用户名: 密码: 验证码:
某些电子化物及分子的非线性光学性质和电场效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性光学在光信息处理、光通讯、光计算机等的发展中有着重要用途,使得非线性光学(NLO)材料及其特性的研究成为目前国际前沿课题之一。寻找和设计高性能的非线性光学材料是这一领域发展的重要基础。以前的研究证明:具有额外电子的电子化物都是具有相当大的非线性光学响应的优良的非线性光学材料。外加电场也能够很大程度上的影响到分子的结构以及性质,从而产生不同寻常的电场效应。本文采用从头算(ab initio)和密度泛函理论(DFT)等方法,对一些电子化物分子的非线性光学性质以及电场对一些重要小分子体系的结构和非线性光学性质的影响进行了深入的理论研究。主要贡献如下:
     一、碱金属掺杂体系常常具有额外电子,是一类新的具有大的NLO (非线性光学)响应的潜在材料。首次完成了对链式多Li掺杂体系H(HC=N-Li)nH (n=1-6)结构与性质的理论研究。有趣的是,这一个系列的体系,随链长n的增大有两类分子出现。对n=1,2,由于额外电子轨道是空的,形成了Li盐分子;而对于n=3-6,额外电子轨道是占据的,形成具有大范围额外电子云的多Li电子化物分子。对于这个系列体系,其NLO性质的依赖性是不寻常的,呈现了阶梯式增长的规律:静态第一超极化率β0的次序为2179和2776(n=1和2)<5492和5487(n=3和4)<15235和15377au(n=5和6)。这表明增加Li原子掺杂数是提高NLO响应的新途径。这些新的知识丰富了NLO材料的设计思想。
     二、使用了强的电子空穴笼受体,具有额外电子的强的给体NH_2M/M_3O (M=Li, Na, K),以及不寻常的σ长链桥(CH_2)_4,我们构造了一个新的A-B-D的增强非线性光学响应的策略,并得到了一种额外电子被束缚在空穴笼中的新的电子化物分子盐e~-@C_(20)F_(19)(CH_2)_4NH_2M~+/M_3O~+(M=Li, Na, and K)。额外电子被给体中NH_2的孤对电子从(超)碱金属原子M/M_3O中推出,然后通过有效的长的σ链桥(CH_2)_4被拉到受体空穴笼C_(20)F_(19)中。由于额外电子的长程转移,新设计的具有额外电子空穴对的电子化物分子展现了大的非线性光学响应。对于e~-@C_(20)F_(19)(CH_2)_4NH_2Na+,其第一超极化率高达9.5×106au,比相关的没有延展链(CH_2)_4NH_2的Na+(e@C_(20)F20)-的第一超极化率400au大2.4×104倍。这个新策略能够非常有效的增大电子化物的NLO响应。另外,文中也展示了不同的桥和碱金属原子序数对β0的影响。这些新的知识可能对设计新的NLO材料和具有笼中电子的电子器件非常重要。
     三、如何使一个中心对称分子产生一个非零的第一超极化率是一个具有挑战性的问题。在本文中,我们使用了一个外加电场来使中心对称的苯分子产生一个非零值的电场诱导第一超极化率(βF)。外加电场破坏了电子云的中心对称性,从而产生了非零值的电场诱导第一超极化率(βF)。展示了两个有趣的规律:(1)对于不同方向电场(Fi, i=X, Y, Z),βF是各向异性的。(2)βF的场依赖性是非单调函数。对每个分子都有一个最优的主导方向的电场值对应于βF的最大值。对苯分子而言,在FY=330×10-4au下达到了其最大第一超极化率3.9×105au。我们也研究了电场对非中心对称的边缘修饰石墨烯带H_2N-(3,3)ZGNR-NO2的影响。在FX=600×10-4au下达到了其最大第一超极化率2.1×107au。外加电场不仅能够使中心对称的分子产生非零的第一超极化率,并且能够显著的增强非中心对称分子的第一超极化率。
     四、聚水,作为一个伪科学的著名的例子,在科学家和公众中广泛传播了40多年。如今,这一传统性的概念仍然应该被保持吗?近期,意外发现了水胡须的存在,在大约1V/的高电场下在长致发射阴极尖的表面,水分子被聚合形成新型的水胡须,一系列的理论研究支持了水胡须的形成。基于我们对结构的演变、分子间相互作用以及分子轨道的研究,我们从理论上发现,在这个水胡须当中,存在着具有不同寻常共价键特性的强的氢键。例如,在二聚体水胡须中,它的氢键与正常的(H_2O)2团簇中的氢键相比,键长要小25%,共价键级(Wiberg键级)是后者的9倍,氢键能则是后者的5倍。这个新的具有不同寻常共价键特性的氢键被命名为共价氢键。由于这个水胡须中的共价氢键足够强,导致了一个非同寻常的聚合效应和水分子的聚合形式,这个线性的水胡须即是真正的一维聚水。很显然,它与具有通常的弱的氢键的水团簇是不同的,显示了至少一维聚水是真实存在的。因此,聚水是一个伪科学的著名的例子这一传统概念应该重新被考虑。
The nonlinear optics plays an important role inmanyfields, such asoptical process of information, optical computer,optical communication,etc. The research of the nonlinear optical materials isone of theinternational frontier topics at the present. The searching and designing ofhigh-performance NLO materials is very important in this field.Someprevious investigations find that the electrides with excess electron areexcellent NLO materials with considerable NLO response. The externalelectric field can affect the structure and properties of molecules and theunordinary electric field effect occurs. In this thesis, thenonlinear opticalproperties of the electride molecules and the electric field effect for thestructures andnonlinear optical properties of some important smallmolecules are investigated by the quantumchemical methods-ab initioand density functional theory (DFT). The maincontributions are as
     followings:
     1. The structures and properties of the multi Li-doped chainmolecules H(HC=N-Li)nH (n=1-6) are researched. Interestingly,with the increasing of chain length n, two kinds of moleculesemerge. For n=1,2, the Li-salt molecules are formed because the excess electron orbitals are unoccupied. But for n=3-6, excesselectron orbitals are occupied and multi-Li electrides withwide-range excess electron cloud are formed. For the multiLi-doped chain system, the dependence on NLO properties isunordinary stepped increase,2179and2776(n=1and2)<5492and5487(n=3and4)<15235and15377au (n=5and6). It isshown that multi-Li doping can generates wide-range excesselectron cloud and large NLO response. The new knowledgeenriches the design ideas for NLO materials.
     2. A new kind of electride molecular salts e~-@C_(20)F_(19)-(CH_2)_4-NH_2M~+/M_3O~+(M=Li, Na, and K) has been designed.We usethe C_(20)F_(19)cageas the strong acceptor,the NH_2M/M_3O (M=Li, Na, and K) as donorsand (CH_2)_4chain as unusual bridge.The new electride molecular salts haveexcess electron, which is favor for enhancing NLO response.The excesselectron is pushed out from the (super)alkali atomM/M_3O by the lone pairof NH_2in the donor and further pulled to inside the hole cage C_(20)F_(19)acceptor through the efficient long σ chain (CH_2)_4bridge.It brings largeNLO response for the new designed electride molecular salts.For thee~-@C+20F_(19)-(CH_2)_4-NH_2Na, its large first hyperpolarizability (β0)reaches up to9.5×106a.u. which is about2.4×104times of400a.u. for therelative e-@C_(20)F20Na+without the extended chain (CH_2)_4-NH_2. It isshown that the new strategy is considerably efficient in enhancing the NLO response for the salts.And the effects of different bridges and alkaliatomic number on β0are also exhibited.
