用户名: 密码: 验证码:
铝合金半固态挤压成形工艺及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用近液相线半连续铸造技术制备的ZL116、6063合金半固态坯料,在进行坯料试样的二次加热实验,合金压缩热模拟的基础上,进行了合金的半固态挤压成形,以期采用具有组织细小均匀,具有非枝晶组织的,适合于半固态触变成形的铝合金坯料,通过高固相率条件下的半固态挤压成形,获得成形性好,力学性能优良,高效率,低成本的成形件。
     本文通过近液相线半连续铸造技术制备ZL116及6063铝合金半固态坯料,研究了铸造速度与冷却强度对坯料组织的影响,分析了半固态坯料微观组织形成机理。由于过热度小,近液相线半连续铸造使熔体内的温度场趋于均匀分布,形核数量明显增多;成分过冷的减小,使晶粒在生长过程中互相接触后,枝晶的熟化程度加大,有利于蔷薇状晶粒组织的形成;铸造速度决定一、二次冷却时间和冷却效果,将直接影响到坯料横截面上微观组织的形貌及其分布,适宜的冷却强度和铸造速度有利于坯料截面上获得分布均匀的非枝晶组织。当冷却强度一定时,ZL116合金铸造速度控制在150~200mm/min,6063合金铸造速度控制在100~170mm/min时,可获得表面质量光洁,横截面上分布均匀、细小、呈近球状或蔷薇状组织的半固态坯料。
     对半固态坯料进行了二次加热实验研究及理论计算,考察分析了半固态坯料二次加热组织随加热温度以及保温时间的变化及演变机理。合金半固态坯料在二次加热过程中,随着加热温度的升高,晶粒球化进程加快,所需要的保温时间缩短;保温温度相同时,随着保温时间延长,球化的晶粒将发生粗化;在共晶合金二次加热过程中,共晶硅熔断发生粒状化,在重熔液相内形成分布均匀、细小的硅颗粒,硅颗粒将随着保温时间的延长不断长大,并逐渐减少,最终熔化消失。ZL116合金二次加热温度为575℃,保温10~15min时,6063合金二次加热温度为620℃,保温10~15min时,重熔组织演变比较稳定,可以获得尺寸较小,球化效果比较好,适于进行半固态触变成形的组织。
     ZL116、6063合金坯料在固态以及半固态条件下的压缩变形研究表明:在高固相率半固态压缩变形中,相同的温度条件下,变形应力随着应变速率的增加而增大;随着变形温度的提高,变形应力增加幅度逐渐减小。与固态压缩变形相比,半固态条件下应力变化受应变速率的影响较小,采用较低的应变速率可获得比较稳定的变形效果。
     根据实验分析及热模拟分析结果,对近液相线半连续铸造制备的ZL116、6063合金坯料进行半固态及固态挤压成形,分析研究了成形件的组织及性能,对半固态挤压成形件的热处理工艺进行了优化。实验表明:合金进行半固态挤压成形时,由于变形抗力很小,变形过程中各方向受力比较均匀,坯料截面上流速分布一致,受成形件壁厚影响很小,有利于获得分布均匀的变形组织;与固态挤压成形相比,半固态挤压成形温度高,固相颗粒内固溶大量的溶质原子,随着快速冷却,以析出相的形式弥散分布在基体组织上,不仅阻碍了再结晶晶粒的长大,而且起到了强化作用。成形中,由于晶间液相的缓解作用,使变形固相颗粒内位错堆积而形成的应力集中明显减小,变形颗粒仅发生了部分回复与再结晶,起到了细晶强化和位错强化的作用。由于半固态挤压是在固、液两相区内进行成形,不需要对铸态坯料进行均匀化处理,可以有效缩短合金的成形周期。
     ZL116合金在575℃进行高固相率半固态挤压成形,成形件表面光洁,横截面组织分布均匀,在成形组织上弥散分布着大量细小的硅颗粒以及沉淀相,起到一定的强化作用。部分变形的固相颗粒由于再结晶使晶粒更加细小,与固态挤压工艺相比,具有良好的半固态挤压成形性与力学性能。进行半固态挤压成形件热处理优化,确定出最佳工艺方案为:545℃固溶4h,178℃时效10h,抗拉强度为325MPa,伸长率为14.6%,与铸态成形件相比,塑性提高了192%,固溶时间明显缩短,降低了能耗。
     6063合金半固态挤压成形件经在线固溶及自然时效,抗拉强度达到240MPa以上,伸长率达到19%以上,完全达到合金挤压成形所要求的T6处理的性能指标。利用正交实验确定出成形件热处理优化工艺为:520℃固溶1h、175℃时效6h,测得的抗拉强度为275MPa,伸长率为14.23%。
The semi-solid billets of ZL116 and 6063 aluminium alloys were prepared by near-liquidus semi-continuous casting process. Based on the reheating test and thermal simulating of the sampling billets, the aluminium billets of ZL116 and 6063 with the homogeneous, fine non-dentritic microstructures, which is suitable to thixoforming in semi-solid state, were extruded in the semi-solid state of high percentage of solid phase in order to obtain the bars with quality, good feasibility, high properties and efficiency, cost saved.
