twice of the primer sequences, linkers and short sequences, the L obtained1,987,905cleaned reads and the S obtained3,795,177cleaned reads. The all cleaned reads of L were successfully assembled to27,673contigs, where N50was156bp and the average length was164(from101to2,824) bp. The all cleaned reads of S were successfully assembled to78,370contigs, where N50was152bp and the average length was162(101-3,376) bp. Compared with NR protein database, the L and S was hit to15,786and38,923contigs, and identification of10,800and21,718unique protein, respectively. In GO annotation, a number of3486contigs (in the L) and7134contigs (in the S) were annotated and divided into three biological categories. In KEGG analysis, the L had28growth-related transcripts, and the S had117growth-related transcripts. Through microsatellite searching software in the transcriptomes of M. terminalis L and S in F1generation,118and383microsatellite sequences were identified in the L and S, respectively. Among obtained microsatellites,46(in the L) and143(in the S) could be used to design microsatellite primer sequences. Using the M. terminalis SSR sequences,81microsatellite primer pairs were developed, and only two stable microsatellites were selected to amplify the target band of microsatellite loci.
     (3) Using of30previously developed high polymorphic microsatellite loci from blunt snout bream, a total of13microsatellite loci were amplified target band in M. terminalis by cross-species amplification. Of which these microsatellite loci,11were polymorphism. Based on two microsatellite loci from transcriptome profile and11microsatellite loci from cross-species amplification, the observed heterozygosity (Ho), expected heterozygosity (He) was calculated as in range of0.7000-0.9667and0.6480-0.8264, respectively; the polymorphism information content (PIC) was estimated in ranging of0.5710-0.7885(were higher than0.5). These13microsatellite loci may be used in studying on bream genetic diversity.
     (4) The13developed microsatellite loci were used to analyze the genetic diversity of four populations distributing in Qiantang River, the Beijiang River, Jinsha Reservoir and Heilongjiang. The average number of effective alleles of the four M. terminalis populations was in ranging of4.0196-4.4093. The observed heterozygosity and expected heterozygosity distributed between0.4-0.9667and0.8661-0.6073, respectively. The genetic differentiation fixation index Fst in the North River and Qiantang River population, the Beijiang River and Jinshahe Reservoir population was0.05     The paper provides basic information for further selection of large body and fast-growing of M. terminalis broodstock.
引文
1.蔡鸣俊,张敏莹,曾青兰,刘焕章.鲂属鱼类形态度量学研究.水生生物学报,2001,5(6):631-635
    2.曹立文,陈湘粦,赵俊.南水水库鲂成鱼食性初探.中山大学学报论丛,2001,21(3):36-38
    3.曹立文,赵俊,陈湘粦.南水水库鲂鱼繁殖生物学研究.韶关学院学报(自然科学版),2001,22(9):118-122
    4.曹立文,陈湘麟,赵俊.南水水库鲂鱼的年龄与生长研究.水产科学,2001,20(3):11-14
    5.曹文宣.梁子湖的团头鲂与三角鲂.水生生物学集刊,1960,(1):57-78
    6.陈金平,董崇智,孙大江,王,张树义.微卫星标记对黑龙江流域大麻哈鱼遗传多样性的研究.水生生物学报,2004,28(6):607-612