     3. How to generate a non-zero first hyperpolarizability forcentrosymmetric molecule is a challenging question. We use anexternal (pump) electric field to break the centrosymmetry ofelectron cloud and make the centrosymmetric benzene moleculegenerate a non-zero value of the electric field induced firsthyperpolarizability (βF). Two interesting rules are exhibited.1.TheβFis anisotropic for different directional fields (Fi, i=X, Y, Z).2.The field dependence of βFis non-monotonic function, and anoptimum external electric field causes the maximum value of βF.The largest first hyperpolarizability βFreaches up to considerable3.9×105a.u. under FY=330×10-4a.u. for benzene. The externalelectric field also can affectthe NLO properties ofnon-centrosymmetric edge-modified graphene ribbonH_2N-(3,3)ZGNR-NO2. The first hyperpolarizability is2.1×107a.u.under FX=600×10-4a.u. for H_2N-(3,3)ZGNR-NO2.It is shown thatthe external electric field can not only create a non-zero firsthyperpolarizability for centrosymmetric molecule, but alsoremarkably enhance the first hyperpolarizability fornon-centrosymmetric molecule.
     4. Polywater, as a well-known example of pathological sciencedue to as a hypothetically polymerized form of water, hasbeen spread in scientists and the public over40years. Nowadays,this traditional conceptshould still be kept? Noteworthily, anunexpected discovery with unusualsignificance has occurred thatunder high electric field (≈1V/) water moleculesarepolymerizedforming novel water whiskers on the field emitter tipsurface. Theoreticalresearches support the formation of waterwhiskers. Of course,someone will think that would water whisker isreal polywater? A key issues need to be addressed is to find out theunordinary nature of intermolecular interaction in the interestingwater whiskers. Based on our research including evolutions ofstructure, intermolecular interaction and molecular orbitals, truly,wediscover theoretically that unordinary strong H-bond withunordinarycovalent characteristics exists in the water whiskers withvery short H-bond lengths. For example, in the water dimer whisker,its H-bond has the bond length of-25%, covalent bond order(Wiberg bond index) of9times and H-bond energy of5timescompared to the normal H-bond in (H_2O)2cluster. Thus, the newstrong H-bond with unordinarycovalent characteristics is named asthe covalentH-bond. As the covalentH-bond found inwater whiskeris enoughstrong (as new molecular interaction), leading to anextraordinary polymer effect, andfancifully and really polymerized formof water, the linearwater whisker isjust realone-dimensional polywater. Obviously, it is very different from thewater cluster with usual weak H-bond. And an instance oftwo-dimensional polywater is also found theoretically. Certainly, itis indicated that polywater is subsistent, at least forone-dimensional polywater. Therefore, the traditional conceptshould be~-reconsidered thatpolywateris hypothetical andan exampleof pathological science.
引文
[1] Franken P. A., Hill A. E., Peters C. W.,Weinreich G. Generation of OpticalHarmonics[J]. Phys. Rev. Lett.,1961,7(4):118-119.
    [2] Chen C.,Liu G.-z. Recent advances in nonlinear optical and electro-opticalmaterials[J]. Annu. Rev. Mater. Sci.,1986,16(1):203-243.
    [3] Williams D. J. Nonlinear optical properties of organic and polymeric materials[M].Kansas: American Chemical Society,1983.
    [4] Chemla D. S. Nonlinear optical properties of organic molecules and crystals[M].Orlando: Academic Press,1987.
    [5] Frazier C. C., Harvey M. A., Cockerham M. P., Hand H. M., Chauchard E. A.,LeeC. H. Second-harmonic generation in transition-metal-organic compounds[J]. J. Phys.Chem.,1986,90(22):5703-5706.
    [6] Marder S. R., Gorman C. B., Tiemann B. G., Perry J. W., Bourhill G.,Mansour K.Relation Between Bond-Length Alternation and Second ElectronicHyperpolarizability of Conjugated Organic Molecules[J]. Science,1993,261(5118):186-189.
    [7] Marder S. R., Tiemann B., Friedli A., Cheng L.-T.,Blanchard-Desce M. Large FirstHyperpolarizabilities in Push-Pull Polyenes by Tuning Bond Length Alternation andAromaticity[J]. Science,1994,263(5146):511-514.
    [8] Blanchard-Desce M., Alain V., Bedworth P. V., Marder S. R., Fort A., Runser C.,Barzoukas M., Lebus S.,Wortmann R. Large Quadratic Hyperpolarizabilities withDonor–Acceptor Polyenes Exhibiting Optimum Bond Length Alternation: CorrelationBetween Structure and Hyperpolarizability[J]. Chem. Eur. J.,1997,3(7):1091-1104.
    [9] Oudar J. L. Optical nonlinearities of conjugated molecules. Stilbene derivativesand highly polar aromatic compounds[J]. J. Chem. Phys.,1977,67(2):446-457.
    [10] Levine B. F.,Bethea C. G. Second and third order hyperpolarizabilities of organicmolecules[J]. J. Chem. Phys.,1975,63(6):2666-2682.
    [11] Levine B. F.,Bethea C. G. Molecular hyperpolarizabilities determined fromconjugated and nonconjugated organic liquids[J]. Appl. Phys. Lett.,1974,24(9):445-447.
    [12] Oudar J. L.,Chemla D. S. Hyperpolarizabilities of the nitroanilines and theirrelations to the excited state dipole moment[J]. J. Chem. Phys.,1977,66(6):2664-2668.
    [13] Cheng L. T., Tam W., Marder S. R., Stiegman A. E., Rikken G.,Spangler C. W.Experimental investigations of organic molecular nonlinear optical polarizabilities.2.A study of conjugation dependences[J]. J. Phys. Chem.,1991,95(26):10643-10652.
    [14] Huijts R. A.,Hesselink G. L. J. Length dependence of the second-orderpolarizability in conjugated organic molecules[J]. Chem. Phys. Lett.,1989,156(2–3):209-212.
    [15] Dehu C., Meyers F., Hendrickx E., Clays K., Persoons A., Marder S. R.,Bredas J.L. Solvent Effects on the Second-Order Nonlinear Optical Responseof.pi.-Conjugated Molecules: A Combined Evaluation through Self-ConsistentReaction Field Calculations and Hyper-Rayleigh Scattering Measurements[J]. J. Am.Chem. Soc.,1995,117(40):10127-10128.
    [16] Marder S. R., Gorman C. B., Meyers F., Perry J. W., Bourhill G., BrédasJ.-L.,Pierce B. M. A Unified Description of Linear and Nonlinear Polarization inOrganic Polymethine Dyes[J]. Science,1994,265(5172):632-635.
    [17] Bourhill G., Bredas J.-L., Cheng L.-T., Marder S. R., Meyers F., Perry J.W.,Tiemann B. G. Experimental Demonstration of the Dependence of the FirstHyperpolarizability of Donor-Acceptor-Substituted Polyenes on the Ground-StatePolarization and Bond Length Alternation[J]. J. Am. Chem. Soc.,1994,116(6):2619-2620.
    [18] Wu L.-Y., Lin J. T., Luo J., Sun S.-S., Li C.-S., Lin K. J., Tsai C., Hsu C.-C.,LinJ.-L. Syntheses and Reactivity of Ruthenium σ-Pyridylacetylides[J]. Organometallics,1997,16(10):2038-2048.