     The effect of casting velocity, the mechanism and effect of processing parameters on the microstructure of ZL116 and 6063 aluminium alloys billets cast by near-liquidus semi-continuous casting process was studied. Because of small superheat in the melt during the near-liquidus semi-continuous casting process, the temperature distribution in the melt is trend to be uniform, and the quantities of nucleating is obviously increased. The ripening trend of dendritic grain would be increased, and the rosette-shaped grains could be obtained while the growing grains contacted each other because of the decrease of the composition undercooling. The acting time and cooling effect of first and secondary cooling on the melt would be changed with the casting velocity. And the microstructure morphology and distribution in the cross-section of the billets would be affected. The billet with the homogeneous, fine non-dentritic microstructures could be obtained under the condition of the suitable casting velocity and cooling intensity. Under the certain cooling intensity during near-liquidus semi-continuous casting, the semi-solid billets with the smooth surface and homogeneous, fine rosette-shaped or spherical grains could be obtained at 150~200mm/min for ZL116 alloy and 100~170mm/min for 6063 alloy.
     The reheating test and analyzed calculation of the semi-solid billets were studied. And the evolution mechanism of reheated microstructures with the change of reheating temperature and holding time was studied. The results showed that the spheroidizing process of the grains is fastened, and the holding time is shortened due to the increase of reheating temperature. At the same reheating temperature, the spheroidized grains would be coarse with the increase of holding time. During the eutectic alloy is reheated at the eutectic temperature, eutectic Si would be fused and become the homogeneous, fine granules distributed in the remelted liquid. The Si granules grow and are decreased with the increase of holding time, then disappeared finally. The evolution of remelted microstructure is stable, and the small-sized and spherical microstructure which is suitable for semi-solid thixoforming could be obtained while the sample of ZL116 alloy was reheated at 575℃for 10~15min and the sample of 6063 alloy was reheated at 620℃for 10~15min.
     The deformation-compressed mechanisms of the ZL116、6063 alloy samples in solid and semi-solid states were studied by the thermal simulation technology. The results showed that: In the semi-solid state of high percentage of solid phase, the deforming stress would be increased with the strain rate at the same temperature, and the increasing extent of the stress is decreased with the increase of the temperature. Compared with the compression in solid state, the effect of strain rate on the stress in the semi-solid state is less. The stable compressing deformation of the ZL116、6063 alloy billets, which were cast by near-liquidus semi-continuous casting could be obtained in semi-solid state at the low strain rate
     According to the analyzed results of reheating test and thermal simulation, the billets of ZL116 and 6063 alloys cast by near-liquidus semi-continuous casting, were extruded in solid and semi-solid state. The microstructures and properties of the extruded bars were analysed. The processing parameters of heat treatment for the semi-solid extruded bars were optimized with the orthogonal design method and artificial neural network method. The results showed that: during the extrusion in semi-solid state, the deformation of billets is mainly composed of sliding of solid particles and its plastic deformation. The energy produced for deforming is little because of the small deforming resistance. The distribution of the stress and the flow velocity in the each part of the billet is uniform during the deformation. And the effect of the bar thick is less. The uniform deformed microstructure could be obtained. During the semi-solid forming, most of solutes are dissolved into the matrix, and distributed uniformly in the matrix as the precipitated phase while the fast cooling. The growth of the recrystallized grains is damped and the matrix is strengthened. The stress concentration in the deformed solid phase for the dislocations packing is decreased because of the liquid remission between the grains. Just some of deformed grains were recovered and recrystallized, and the fine-grain strengthening and dislocations strengthening are promoted. The effect of composition segregation in as-cast microstructure on extruded forming could be avoided due to forming between the solid and liquid zone. So the as-cast billets needn't to be homogenized.