    7.陈马康,童合一,陈兆祥,高键.钱塘江几种经济鱼类的生长研究.生态学报,1984,4(2):181-187
    8.董秋芬,刘楚吾,郭昱嵩,刘丽,吴勇.9种石斑鱼遗传多样性和系统发生关系的微卫星分析.遗传,2007,29(7):837-843
    9.杜慧霞.仿刺参转录组分析与遗传图谱构建.[博士学位论文].青岛:中国海洋大学,2013
    10.方展强,陈军,郑文彪,伍育源,肖智.鳜野生群体与养殖群体的RAPD分析.大连水产学院学报,2005,20(1):16-19
    11.傅建军,李家乐,沈玉帮,王荣泉,宣云峰,徐晓雁,陈勇.草鱼野生群体遗传变异的微卫星分析.遗传,2013,35(2):192-201
    12.高焕,孔杰.串联重复序列的物种差异及其生物功能.动物学研究,2005,26(5):555-556
    13.高泽霞,王卫民,周小云.DNA分子标记技术及其在水产动物遗传上的应用研究.生物技术通报,2007,(2):109-112
    14.葛学亮,尹洪滨,毕冰,孙中武.黄颡鱼遗传图谱构建及生长相关性状的QTL定位.水产学报,2010,34(2):185-193
    15.黄道明,林永泰,万成炎,江鸿舒.鲂成熟卵巢发育的组织学观察.水利渔业,1997,17(2):3-7
    16.黄道明,林永泰,万成炎,刘元军.浮桥河水库鲂繁殖生物学的研究.水生生物学报,1997,21(1):15-23
    17.黄道明,林永泰,万成炎.金沙河水库鲂的年龄与生长.水利渔业,1996,(05):16-21
    18.江仁党,肖剑平,黄毅春,杨华.三角鲂规模人工繁殖和苗种培育技术要点.动物科学与动物医学,2002,19(5):59-60
    19.匡刚桥,刘臻,鲁双庆,刘红玉,张建社,唐建洲.FIASCO法蹄选鳜鱼微卫星标记.中国水产科学,2007a,14:608-614
    20.赖瑞芳,张秀杰,李艳和,吴俊颉,杨东辉,王卫民.鲂属鱼类线粒体基因组的比较急其系统发育分析.水产学报,2014,38(1):1-14
    21.李思发,朱泽闻,邹署明,赵金良,蔡完其.鲂属团头鲂、三角鲂及广东鲂种间遗传关系及种内遗传差异.动物学报,2002,48(3):339-345
    22.林国辉,方展强,林爱薇.三角鲂(Megalobrama terminalis)脑垂体的超微结构.华南师范大学学报(自然科学版),2003,(4):93-99
    23.林能峰,许斌福,曾红.PCR法筛选大黄鱼微卫星DNA.福建畜牧兽医,2005,27:2
    24.林能锋,苏永全,丁少雄,王军.大黄鱼微卫星标记引物在石首鱼科几个近缘种中的通用性研究.中国水产科学,2008,15(2):237-343
    25.林小植,罗毅平.野生三角鲂幼鱼鱼体的化学组成及能量密度.贵州农业科学,2011,39(7):129-132
    26.林永泰,万成炎,黄道明,王德盛,李明波.鲂成鱼养殖试验.水利渔业,1994,14(5):16,17,33
    27.刘焕章,汪亚平.厚领鲂种群遗传结构及哑基因问题.水生生物学报,1997,21(2):194-196
    28.刘丽,刘楚吾,郭昱嵩,董秋芬,徐田军.青石斑鱼微卫星DNA标记的筛选及群体遗传多样性分析.中国水产科学,2008,15(1):22-29
    29.刘新轶,谢楠,王宇希,潘彬斌,马恒甲,黄辉.三种鲂属鱼类肌肉营养组成比较研究.杭州农业与科技,2013,6:25-27
    30.陆奎贤.珠江水系渔业资源.广州:广东科技出版社,1990:146-149
    31.陆丽君,马爱军,王新安,岳亮,孟雪松,翟介明,谭林涛,侯仕营.5个红鳍东方纯养殖群体微卫星DNA遗传多态性分析.渔业科学进展,2013,34(4):27-33
    32.陆清儿,童富淡,李忠全,李行先.三角鲂形态特征和胰岛素生长因子-Ⅰ基因的Ⅰ基因的.中国水产科学,2005,12(4):483-486
    33.罗云林.鲂属鱼类的分类整理.水生生物学报,1990,14(2):160-165
    34.马洪雨,岳永生,于艳,郭金峰,王慧.鲤微卫星引物对麦穗鱼的适用性初步研究.水生生物学报,2007,31(2):278-281
    35.马旭洲.黑龙江鲂生物学研究.[硕士学位论文].哈尔滨:东北农业大学,2002
    36.蒋鹏,史建全,张妍,祁洪芳,孙效文.应用微卫星多态分析青海湖裸鲤(Gymnocypris przewalski (Kessler))六个野生群体的遗传多样性.生态学报,2009,29(2):939-945
    37.潘炯华.广东淡水鱼类志.广州:广东科技出版社,1991:97-100
    38.庞世勋,苏植逢,谢刚,许淑英,叶星,祁宝伦,潘德博,余德光.江河网箱养殖广东鲂成鱼试验.水利渔业,1998,18(4):35-36
    39.庞世勋,谢刚,许淑英,叶星,苏植逢,潘德博,祁宝伦,林郎.广东鲂全人工繁殖的研究.上海水产大学学报,1998,7(1):19-24
    40.秦楠,栗东芳,杨瑞馥.高通量测序技术及其在微生物学研究中的应用.微生物学报,2011,51(4):445-457
    41.全迎春,梁利群,孙效文,妖昆,雷清泉.斑马鱼微卫星分子标记检测鲤鱼种间多态性.中国水产科学,2006,13(2):300-304
    42.宋文,王艺舟,祝东梅,聂竹兰,王卫民.三个地理种群鲂的形态差异与判别分析.水产学杂志,2013,26(4):1-7
    43.童富淡,刘红云.三角鲂IGF-Ⅰ基因的分子克隆及其序列分析.中国农业科学,2004,37(10):1564-1570
    44.童馨,龚世园,喻达辉,黄桂菊,杜博,李色东.凡纳滨对虾(Litopenaeus vannamei)不同世代养殖群体的遗传多样性分析.海洋与湖沼,2009,40(2):214-220
    45.万成炎,高少波,林永泰,黄道明,谢山.鲂鱼种耗氧率与窒息点的研究.水利渔业,1993,13(4):7-9
    46.万成炎,林永泰,黄道明.鲂胚后发育.湖泊科学,1999,11(4):358-362
    47.万成炎,林永泰,黄道明.鲂胚胎的发育.湖泊科学,1999,11(1):70-74
    48.汪亚平,刘焕章.鲂成体组织及胚胎发育过程中同功酶表达的研究.动物学研究,1994,15(增刊):107-118
    49.王金潮,黄毅文.珠江广东鲂的年龄、生长及其最大持续渔获量.水产学报,1990,14(4):313-320
    50.王艺舟,宋文,祝东梅,任龙,王卫民.北江鲂年龄与生长特征的研究.淡水渔业,2013,43(4):35-39
    51.文亚峰,Kentaro Uchiyama,韩文军,Saneyoshi Ueno,谢伟东,徐刚标,Yoshihiko Tsumura.微卫星标记中的无效等位基因.生物多样性,2013,21(1):117-126