    [19] Whittall I. R., Humphrey M. G., Persoons A.,Houbrechts S. OrganometallicComplexes for Nonlinear Optics.3.1Molecular Quadratic Hyperpolarizabilities ofEne-, Imine-, and Azo-Linked Ruthenium σ-Acetylides: X-ray Crystal Structure ofRu((E)-4,4‘-C≡CC6H4CHCHC6H4NO2)(PPh3)2(η-C5H5)[J]. Organometallics,1996,15(7):1935-1941.
    [20] Wenseleers W., W. Gerbrandij A., Goovaerts E., Helena Garcia M., Paula RobaloM., J. Mendes P., C. Rodrigues J.,R. Dias A. Hyper-Rayleigh scattering study of
    [small eta]5-monocyclopentadienyl-metal complexes for second order non-linearoptical materials[J]. J. Mater. Chem.,1998,8(4):925-930.
    [21] Cheng L. T., Tam W.,Eaton D. F. Quadratic hyperpolarizabilities of Group6Ametal carbonyl complexes[J]. Organometallics,1990,9(11):2856-2857.
    [22] Nakano M., Minami T., Yoneda K., Muhammad S., Kishi R., Shigeta Y., Kubo T.,Rougier L. a., Champagne B. t., Kamada K.,Ohta K. Giant Enhancement of theSecond Hyperpolarizabilities of Open-Shell Singlet Polyaromatic DiphenalenylDiradicaloids by an External Electric Field and Donor–Acceptor Substitution[J]. J.Phys. Chem. Lett.,2011,2(9):1094-1098.
    [23] Kirtman B., Champagne B.,Bishop D. M. Electric Field Simulation ofSubstituents in Donor Acceptor Polyenes: A Comparison with Ab Initio Predictionsfor Dipole Moments, Polarizabilities, and Hyperpolarizabilities[J]. J. Am. Chem. Soc.,2000,122(33):8007-8012.
    [24] Born M.,Oppenheimer R. Zur Quantentheorie der Molekeln[J]. Annalen derPhysik,1927,389(20):457-484.
    [25] Hehre W. J., Radom L., Schleyer P. V. R.,Pople J. A. Ab initio molecular orbitaltheory[M]. New York: Wiley,1986.
    [26]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社,1985.
    [27]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982.
    [28] Jankowski K.,Sokolowski A. Ab initio studies of electron correlation in rare-earthions. I. Intrashell correlation for4f2in Pr3+[J]. J. Phys. B: At., Mol. Opt. Phys.,1981,14(18):3345.
    [29] Pople J. A., Seeger R.,Krishnan R. Variational configuration interaction methodsand comparison with perturbation theory[J]. Int. J. Quantum Chem,1977,12(S11):149-163.
    [30] Casida M. E., Jamorski C., Casida K. C.,Salahub D. R. Molecular excitationenergies to high-lying bound states from time-dependent density-functional responsetheory: Characterization and correction of the time-dependent local densityapproximation ionization threshold[J]. J. Chem. Phys.,1998,108(11):4439-4449.
    [31] Krishnan R., Schlegel H. B.,Pople J. A. Derivative studies inconfiguration--interaction theory[J]. J. Chem. Phys.,1980,72(8):4654-4655.
    [32] Brooks B. R., Laidig W. D., Saxe P., Goddard J. D., Yamaguchi Y.,III H. F. S.Analytic gradients from correlated wave functions via the two-particle density matrixand the unitary group approach[J]. J. Chem. Phys.,1980,72(8):4652-4653.
    [33] Salter E. A., Trucks G. W.,Bartlett R. J. Analytic energy derivatives inmany-body methods. I. First derivatives[J]. J. Chem. Phys.,1989,90(3):1752-1766.
    [34] Kothekar V. Specificity and molecular mechanism of abortificient action ofprostaglandins[J]. Int. J. Quantum Chem,1981,20(1):167-178.
    [35] Pople J. A., Head-Gordon M.,Raghavachari K. Quadratic configurationinteraction. A general technique for determining electron correlation energies[J]. J.Chem. Phys.,1987,87(10):5968-5975.
    [36] Cioslowski J.,Nanayakkara A. A new robust algorithm for fully automateddetermination of attractor interaction lines in molecules[J]. Chem. Phys. Lett.,1994,219(1–2):151-154.
    [37] Schlegel H. B.,Robb M. A. MC SCF gradient optimization of the H2CO→H2+CO transition structure[J]. Chem. Phys. Lett.,1982,93(1):43-46.
    [38] Eade R. H. A.,Robb M. A. Direct minimization in mc scf theory. thequasi-newton method[J]. Chem. Phys. Lett.,1981,83(2):362-368.
    [39] Espinosa E., Alkorta I., Elguero J.,Molins E. From weak to strong interactions: Acomprehensive analysis of the topological and energetic properties of the electrondensity distribution involving X--H…F--Y systems[J]. J. Chem. Phys.,2002,117(12):5529-5542.
    [40] Adamo C.,Barone V. Toward reliable density functional methods withoutadjustable parameters: The PBE0model[J]. J. Chem. Phys.,1999,110(13):6158-6170.
    [41] Labanowski J. K.,Andzelm J. W. Density functional methods in chemistry[M].New York: Springer-Verlag New York, Inc.,1991.
    [42] Fukui K. Variational principles in a chemical reaction[J]. Int. J. Quantum Chem,1981,20(S15):633-642.
    [43] Fukui K., Tachibana A.,Yamashita K. Toward chemodynamics[J]. Int. J.Quantum Chem,1981,20(S15):621-632.
    [44] Zhao Hongmei, Sun Chengke, Zhang Rongchang, Xi Hongmin,Li Zonghe.Theoretical study on the reaction mechanism of (CH3)3CO+CO[J]. Sci. China. Chem.,2005,48(1):18-24.
    [45] Thomas L. H. The calculation of atomic fields[J]. Mathematical Proceedings ofthe Cambridge Philosophical Society,1927,23(05):542-548.
    [46] Fermi E. Un metodo statistico per la determinazione di alcune priorietadell'atome[J]. Rend. Accad. Naz. Lincei,1927,6:602-607.
    [47] Dirac P. A. M. Note on Exchange Phenomena in the Thomas Atom[J].Mathematical Proceedings of the Cambridge Philosophical Society,1930,26(03):376-385.
    [48] Weizs cker C. F. v. Zur Theorie der Kernmassen[J]. Zeitschrift für Physik,1935,96(7-8):431-458.
    [49] Hohenberg P.,Kohn W. Inhomogeneous Electron Gas[J]. Phys. Rev.,1964,136(3B): B864-B871.
    [50] Kohn W.,Sham L. J. Self-Consistent Equations Including Exchange andCorrelation Effects[J]. Phys. Rev.,1965,140(4A): A1133-A1138.
    [51] Slater J. C. The self-consistent field for molecules and solids[M].McGraw-Hill,1974.
    [52] Salahub D. R.,Zerner M. C. The Challenge of d and f Electrons[M]. ACSPublications,1989.
    [53] Parr R. G.,Yang W. Density-functional theory of atoms and molecules[M].Oxford University Press,1989.
    [54] Pople J. A., Gill P. M. W.,Johnson B. G. Kohn—Sham density-functional theorywithin a finite basis set[J]. Chem. Phys. Lett.,1992,199(6):557-560.
    [55] Foresman J. B., Head-Gordon M., Pople J. A.,Frisch M. J. Toward a systematicmolecular orbital theory for excited states[J]. J. Phys. Chem.,1992,96(1):135-149.