     Extruded at 575℃in semi-solid state with high percentage of solid phase, the bar surface of ZL116 alloy is finished and the microstructure in the cross-section is uniform. A large number of Si particles and precipitated phases are distributed in the matrix, and the matrix is strengthened. Some of deformed solid particles became more finer because of recrystallizing. Compared with the solid extruded bars, the bar extruded in semi-solid state is more feasible and has the more noticeable properties. The optimized parameters of heat treatment for the semi-solid extruded bar of ZL116 alloy are: solid solution at 545℃for 4h and aging at 178℃for 10h. The tensile strength of the bar is 325Mpa, and the elongation is 14.6%. The plasticity is increased 192% than one of as cast part. And the time of solution is shortened. The energy consumption is decreased.
     The properties of the semi-solid extruded bars of 6063 alloy are improved due to the solid solution and natural aging on line. The tensile strength of the bar is above 240Mpa, and the elongation is above 19%. The properties index has been approached those of T6 heat treatment for the parts. The parameters of heat treatment for the semi-solid extruded bar of ZL116 alloy optimized by the orthogonal design method are: solid solution at 520℃for 1h and aging at 175℃for 6h. The tensile strength of the bar is 275Mpa, and the elongation is 14.23%.
引文
1.Flemings M C,Mehrabian R.Casting semi-solid metals[J],AFS Trans,1973,81:81-88
    2.Mehrabian R,Flemings M C.Die casting of partially solidified alloys[J],AFS Trans,1972,80:173-182
    3.Flemings M C.Behavior of metal and alloys in the semi-solid State[J].Metallurgical Transaction,1991,22A(6):975-981.
    4.Ward P J,Atkinson H V,Anderson P R G,et al.Semi-solid processing of novel MMCs based on hypereutectic aluminum alloys[J].Act mater,1996,44(5):1717-1727
    5.谢建新.材料加工新技术与新工艺[M].北京:冶金工业出版社,2004:95-145
    6.田荣璋.铸造铝合金[M].长沙:中南大学出版社,2006:359-363
    7.毛卫民.半固态金属成形技术[M].北京:机械工业出版社,2004:220-324
    8.Yurko J A,Martinez R A,Flemings M C.Development of the Semi-Solid Rheocasting(SSR)Process[C].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002.659-664
    9.路贵民,董杰,崔建忠,王平.液相线半连续铸造7075Al合金二次加热与触变成形[J].金属学报,2001,37(11):1184-1188
    10.Camacho Maciel A,Kapranos P,Atkinson H V.Thermodynamic Predictions of Wrought Alloy Compositions Arrmeable to semisolid Processing[C].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002:467-472
    11.Han Q Y,Viswanathan S.The Use of Thermodynamic Simulation for the Selection of Hypoeutectie Aluminium-Silicon Alloys for Semi-Solid Metal Processing[J].Materials Science and Engineering,2004,A364:48-54
    12.Tzimas E,Zavaliangos A.Materials Selection for Semisolid Processing[J].Mater.Manuf.Process,1999,14(2):217-230
    13.Liu Y Q,Fan Z,Patel J.Thermodynamic Approach to Aluminum Alloy Design for Semisolid Metal Processing[C].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002.599-604
    14.Liu Y Q,Fan Z.Magnesium Alloy Selections for Semisolid Metal Processing[C].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002.587-592
    15.Liu Y Q,Atkinson H V,Jones H.MTDATA Thermodynamic Prediction of Suitability of Alloys for Thixoforming[C].Proceedings of the 8~(th) International Conference On Semi-Solid Processing of Alloys and Composites.Limassol,Cyprus,2004,9
    16.Suery M,Martin C L,Salvo L.Overview of the Rheological Behaviour of Globular and Dendritic Slurries[C].Picspac.Sheffield.1996,19-29
    17.谢水生,黄声宏.半固态金属加工技术及其应用[M].北京:冶金工业出版社,1999:13-16
    18.路贵民,董杰,崔建忠.半固态浆制备新技术—液相线铸造[J].特种铸造及有色合金(压铸专刊),2001:221-223
    19.Apelian D,Pan Q Y,Findon M.Low Cost and Energy Efficient Methods for the Manufacture of Semi-Solid(SSM)Feedstock[J].Die CastingEngineer,2004,(1):22-28
    20.Fleming M C,Martines R,Figueredo de A M,Yurko J.Efficient Formation of Structures Suitable for Semi-Solid Forming[C].Proceedings of the 21~(st) International Die Casting Congress.USA,Cincinatti,2001
    21.Apelian D.Semi-Solid Processing Routes and Microstructure Evolution[J].Proceedings of the 7~(th)International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002:25-30
    22.Dobatkin V I,Eskin G I.Ingots of aluminum alloys with nondendritic structure produced by ultrasonic treatment for deformation in the semi-solid state,In:Kirkwood D H and Kapranos P.Proc of the 4th Int Conf on Semi-solid Processing of Alloys and Composites,University of Sheffield,England,1996:193-196
    23.吴炳尧,戴挺.半固态触变成形坯料二次加热技术分析[J].特种铸造及有色合金,2000,(6):58-61
    24.王平,路贵民,崔建忠.液相线半连续铸造A356铝合金二次加热合金组织与工艺[J].材料导报,2002,16(5):72-74.