    52.吴旭东,连总强,侯玉霞,李力,肖伟.大口鲇微卫星标记在三个鲇形目鱼类种群间适用性研究.水生生物学报,2011,35(4):638-645
    53.谢刚,叶星,许淑英,潘德博,庞世勋,祁宝伦,苏植逢.池养广东鲂仔、稚鱼的生长和食性.水产科技情报,2000,27(6):246-250
    54.谢楠,刘新轶,冯晓宇,郭水荣.鲂属鱼类细胞色素b片段序列分析.现代农业科技,2012,1:290-292
    55.徐鹏,周岭华,相建海.中国对虾微卫星DNA的筛选.海洋与湖沼,2001,32(3):255-25
    56.徐鹏,周令华,田丽萍,相建海.从中国对虾ESTs中筛选微卫星标记的研究.水产学报,2003,27(3):213-218
    57.徐薇,熊邦喜,程志学,汪大炜,应传刚.徐家河水库鲂的生长与繁殖力研究.应用与环境生物学报,2010,16(1):91-95
    58.徐薇,熊邦喜.我国鲂属鱼类的研究进展.水生态学杂志,2008,1(2):7-11
    59.徐薇.徐家河水库鲂的繁殖生物学与资源增殖研究.[硕士学位论文].武汉:华中农业大学,2009
    60.许国焕,贺锡勤,王燕.鲂对十四种常用商品饲料表现消化率的研究.水利渔业,1995(1):19-21
    61.许淑英,谢刚,祁宝伦,潘德博,叶星,庞世勋.广东鲂鱼苗对水产药物敏感性的试验.水利渔业,1998,18(4):4-5
    62.许淑英,叶星,谢刚,苏植逢,庞世勋,潘德博,祁宝伦.广东鲂鱼肉的营养成分.中国水产科学,1998,5(4):111-113
    63.杨林,王慧君,吴柏林,黄国英,周文浩,郭晓红.Ion Torrent PGMTM平台在儿童遗传性疾病诊断中应用初探.中国循证儿科杂志,2013,8(3):210-215
    64.叶星,潘德博,许淑英,苏植逢,谢刚,庞世勋,祁宝伦.水温和盐度对广东鲂胚胎发育的影响.水产学报,1998,22(4):322-327
    65.易少奎,高泽霞,罗伟,段晓克,李艳和,王卫民.团头鲂EST_SSR在厚颌鲂中的跨种扩增及杂交F_1的鉴定.水产学报,2013,37(7):970-977
    66.战爱斌.栉孔扇贝(Chlamys farreri)微卫星标记的筛选及应用.[博士学位论文].青岛:中国海洋大学,2007
    67.张倩倩,陈杰,蒋霞云,邹曙明.不同鳊鲂鱼类群体微卫星DNA指纹图谱的构建和遗传结构分析.水产学报,2014,38(1):15-22
    68.张天时,刘萍,李健,孔杰,王清印.用微卫星DNA技术对中国对虾人工选育群体遗传多样性的研究.水产学报,2005,29(1):6-12
    69.赵俊,陈湘粦,潘炯华.鲂鱼人工繁殖和苗种培育试验.淡水渔业,1993,23(3):22-24
    70.赵俊,王春,陈湘粦,潘金.鲂鱼早期发育的研究.华南师范大学学报(自然科学版),1994(2):51-59
    71.朱松泉.中国淡水鱼类检索.南京:江苏科学技术出版社,1995
    72.朱艳慧,胡朝晖,毕欣,喻长顺,许若思,王晓春.Ion Torrent测序技术检测Ⅰ型神经纤维瘤患者NF1基因突变.临床检验杂志,2013,31(11):821-824
    73.朱新平,林礼堂,夏仕玲.广东鲂的染色体组型.淡水渔业,1990,20(5):12-13
    74. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF. Complementary DNA Sequencing: Expressed Sequence Tags and Human Genome Project. Science, 1991,252(5013): 1651-1656
    75. Albers CA, Lunter G, MacArthur DG, McVean G, Ouwehand WH, Durbin R. Dindel: accurate indel calls from short-read data. Genome research, 2011,21(6):961-973
    76. Bagley MJ, Geller JB. Characterization of microsatellite loci in the vermilion snapper Rhomboplites aurorubens (Percoidei: Lutjanidae). Molecular ecology, 1998,7(8):1089-1990
    77. Bachtog D, Agis M, Imhof M, Schlotterer C. Microsatellite variability differs between dinulcleotide repert motifs: Evidence from Drosophila melanogaster. Mol Biol Evol., 2000,17:1277-1285
    78. Balloux F, Lugon-Moulin N. The estimation of population differentiation with microsatellite markers. Mol Ecol, 2002,11(2):155-165
    79. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Cheetham RK, Cox AJ, Ellis DJ, Flatbush MR, GormLey NA, Humphray SJ, Irving LJ, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature,2008,456:53-59
    80. Castric V, Bernatchez L, Belkhir K, Bonhomme F. Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus Fontinalis Mitchill (Pisces, Salmonidae):a test of alternative hypotheses. Heredity, 2002,89:27-35
    81. Coimbra M, KobayashiK., Koretsugu S, Hasegawa O, Ohara E, Ozaki A. A genetic linkage map of the Japanese flounder, Paralichthys Olivaceus. Aquaculture, 2003, 220:203-218
    82. Conesa A, Gotz S. Blast2 GO: A Comprehensive Suite for Functional Analysis in Plant Genomics. Int J Plant Genomics,2008:619-832