    [56] Raghavachari K.,Pople J. A. Calculation of one-electron properties using limitedconfiguration interaction techniques[J]. Int. J. Quantum Chem,1981,20(5):1067-1071.
    [57] Pan Q.-J.,Zhang H.-X. Ab Initio Study on Luminescent Properties and AurophilicAttraction of [Au2(dpm)(i-mnt)] and Its Related Au(I) Complexes (dpm=bis(diphosphino)methane and i-mnt=i-malononitriledithiolate)[J]. Organometallics,2004,23(22):5198-5209.
    [58] Pan Q.-J.,Zhang H.-X. An ab Initio Study on Luminescent Properties andAurophilic Attraction of Binuclear Gold(I) Complexes with PhosphinothioetherLigands[J]. Inorg. Chem.,2003,43(2):593-601.
    [59] Pan Q.-J.,Zhang H.-X. Aurophilic attraction and excited-state properties ofbinuclear Au(I) complexes with bridging phosphine and/or thiolate ligands: An abinitio study[J]. J. Chem. Phys.,2003,119(8):4346-4352.
    [60] Yang L., Ren A.-M., Feng J.-K., Liu X.-J., Ma Y.-G., Zhang M., Liu X.-D., ShenJ.-C.,Zhang H.-X. Theoretical Studies of Ground and Excited Electronic States in aSeries of Halide Rhenium(I) Bipyridine Complexes[J]. J. Phys. Chem. A,2004,108(32):6797-6808.
    [61] Liao Y., Feng J.-K., Yang L., Ren A.-M.,Zhang H.-X. Theoretical Study on theElectronic Structure and Optical Properties of Mercury-Containing DiethynylfluoreneMonomer, Oligomer, and Polymer[J]. Organometallics,2004,24(3):385-394.
    [62] van Gisbergen S. J. A., Groeneveld J. A., Rosa A., Snijders J. G.,Baerends E. J.Excitation Energies for Transition Metal Compounds from Time-Dependent DensityFunctional Theory. Applications to MnO4-, Ni(CO)4, and Mn2(CO)10[J]. J. Phys.Chem. A,1999,103(34):6835-6844.
    [63] Halls M. D.,Schlegel H. B. Molecular Orbital Study of the First Excited State ofthe OLED Material Tris(8-hydroxyquinoline)aluminum(III)[J]. Chem. Mater.,2001,13(8):2632-2640.
    [64] Foresman J.,Frish E. Exploring chemistry with electronic structure methods[J].Gaussian Inc., Pittsburg, USA,1996,
    [65] Frank I. Excited State Molecular Dynamics[J]. Invited Review, SIMU Newsletter,2001,363-77.
    [66]王一波,陶福明,潘毓刚.氢键的精确从头计算方法及其用于NH3,H2O和HF分子间氢键的研究[J]. SCIENTIASINICAChimica,1995,25(10):1016-1025.
    [67] Boys S. F.,Bernardi F. The calculation of small molecular interactions by thedifferences of separate total energies. Some procedures with reduced errors[J]. Mol.Phys.,1970,19(4):553-566.
    [68] Woon D. E. Benchmark calculations with correlated molecular wave functions. V.The determination of accurate ab initio intermolecular potentials for He2, Ne2, andAr2[J]. J. Chem. Phys.,1994,100(4):2838-2850.
    [69] Tao F.-M.,Pan Y.-K. M ller-Plesset perturbation investigation of the He2potential and the role of midbond basis functions[J]. J. Chem. Phys.,1992,97(7):4989-4995.
    [70] Hay P. J.,Wadt W. R. Ab initio effective core potentials for molecular calculations.Potentials for the transition metal atoms Sc to Hg[J]. J. Chem. Phys.,1985,82(1):270-283.
    [71] Panich A. M. NMR study of the F-H…F hydrogen bond. Relation betweenhydrogen atom position and F-H…F bond length[J]. Chem. Phys.,1995,196(3):511-519.
    [72] Tao F.-M. Bond functions, basis set superposition errors and other practicalissues with ab initio calculations of intermolecular potentials[J]. Int. Rev. Phys. Chem.,2001,20(4):617-643.
    [73] Chen W., Li Z.-R., Wu D., Li Y., Sun C.-C., Gu F. L.,Aoki Y. Nonlinear OpticalProperties of Alkalides Li+(calix[4]pyrrole)M-(M=Li, Na, and K): Alkali AnionAtomic Number Dependence[J]. J. Am. Chem. Soc.,2006,128(4):1072-1073.
    [74] Xu H.-L., Li Z.-R., Wu D., Wang B.-Q., Li Y., Gu F. L.,Aoki Y. Structures andLarge NLO Responses of New Electrides: Li-Doped Fluorocarbon Chain[J]. J. Am.Chem. Soc.,2007,129(10):2967-2970.
    [75] Chen W., Li Z.-R., Wu D., Li Y., Sun C.-C.,Gu F. L. The Structure and the LargeNonlinear Optical Properties of Li@Calix[4]pyrrole[J]. J. Am. Chem. Soc.,2005,127(31):10977-10981.
    [76] Zhou Z.-J., Li X.-P., Ma F., Liu Z.-B., Li Z.-R., Huang X.-R.,Sun C.-C.Exceptionally Large Second-Order Nonlinear Optical Response in Donor–GrapheneNanoribbon–Acceptor Systems[J]. Chem. Eur. J.,2011,17(8):2414-2419.
    [77] Liu Z.-B., Zhou Z.-J., Li Z.-R., Li Q.-Z., Jia F.-Y., Cheng J.-B.,Sun C.-C. What isthe role of defects in single-walled carbon nanotubes for nonlinear opticalproperty?[J]. J. Mater. Chem.,2011,21(24):8905-8910.
    [78] Dye J. L. Electrides: From1D Heisenberg Chains to2D Pseudo-Metals [J].Inorg. Chem.,1997,36(18):3816-3826.
    [79] Ichimura A. S., Dye J. L., Camblor M. A.,Villaescusa L. A. Toward InorganicElectrides[J]. J. Am. Chem. Soc.,2002,124(7):1170-1171.
    [80] Liu Z. B., Zhou Z. J., Li Y., Li Z. R., Wang R., Li Q. Z., Li Y., Jia F. Y., Wang Y.F., Li Z. J., Cheng J. B.,Sun C. C. Push-pull electron effects of the complexant in a Liatom doped molecule with electride character: a new strategy to enhance the firsthyperpolarizability[J]. Phys. Chem. Chem. Phys.,2010,12(35):10562-10568.
    [81] Wang J. J., Zhou Z. J., Bai Y., Liu Z. B., Li Y., Wu D., Chen W., Li Z. R.,Sun C.C. The interaction between superalkalis (M3O, M=Na, K) and a C20F20cage formingsuperalkali electride salt molecules with excess electrons inside the C20F20cage:dramatic superalkali effect on the nonlinear optical property[J]. J. Mater. Chem.,2012,229652-9657.
    [82] Chen W., Li Z. R., Wu D., Li R. Y.,Sun C. C. Theoretical investigation of thelarge nonlinear optical properties of (HCN)(n) clusters with Li atom[J]. J. Phys. Chem.B,2005,109(1):601-608.
    [83] Jing Y. Q., Li Z. R., Wu D., Li Y., Wang B. Q.,Gu F. L. What is the role of thecomplexant in the large first hyperpolarizability of sodide systems Li(NH3)nNa(n=1-4)?[J]. J. Phys. Chem. B,2006,110(24):11725-11729.
    [84] Wang F. F., Li Z. R., Wu D., Wang B. Q., Li Y., Li Z. J., Chen W., Yu G. T., Gu F.L.,Aoki Y. Structures and considerable static first hyperpolarizabilities: New organicalkalides (M+@n(6)adz)M '(-)(M, M '=Li, Na, K; n=2,3) with cation inside andanion outside of the cage complexants[J]. J. Phys. Chem. B,2008,112(4):1090-1094.
    [85] Xu H. L., Li Z. R., Wu D., Ma F.,Li Z. J. Lithiation and Li-Doped Effects of
    [5]Cyclacene on the Static First Hyperpolarizability[J]. J. Phys. Chem. C,2009,113(12):4984-4986.
    [86] Li Z. J., Wang F. F., Li Z. R., Xu H. L., Huang X. R., Wu D., Chen W., Yu G. T.,Gu F. L.,Aoki Y. Large static first and second hyperpolarizabilities dominated byexcess electron transition for radical ion pair salts M(2)(center dot+) TCNQ(centerdot-)(M=Li, Na, K)[J]. Phys. Chem. Chem. Phys.,2009,11(2):402-408.
    [87] Fan L. T., Li Y., Wu D., Li Z. R.,Sun C. C. Theoretical Investigation on the FirstHyperpolarizabilities of M+@H6Aza222M'-·2MeNH2(M,M'=Li,Na,K) Alkalides[J].Chem. J. Chinese Universities,2012,33(10):2320-2325.
    [88] Shi Z. M., Chen W., Wan S. Q., Li H.,Huang X. R. Investigation on NonlinearOptical Properties of Foreign-atom Doping Boron Nitride Nanotube with VacancyDefects[J]. Chem. J. Chinese Universities,2013,34(2):441-446.
    [89] Karamanis P.,Pouchan C. Fullerene–C60in Contact with Alkali Metal Clusters:Prototype Nano-Objects of Enhanced First Hyperpolarizabilities[J]. J. Phys. Chem. C,2012,116(21):11808-11819.
    [90] Bai Y., Zhou Z. J., Wang J. J., Li Y., Wu D., Chen W., Li Z. R.,Sun C. C. NewAcceptor–Bridge–Donor Strategy for Enhancing NLO Response with Long-RangeExcess Electron Transfer from the NH2…M/M3O Donor (M=Li, Na, K) to Inside theElectron Hole Cage C20F19Acceptor through the Unusual σ Chain Bridge (CH2)4[J].J. Phys. Chem. A,2013,117(13):2835-2843.
    [91] Zhong R.-L., Xu H.-L., Muhammad S., Zhang J.,Su Z.-M. The stability andnonlinear optical properties: Encapsulation of an excess electron compound LiCNLiwithin boron nitride nanotubes[J]. J. Mater. Chem.,2012,22(5):2196-2202.
    [92] Zhong R. L., Xu H. L., Sun S. L., Qiu Y. Q.,Su Z. M. The Excess Electron in aBoron Nitride Nanotube: Pyramidal NBO Charge Distribution and Remarkable FirstHyperpolarizability[J]. Chem. Eur. J.,2012,18(36):11350-11355.
    [93] Ma N. N., Yang G. C., Sun S. L., Liu C. G.,Qiu Y. Q. Computational study onsecond-order nonlinear optical (NLO) properties of a novel class of two-dimensionalΛ-and W-shaped sandwich metallocarborane-containing chromophores[J]. J.Organomet. Chem.,2011,696(11–12):2380-2387.
    [94] Wang C. H., Ma N. N., Sun X. X., Sun S. L., Qiu Y. Q.,Liu P. J. Modulation ofthe Second-Order Nonlinear Optical Properties of the Two-Dimensional Pincer Ru(II)Complexes: Substituent Effect and Proton Abstraction Switch[J]. J. Phys. Chem. A,2012,116(43):10496-10506.
    [95] Ma N. N., Sun S. L., Liu C. G., Sun X. X.,Qiu Y. Q. Quantum Chemical Study ofRedox-Switchable Second-Order Nonlinear Optical Responses of D π–A SystemBNbpy and Metal Pt(II) Chelate Complex[J]. J. Phys. Chem. A,2011,115(46):13564-13572.
    [96] Frisch M. J., W. T. G., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M.,Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., HadaM., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y.,Kitao O., Nakai H., Vreven T., Montgomery Jr. J. A., Peralta J. E., Ogliaro F.,Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R.,Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J.,Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V.,Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J.,Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V.G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas.,Foresman J. B., Ortiz J. V., Cioslowski J.,J. F. D. Gaussian09, Revision A.01,Gaussian, Inc., Wallingford CT,2009.
    [97] Bossi A., Licandro E., Maiorana S., Rigamonti C., Righetto S., Stephenson G. R.,Spassova M., Botek E.,Champagne B. Theoretical and Experimental Investigation ofElectric Field Induced Second Harmonic Generation in Tetrathia[7]helicenes [J]. J.Phys. Chem. C,2008,112(21):7900-7907.
    [98] Bulat F. A., Toro-Labbe A., Champagne B., Kirtman B.,Yang W.Density-functional theory (hyper)polarizabilities of push-pull pi-conjugated systems:Treatment of exact exchange and role of correlation[J]. J. Chem. Phys.,2005,123(1):014319.
    [99] Champagne B.,Kirtman B. Evaluation of alternative sum-over-states expressionsfor the first hyperpolarizability of push-pull pi-conjugated systems[J]. J. Chem. Phys.,2006,125(2):024101.
    [100] Guillaume M.,Champagne B. Modeling the electric field third-order nonlinearresponses of an infinite aggregate of hexatriene chains using the electrostaticinteraction model[J]. Phys. Chem. Chem. Phys.,2005,7(18):3284-3289.
    [101] Kato S.-i., Kivala M., Schweizer W. B., Boudon C., Gisselbrecht J.-P.,DiederichF. Origin of Intense Intramolecular Charge-Transfer Interactions in NonplanarPush–Pull Chromophores[J]. Chem. Eur. J.,2009,15(35):8687-8691.
    [102] Marder S. R. Organic nonlinear optical materials: where we have been andwhere we are going[J]. Chem. Commun.,2006,(2):131-134.
    [103] MARDER S. R., BERATAN D. N.,CHENG L.-T. Approaches for Optimizingthe First Electronic Hyperpolarizability of Conjugated Organic Molecules[J]. Science,1991,252(5002):103-106.
    [104] Priyadarshy S., Therien M. J.,Beratan D. N. Acetylenyl-Linked,Porphyrin-Bridged, Donor Acceptor Molecules: A Theoretical Analysis of theMolecular First Hyperpolarizability in Highly Conjugated Push Pull ChromophoreStructures[J]. J. Am. Chem. Soc.,1996,118(6):1504-1510.
    [105] Man ois F., Pozzo J.-L., Pan J., Adamietz F., Rodriguez V., Ducasse L., CastetF., Plaquet A.,Champagne B. Two-Way Molecular Switches with Large NonlinearOptical Contrast[J]. Chem. Eur. J.,2009,15(11):2560-2571.
    [106] Sanguinet L., Pozzo J.-L., Guillaume M., Champagne B., Castet F., Ducasse L.,Maury E., Soulié J., Man ois F., Adamietz F.,Rodriguez V. AcidoswitchableNLO-phores: Benzimidazolo[2,3-b]oxazolidines[J]. J. Phys. Chem. B,2006,110(22):10672-10682.