    83. Dowell P, Otto TC, Adi S and Lane MD. Convergence of peroxisome proliferator-activated receptor gamma and Foxol signaling pathways. Journal of Biological Chemistry, 2003,278:45485-45491
    84. Dubut V, MartinJ F, Costedoat C, Chappaz R, Gilles A. Isolation and characterization of polymorphic microsatellite loci in the freshwater fishes Telestes souffia and Telestes muticellus (Teleostei: Cyprinidae). Molecular Ecology Resources,2009,9(3):1001-1005
    85. Elizabeth P. Semiconductors inspire new sequencing technologies. Science, 2010, 327(5970):1190
    86. Erlich HA, Higuchi RG. Methods for nucleic acid amplification. USA Patent, 5314809 A.1994-05-24
    87. Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-Directed, Spatially Addressable Parallel Chemical Synthesis. Science, 1991,251:767-773
    88. Fuller CW, Middendorf LR, Benner SA, Church GM, Harris T, Huang X, Jovanovich SB, Nelson JR, Schloss JA, Schwartz DC, Vezenov DV. The challenges of sequencing by synthesis. Nat Biotechnol, 2009,27(11):1013-1023
    89. Gao Z, Luo W, Liu H, Zeng C, Liu X, Yi S, Wang W. Transcriptome Analysis and SSR/SNP Markers Information of the Blunt Snout Bream (Megalobrama amblycephala). PLoS ONE, 2012,7(8):e42637
    90. Grabherr M G, Haas B J, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raktima R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma F, Birren BW, Nusbaum C, Kerstin L-T, Friedman N and Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnol,2011,29(7):644-652
    91. Hartl DL, Clark AG. Principles of Population Genetics. Sunderland:Sinauer Associates, Inc. Publishers, 1997:139
    92. He S, Mayden R L, Wang X, Wang W, Tang KL, Chen WJ, Chen Y. Molecular phylogenetics of the family Cyprinidae (Actinopterygii:Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene:Further evidence from a nuclear gene of the systematic chaos in the family. Mol Phylogenet Evol, 2008,46(3):818-829
    93. Hieter P and Boguski M. Functional genomics:It's all how you read it. Science, 1997,278:601-602
    94. Hines HC, Zikakis JP, Haenlein GF, Kiddy CG, Trowbridge CL. Linkage relationships among loci of polymorphisms in blood and milk of cattle. Journal of Dairy Science,1981,64(1):71-76
    95. Huang B, Peakall R, Hanna P. Analysis of genetic structure of blacklip abalone (Haliotis rubra) populations using RAPD, minisatellite and microsatellite markers. Marine Biology, 2000,136,207-216
    96. Huang W, Liang XF, Qu CM, Li J and Cao L. Isolation and characterization of twenty-five polymorphic microsatellite markers in Siniperca scherzeri Steindachner and cross-species amplification. J. Genet, 2012,91:el 13-el 17
    97. Isaksson OQ Lindahl A, Nilsson A, Isgaard J.Mechanism of the stimulatory effect of growth hormone on longitudinal bone growth, Endocr Revs, 1987,8:426-438
    98. Ji P, Liu G, Xu J, Wang X, Li J, Zhao Z, Zhang X, Zhang Y, Xu P, Sun X. Characterization of Common Carp Transcriptome:Sequencing, De Novo Assembly, Annotation and Comparative Genomics. PloS One, 2012,7(4):e35152