    [107] Champagne B., Spassova M., Jadin J.-B.,Kirtman B. Ab initio investigation ofdoping-enhanced electronic and vibrational second hyperpolarizability ofpolyacetylene chains[J]. J. Chem. Phys.,2002,116(9):3935-3946.
    [108] Holloway J. H., Hope E. G., Taylor R., Langley G. J., Avent A. G., Dennis T. J.,Hare J. P., Kroto H. W.,Walton D. R. M. Fluorination of buckminsterfullerene[J].Chem. Commun.,1991,(14):966-969.
    [109] Wahl F., Weiler A., Landenberger P., Sackers E., Voss T., Haas A., Lieb M.,Hunkler D., W rth J., Knothe L.,Prinzbach H. Towards PerfunctionalizedDodecahedranes—En Route to C20Fullerene[J]. Chem. Eur. J.,2006,12(24):6255-6267.
    [110] Prinzbach H.,Weber K. From an Insecticide to Plato's Universe—The PagodaneRoute to Dodecahedranes: New Pathways and New Perspectives[J]. Angew. Chem.Int. Ed.,1994,33(22):2239-2257.
    [111] Wang Y.-F., Li Z.-R., Wu D., Sun C.-C.,Gu F.-L. Excess electron is trapped in alarge single molecular cage C60F60[J]. J. Comput. Chem.,2010,31(1):195-203.
    [112] Zhang C.-Y., Wu H.-S.,Jiao H. Aromatic C20F20cage and its endohedralcomplexes X@C20F20(X=H, F, Cl, Br, H, He)[J]. J. Mol. Model.,2007,13(4):499-503.
    [113] Wang Y.-F., Li Y., Li Z.-R., Ma F., Wu D.,Sun C.-C. Perfluorinated exohedralpotassium-metallofullerene K···CnFn (n=20or60): partial interior and surfaceexcess electron state[J]. Theor. Chem. Acc.,2010,127(5-6):641-650.
    [114] Wang X.-B., Ding C.-F., Wang L.-S., Boldyrev A. I.,Simons J. Firstexperimental photoelectron spectra of superhalogens and their theoreticalinterpretations[J]. J. Chem. Phys.,1999,110(10):4763-4771.
    [115] Zein S.,Ortiz J. V. Interpretation of the photoelectron spectra of superalkalispecies: Na3O and Na3O-[J]. J. Chem. Phys.,2012,136(22):224305.
    [116] Hu Y.-Y., Sun S.-L., Muhammad S., Xu H.-L.,Su Z.-M. How the Number andLocation of Lithium Atoms Affect the First Hyperpolarizability of Graphene[J]. J.Phys. Chem. C,2010,114(46):19792-19798.
    [117] Muhammad S., Minami T., Fukui H., Yoneda K., Kishi R., Shigeta Y.,Nakano M.Halide Ion Complexes of Decaborane (B10H14) and Their Derivatives: NoncovalentCharge Transfer Effect on Second-Order Nonlinear Optical Properties[J]. J. Phys.Chem. A,2011,116(5):1417-1424.
    [118] Xiao D., Bulat F. A., Yang W.,Beratan D. N. A Donor Nanotube Paradigm forNonlinear Optical Materials[J]. Nano. Lett.,2008,8(9):2814-2818.
    [119] Xu H.-L., Zhong R.-L., Sun S.-L.,Su Z.-M. Widening or Lengthening?Enhancing the First Hyperpolarizability of Tubiform Multilithium Salts[J]. J. Phys.Chem. C,2011,115(33):16340-16346.
    [120] Yanai T., Tew D. P.,Handy N. C. A new hybrid exchange–correlation functionalusing the Coulomb-attenuating method (CAM-B3LYP)[J]. Chem. Phys. Lett.,2004,393(1–3):51-57.
    [121] Limacher P. A., Mikkelsen K. V.,Luthi H. P. On the accurate calculation ofpolarizabilities and second hyperpolarizabilities of polyacetylene oligomer chainsusing the CAM-B3LYP density functional[J]. J. Chem. Phys.,2009,130(19):194114.
    [122] Champagne B., Botek E., Nakano M., Nitta T.,Yamaguchi K. Basis set andelectron correlation effects on the polarizability and second hyperpolarizability ofmodel open-shell pi-conjugated systems[J]. J. Chem. Phys.,2005,122(11):114315.
    [123] Nakano M., Kishi R., Nitta T., Kubo T., Nakasuji K., Kamada K., Ohta K.,Champagne B., Botek E.,Yamaguchi K. Second Hyperpolarizability (γ) of SingletDiradical System:Dependence of γ on the Diradical Character[J]. J. Phys. Chem. A,2005,109(5):885-891.
    [124] Ma F., Li Z.-R., Zhou Z.-J., Wu D., Li Y., Wang Y.-F.,Li Z.-S. ModulatedNonlinear Optical Responses and Charge Transfer Transition in Endohedral FullereneDimers Na@C60C60@F with n-Fold Covalent Bond (n=1,2,5, and6) and LongRange Ion Bond[J]. J. Phys. Chem. C,2010,114(25):11242-11247.
    [125] Torrent-Sucarrat M., Anglada J. M.,Luis J. M. Evaluation of the NonlinearOptical Properties for Annulenes with Hückel and M bius Topologies[J]. J. Chem.Theory Comput.,2011,7(12):3935-3943.
    [126] Zhang C.-C., Xu H.-L., Hu Y.-Y., Sun S.-L.,Su Z.-M. Quantum ChemicalResearch on Structures, Linear and Nonlinear Optical Properties of the Li@n-AcenesSalt (n=1,2,3, and4)[J]. J. Phys. Chem. A,2011,115(10):2035-2040.
    [127] Rinkevicius Z., Autschbach J., Baev A., Swihart M., gren H.,Prasad P. N.Novel Pathways for Enhancing Nonlinearity of Organics Utilizing Metal Clusters[J]. J.Phys. Chem. A,2010,114(28):7590-7594.
    [128] Sun S.-L., Hu Y.-Y., Xu H.-L., Su Z.-M.,Hao L.-Z. Probing the linear andnonlinear optical properties of nitrogen-substituted carbon nanotube[J]. J. Mol.Model.,2012,18(7):3219-3225.
    [129] Lumpi D., Horkel E., Stoeger B., Hametner C., Kubel F., Reider G. A.,FroehlichJ. Novel ene-yne compounds as quadratic nonlinear optical materials[J]. Proceedingsof the SPIE,2011,8306830615-830615.
    [130] Karamanis P., Marchal R., Carbonniere P.,Pouchan C. Doping-enhancedhyperpolarizabilities of silicon clusters: A global ab initio and density functionaltheory study of Si10(Li, Na, K)n(n=1,2) clusters[J]. J. Chem. Phys.,2011,135(4):044511.
    [131] Wu H.-Q., Sun S.-L., Zhong R.-L., Xu H.-L.,Su Z.-M. Effect ofdehydrogenation/hydrogenation on the linear and nonlinear optical properties ofLi@porphyrins[J]. J. Mol. Model.,2012,18(11):4901-4907.
    [132] Maroulis G. How large is the static electric (hyper)polarizability anisotropy inHXeI?[J]. J. Chem. Phys.,2008,129(4):044314.
    [133] Maroulis G. Electric multipole moments, polarizability, and hyperpolarizabilityof xenon dihydride (HXeH)[J]. Theor. Chem. Acc.,2011,129(3-5):437-445.
    [134] Maroulis G. Applying Conventional Ab Initio and Density Functional TheoryApproaches to Electric Property Calculations. Quantitative Aspects andPerspectives[M]. Berlin Heidelberg: Springer2012.
    [135] Maroulis G.,Haskopoulos A. Electric Polarizability and Hyperpolarizability ofthe Copper Tetramer (Cu4) from Ab Initio and Density Functional TheoryCalculations[J]. J. Comput. Theor. Nanos.,2009,6(2):418-427.
    [136] Maroulis G., Karamanis P.,Pouchan C. Hyperpolarizability of GaAs dimer is notnegative[J]. J. Chem. Phys.,2007,126(15):154316.
    [137] Besler B. H., Merz K. M.,Kollman P. A. Atomic charges derived fromsemiempirical methods[J]. J. Comput. Chem.,1990,11(4):431-439.
    [138] Fukui H., Inoue Y., Kishi R., Shigeta Y., Champagne B.,Nakano M. Tunedlong-range corrected density functional theory method for evaluating the secondhyperpolarizabilities of open-shell singlet metal–metal bonded systems[J]. Chem.Phys. Lett.,2012,523(0):60-64.
    [139] Castet F.,Champagne B. Assessment of DFT Exchange–Correlation Functionalsfor Evaluating the Multipolar Contributions to the Quadratic Nonlinear OpticalResponses of Small Reference Molecules[J]. J. Chem. Theory Comput.,2012,8(6):2044-2052.
    [140] Zhang C.-Y.,Wu H.-S. Spherical double electric layer structure of C20F20and itsendohedral complexes X@C20F20(X=O2, S2, Se2)[J]. J. Mol. Struc-THEOCHEM.,2007,815(1–3):71-74.
    [141] Tsuzuki S., Tokuda H., Hayamizu K.,Watanabe M. Magnitude andDirectionality of Interaction in Ion Pairs of Ionic Liquids: Relationship with IonicConductivity[J]. J. Phys. Chem. B,2005,109(34):16474-16481.
    [142] Pádua A. A. H., Costa Gomes M. F.,Canongia Lopes J. N. A. Molecular Solutesin Ionic Liquids: A Structural Perspective[J]. Acc. Chem. Res.,2007,40(11):1087-1096.
    [143] Kong F., Huang S. P., Sun Z. M., Mao J. G.,Cheng W. D. Se2(B2O7): A NewType of Second-Order NLO Material[J]. J. Am. Chem. Soc.,2006,128(24):7750-7751.
    [144] Zhang W. L., Cheng W. D., Zhang H., Geng L., Lin C. S.,He Z. Z. A StrongSecond-Harmonic Generation Material Cd4BiO(BO3)3Originating from3-Chromophore Asymmetric Structures[J]. J. Am. Chem. Soc.,2010,132(5):1508-1509.
    [145] Pasupathi G.,Philominathan P. Investigation on growth and characterization of anew inorganic NLO material: Zinc sulphate (ZnSO4:7H2O) doped with MagnesiumSulphate (MgSO4:7H2O)[J]. Mater. Lett.,2008,62(28):4386-4388.
    [146] Han H. y., Song Y. l., Hou H. w., Fan Y. t.,Zhu Y. A series of metal-organicpolymers assembled from MCl2(M=Zn, Cd, Co, Cu): structures, third-ordernonlinear optical and fluorescent properties[J]. Dalton Trans.,2006,0(16):1972-1980.
    [147] Lacroix Pascal G. Second-Order Optical Nonlinearities in CoordinationChemistry: The Case of Bis(salicylaldiminato)metal Schiff Base Complexes[J]. Eur. J.Inorg. Chem.,2001,2001(2):339-348.
    [148] Senge M. O., Fazekas M., Notaras E. G. A., Blau W. J., Zawadzka M., Locos O.B.,Ni Mhuircheartaigh E. M. Nonlinear Optical Properties of Porphyrins[J]. Adv.Mater.,2007,19(19):2737-2774.
    [149] Zhou Y. F., Yuan D. Q., Wu B. L., Wang R. H.,Hong M. C. Design ofmetal-organic NLO materials: complexes derived from pyridine-3,4-dicarboxylate[J].New J. Chem.,2004,28(12):1590-1594.
    [150] Li Y., Li Z. R., Wu D., Li R. Y., Hao X. Y.,Sun C. C. An ab initio prediction ofthe extraordinary static first hyperpolarizability for the electron-solvated cluster(FH)(2){e}(HF)[J]. J. Phys. Chem. B,2004,108(10):3145-3148.
    [151] Chen W., Li Z. R., Wu D., Gu F. L., Hao X. Y., Wang B. Q., Li R. J.,Sun C. C.The static polarizability and first hyperpolarizability of the water trimer anion: Abinitio study[J]. J. Chem. Phys.,2004,121(21):10489-10494.
    [152] Muhammad S., Xu H., Liao Y., Kan Y.,Su Z. Quantum Mechanical Design andStructure of the Li@B10H14Basket with a Remarkably Enhanced Electro-OpticalResponse[J]. J. Am. Chem. Soc.,2009,131(33):11833-11840.
    [153] Nakano M., Nagai H., Fukui H., Yoneda K., Kishi R., Takahashi H., Shimizu A.,Kubo T., Kamada K., Ohta K., Champagne B.,Botek E. Theoretical study ofthird-order nonlinear optical properties in square nanographenes with open-shellsinglet ground states[J]. Chem. Phys. Lett.,2008,467(1–3):120-125.
    [154] Nagai H., Nakano M., Yoneda K., Fukui H., Minami T., Bonness S., Kishi R.,Takahashi H., Kubo T., Kamada K., Ohta K., Champagne B.,Botek E. Theoreticalstudy on third-order nonlinear optical properties in hexagonal graphene nanoflakes:Edge shape effect[J]. Chem. Phys. Lett.,2009,477(4–6):355-359.
    [155] Yoneda K., Nakano M., Kishi R., Takahashi H., Shimizu A., Kubo T., KamadaK., Ohta K., Champagne B.,Botek E. Third-order nonlinear optical properties oftrigonal, rhombic and bow-tie graphene nanoflakes with strong structural dependence
    [156] Wassmann T., Seitsonen A. P., Saitta A. M., Lazzeri M.,Mauri F. Clar’s Theory,π-Electron Distribution, and Geometry of Graphene Nanoribbons[J]. J. Am. Chem.Soc.,2010,132(10):3440-3451.
    [157] Ueno K., Nakamura S., Shimotani H., Ohtomo A., Kimura N., Nojima T., AokiH., Iwasa Y.,Kawasaki M. Electric-field-induced superconductivity in an insulator[J].Nat. Mater.,2008,7(11):855-858.
    [158] Margulis V. A., Gaiduk E. A.,Zhidkin E. N. Electric-field-induced opticalsecond-harmonic generation and nonlinear optical rectification in semiconductingcarbon nanotubes[J]. Opt. Commun.,2000,183(1–4):317-326.
    [159] Ho G. W., Wee A. T. S.,Lin J. Electric field-induced carbon nanotube junctionformation[J]. Appl. Phys. Lett.,2001,79(2):260-262.
    [160] Kan B., Ding J., Yuan N., Wang J., Chen Z.,Chen X. Transverse electricfield-induced deformation of armchair single-walled carbon nanotube[J]. Nanoscale.Res. Lett.,2010,5(7):1144-1149.
    [161] Fu Z., Luo Y., Ma J.,Wei G. Phase transition of nanotube-confined water drivenby electric field[J]. J. Chem. Phys.,2011,134(15):154507.