    99. Ji P, Liu G, Xu J, Wang X, Li J, Zhao Z, Zhang X, Zhang Y, Xu Peng, Sun X. Characterization of Common Carp Transcriptome:Sequencing, De Novo Assembly, Annotation and Comparative Genomics. PloS One, 2012,7(4):e35152
    100.Junemann S, Prior K, Szczepanowski R, Harks I, Ehmke B, Goesmann A, Stoye J, Harmsen D. Bacterial community shift in treated periodontitis patients revealed by ion torrent 16S RNA gene amplicon sequencing. PLoS One, 2012,7(8):e41606
    101.Kofler R, Schlotterer C, Lelley T. SciRoKo:A new tool for whole genome microsatellite search and investigation. Bioinformatics, 2007,23:1683-1685
    102.Ku C-S, Loy EY, Pawitan Y, Chia K-S. Next generation sequencing technologies and their applications. eLS, 2010
    103.Kruglyak S, Durrett R, Schug M D, Aquadro CF. Distribution and abundance of microsatellites in the yeast genome can be explained by a balance between slippage events and point motations. Molecular Biology and Evolution, 2000,17(8): 1210-1219
    104.Lander ES, Consortium IHGS, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, et al. Initial sequencing and analysis of the human genome. Nature,2001,409:860-921
    105.Liao X, Ma HY, Xu GB, Shao CW, Tian YS, Ji XS, Yang F, Chen SL. Construction of agenetic linkage map and mapping of a female-specific DNA marker in half-smooth tongue sole (Cynoglossus semilaevis). Mar Biotechnol (NY),2009, 1(6):699-709
    106.Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M. Comparison of next-generation sequencing systems. BioMed Research International, 2012,2012: 1-11
    107.Mardis ER. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet.,2008,9:387-402
    108.McKernan, KJ, Peckham HE, Costa GL, McLauqhlin SF, Fu Y, Tsung EF, Clouser CR, Duncan C, Ichikawa JK, Lee CC, Zhang Z, Ranade SS, Dimalanta ET, Hyland FC, Sololsky TD, Zhang L, Sheridan A, Fu H, Hendrickson CL, Li B, et al. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res., 2009, 19(9):1527-1541
    109.Mellmann A, Harmsen D, Cummings CA, Bentz EB, Leopold SR, Rico A, Prior K, Szczepanowski R, Ji Y, Zhang W, McLaughlin SF, Henkhaus JK, Leopold B, Bielaszewska M, Prager R, Brzoska PM, Moore RL, Guenther S, Rothberg JM and Karch H. Prospective genomic characterization of the german enterohemorrhagic E.coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One, 2011,6(7): e22751
    110.Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS:an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res, 2007,35 (Web Server issue):182-185
    111.Moore SS, Sargeant LL, King TJ, Mattick JS, Georges M, Hetzel DJ. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics, 1991, 10(3):654-660
    112.Morozova O, and Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics, 2008,92:255-264
    113.Nei M. Genetic distance between populations. Animal Nature, 1972,106:223-229
    114.Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SRA. Light-generated oligonucleotide arrays for rapid DNA-sequence analysis. P Natl Acad Sci USA, 1994,91:5022-5026