    [162] Dalosto S. D.,Levine Z. H. Controlling the Band Gap in Zigzag GrapheneNanoribbons with an Electric Field Induced by a Polar Molecule[J]. J. Phys. Chem. C,2008,112(22):8196-8199.
    [163] Liu W., Zhao Y. H., Nguyen J., Li Y., Jiang Q.,Lavernia E. J. Electric fieldinduced reversible switch in hydrogen storage based on single-layer and bilayergraphenes[J]. Carbon,2009,47(15):3452-3460.
    [164] Xu M., Liang T., Shi M.,Chen H. Graphene-Like Two-Dimensional Materials[J].Chem. Rev.,2013,
    [165] Davis R. E., Rousseau D. L.,Board R. D."Polywater": Evidence from ElectronSpectroscopy for Chemical Analysis (ESCA) of a Complex Salt Mixture[J]. Science,1971,171(3967):167-170.
    [166] Kamb B. Hydrogen-Bond Stereochemistry and "Anomalous Water"[J]. Science,1971,172(3980):231-242.
    [167] Madigosky W. M. Polywater or Sodium Acetate?[J]. Science,1971,172(3980):264-265.
    [168] Rousseau D. L."Polywater" and Sweat: Similarities between the InfraredSpectra[J]. Science,1971,171(3967):170-172.
    [169] Labinger J. A.,Weininger S. J. Controversy in Chemistry: How Do You Prove aNegative?—The Cases of Phlogiston and Cold Fusion[J]. Angew. Chem. Int. Ed.,2005,44(13):1916-1922.
    [170] Kolesnikov A. I., Zanotti J.-M., Loong C.-K., Thiyagarajan P., Moravsky A. P.,Loutfy R. O.,Burnham C. J. Anomalously Soft Dynamics of Water in a Nanotube: ARevelation of Nanoscale Confinement[J]. Phys. Rev. Lett.,2004,93(3):035503.
    [171] Cicero G., Grossman J. C., Schwegler E., Gygi F.,Galli G. Water Confined inNanotubes and between Graphene Sheets: A First Principle Study[J]. J. Am. Chem.Soc.,2008,130(6):1871-1878.
    [172] Byl O., Liu J.-C., Wang Y., Yim W.-L., Johnson J. K.,Yates J. T. UnusualHydrogen Bonding in Water-Filled Carbon Nanotubes[J]. J. Am. Chem. Soc.,2006,128(37):12090-12097.
    [173] Rasaiah J. C., Garde S.,Hummer G. Water in Nonpolar Confinement: FromNanotubes to Proteins and Beyond*[J]. Annu. Rev. Phys. Chem.,2008,59(1):713-740.
    [174] Cao Z., Peng Y., Yan T., Li S., Li A.,Voth G. A. Mechanism of Fast ProtonTransport along One-Dimensional Water Chains Confined in Carbon Nanotubes[J]. J.Am. Chem. Soc.,2010,132(33):11395-11397.
    [175] Anway A. R. Field Ionization of Water[J]. J. Chem. Phys.,1969,50(5):2012-2021.
    [176] Jaenicke S., Ciszewski A., Drachsel W., Weigmann U., Tsong T., T., Pitts J., R.,Block J., H.,Menzel D. Field-Assisted Photodesorption of Ions from Metal andSemiconduvtor Surfaces[J]. J. Phys. Colloques,1986,47(C7): C7-343-C7-348.
    [177] Jaenicke S., Ciszewski A., D sselmann J., Drachsel W., Block J.,Menzel D.Field-Induced Structural Changes in Adsorbed Layers of Polar Molecules Studied byPhoton-Stimulated Desorption[J]. Le Journal de Physique Colloques,1988,49(C6):6-6.
    [178] Dirks J., Drachsel W.,Block J. The interaction of synchrotron light with wateradsorbed on a Ag-field emitter in the presence of a high electric field[J]. J. Vac. Sci.Technol. B, Microelectron Nanometer Struct Process Meas Phenom,1992,10(1):231-234.
    [179] Ciszewski A.,B aszczyszyn R. Interaction of water with field emitter tips[J].Prog. Surf. Sci.,1995,48(1–4):99-108.
    [180] Karahka M.,Kreuzer H. J. Water whiskers in high electric fields[J]. Phys. Chem.Chem. Phys.,2011,13(23):11027-11033.
    [181] Karahka M.,Kreuzer H. J. Conduction and Electrostriction of Polymers Inducedby High Electric Fields[J]. Polymers,2010,3(1):51-64.
    [182] Choi Y. C., Pak C.,Kim K. S. Electric field effects on water clusters (n=3--5):Systematic ab initio study of structures, energetics, and transition states[J]. J. Chem.Phys.,2006,124(9):094308.
    [183] James T., Wales D. J.,Rojas J. H. Energy landscapes for water clusters in auniform electric field[J]. J. Chem. Phys.,2007,126(5):054506.
    [184] Rai D., Kulkarni A. D., Gejji S. P.,Pathak R. K. Water clusters (H2O)n, n=6--8,in external electric fields[J]. J. Chem. Phys.,2008,128(3):034310.
    [185] M ller C.,Plesset M. S. Note on an Approximation Treatment forMany-Electron Systems[J]. Phys. Rev.,1934,46(7):618-622.
    [186] S b S.,Alml f J. Avoiding the integral storage bottleneck in LCAOcalculations of electron correlation[J]. Chem. Phys. Lett.,1989,154(1):83-89.
    [187] Frisch M. J., Head-Gordon M.,Pople J. A. A direct MP2gradient method[J].Chem. Phys. Lett.,1990,166(3):275-280.
    [188] Head-Gordon M.,Head-Gordon T. Analytic MP2frequencies without fifth-orderstorage. Theory and application to bifurcated hydrogen bonds in the water hexamer[J].Chem. Phys. Lett.,1994,220(1–2):122-128.
    [189] Thom H. Dunning J. Gaussian basis sets for use in correlated molecularcalculations. I. The atoms boron through neon and hydrogen[J]. J. Chem. Phys.,1989,90(2):1007-1023.
    [190] Chen M.-L., Wang Z.-W.,Tao F.-M. DFT Investigation of Alkyl SulfateSurfactant Adsorption at the Air-Water Interface[J]. J. Dispersion Sci. Technol.,2009,30(2):185-189.
    [191] Xie Y.,III H. F. S. Hydrogen bonding between the water molecule and thehydroxyl radical (H2O…HO): The global minimum[J]. J. Chem. Phys.,1993,98(11):8829-8834.
    [192] Linnett J. W. Structure of Polywater[J]. Science,1970,167(3926):1719-1720.
    [193] Huang J.,Kertesz M. Theoretical Analysis of Intermolecular Covalent π πBonding and Magnetic Properties of Phenalenyl and spiro-Biphenalenyl Radicalπ-Dimers[J]. J. Phys. Chem.A,2007,111(28):6304-6315.
    [194] Miller J. S. Four-Center Carbon Carbon Bonding [J]. Acc. Chem. Res.,2007,40(3):189-196.
    [195] Sini G., Sears J. S.,Br das J.-L. Evaluating the Performance of DFT Functionalsin Assessing the Interaction Energy and Ground-State Charge Transfer ofDonor/Acceptor Complexes: Tetrathiafulvalene Tetracyanoquinodimethane(TTF TCNQ) as a Model Case[J]. J. Chem. Theory Comput.,2011,7(3):602-609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700