    115.Pereiro P, Balseiro P, Romero A, Dios S, Forn-Cuni G, Fuste B, Planas JV, Beltran S,Novoa B, Figueras A. High-throughput sequence analysis of turbot (Scophthalmus maximus) transcriptome using 454-pyrosequencing for the discovery of antiviral immune genes. PLoS ONE, 2012,7(5):e35369
    116.Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC genomics, 2012,13(341):1-13
    117.Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Dayey M, Leamon JH, Johnson K, Milqrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Brantinq A, Nobile JR, Puc BP, Light D, Clark TA, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature, 2011, 475(7356):348-352
    118.Sanger F, Nicklen S and Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A, 1977,74:5463-5467
    119.Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science, 1995, 270:467-470
    120.Shendure J and Ji H. Next-generation DNA sequencing. Nature biotechnology, 2008, 26(10):1135-1145
    121.Shumway M, Cochrane G, and Sugawara H. Archiving next generation sequencing data. Nucleic Acids Res,2009,38 (Database issue):D870-871
    122.Skinner DM, Bettie WQ Blattner FR, Stark BP, Dahlberg JE. The repeat sequence of a hermit crab satellite deoxyribonucleic acid is (TACG) n x (ATCC) n. Biochemistry, 1974,13:3930-3937
    123.Storz G An expanding universe of noncoding RNAs. Science, 2002,296:1260-1263
    124.Takezaki N, Nei M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics,1996,144(1):389-399
    125.Suci A, Uthairat NN, Worawut K. Study of genetic diversity of orange-spotted grouper, Epinephelus coioides, from Thailand and Indonesia using microsatellite markers. Marine Biotechnology. 2005,1-10
    126.Tang JF, Vosman B, Voorrips RE, Linden CG, Van der, Leunissen JAM. Quality SNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species. BMC Bioinformatics, 2006,7:438
    127.Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial Analysis of Gene-Expression. Science, 1995,270:484-487
    128.Wang Y, Ren R,Yu Z. Bioinformatic mining of EST-SSR loci in the Pacific oyster, Crassostrea gigas. Anim Genet, 2008,39:287-289*
    129.Weber J. Informativeness of human (dC-dA) n (dG-dT) n polymorphisms. Genomics,1990,7:524-530
    130.Xu J, Ji P, Wang B, Zhao L, Wang J, Zhao Z, Zhang Y, Li J, Xu P, Sun X. Transcriptome Sequencing and Analysis of Wild Amur Ide (Leuciscus waleckii) Inhabiting an Extreme Alkaline-Saline Lake Reveals Insights into Stress Adaptation. PloS One, 2013,8(4):e59703
    131.Yeh FC, Boyle TJB. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany, 1997,129,157
    132.Zhan A, Hu J, Hu X, Zhou Z, Hui M, Wang S, Peng W, Wang M, Bao Z. Fine-scale population genetic structure of Zhikong scallop (Chlamys farreri):Do local marine currents drive geographical differentiation? Mai Biotechnol, 2009,11(2):223-235.
    133.Zhang, Y, Wang, X, Ryder, OA, Li H, Zhang H, Yong Y and Wang P. Genetic diversity and conservation of endangered animal species. Pure and Applied Chemistry, 2002,74:575-584

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700