    25.路贵民,赵大志,王平,崔建忠.ZL201合金低频电磁铸造与二次加热的合金组织,东北大学学报(自然科学版),2006,27(8):871-874
    26.Rudnev V,Gallik R,Elliott G.Intdcaces of Using Induction Heating for Semi-Solid Forming[J].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002:837-842
    27.Choi J C,Park J H,et al.A Study on Induction Heating of Semi-Solid Material with Forced Surface Cooling[J].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002:83-88
    28.Wang J L,Su Y H,Tsao C Y A.Structural evolution of conventional cast dendritic and spray cast non-dendritic structures during isothermal holding in the semi-solid state[J],Scripta Materialia,1997,37(12):2003-2007.
    29.康永林,毛卫民,胡壮麒.金属材料半固态加工理论与技术[M].北京:科学出版社,2004:13-83
    30.董杰,路贵民,任栖锋,崔建忠.液相线铸造法非枝晶半固态组织形成机理探讨[J].金属学报,2002,38(2):203-207.
    31.王平.A356铝合金半固态制浆及成形工艺与理论研究[D].博士学位论文.沈阳:东北大学,2002,9.
    32.Lehug H,Masonnane J,Blain J.Rheological behavior and microstructure of stir-casting Zinc-aluminum alloys[J].Materials science,1985,20(1):105-113.
    33.张景新,张奎.电磁搅拌制备半固态材料非枝晶组织的形成机制[J].中国有色金属学报,2000,(10)4:511-515.
    34.Vogel A,Dogerty D,Cantor B.Solidification and casting of metal[J].The Metal Society,London,1997,518-525.
    35.Altenpohl D G.Thixotropic alumimum summary and future prospects[J].Aluminum,1996,(10):694-701.
    36.罗守靖.复合材料液态挤压[M].北京:冶金工业出版社,2002:37-201
    37.王顺成.SCR技术制备A2017合金半固态材料组织演化与扩展成形[D].东北大学博士学位论文,2005.
    38.谢建新,刘静安.金属挤压理论与技术[M].北京:冶金工业出版社,2002:297-356
    39.程钢,樊刚.半固态材料成形技术的研究和应用[J].兵器材料科学与工程,2001,24(5):66-68
    40.齐丕骧,国内外挤压铸造技术发展概况[J].特种铸造及有色合金,2002,(2):20-24
    41.Giordano P,Chiarmetta G L.Thixoand Rheo Casting:Comparison on a High Production Volume Component[C].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002.665-670
    42.Rathindra DasGupta.Industrial Applications-the Present Status and Challenges We Face[J].Proceedings of the 8~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Cyprus,Limassol,2004.
    43.Fan Z.Twin-Screw Rheoforming Technologies for Semisolid Processing of Mg-Alloys[C].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002.671-676
    44.Jorstad J L,Thieman M,Kamm R.SLC,the Newest and Most Economical Approach to Semi-Solid Metal(SSM) Casting[C].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002.701-706
    45.任栖锋,石路,路贵民,崔建忠.半固态加工技术的进展及我国应对措施[J].材料与冶金学报,2002(3):15-19
    46.徐骏,田战峰,石力开等.半固态铝合金设计与实验研究[J].稀有金属,2004(4):358-361
    47.Tausig G,Xia K.Rheocasting and Semi-Solid Forming of a Usually Wrught Aluminium Alloy[J].In:Kirkwood D H and Kapranos P.Proceedings of the 4~(th) International Conference on Semi-Solid Processing of Alloys and Composites.England Sheffield.1996:290-295
    48.Tausig G,Xia K.Thixoforming ofa liquidus cast aluminium alloy[J].In:Bhasin A K and Moore J J,Young K P and Midson S.Proceedings of the 5~(th) International Conference on Semi-Solid Processing of Alloys and Composites.USA,Golden,1998:473-480
    49.Kapranos P,Atkinson H V.Thixoforming 2014,6082,7010 and 7075 Aluminium Wrought Alloys[C].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002:167-172.
    50.Kaufmann H,Holzl A,Uggowitzer.New Rheocasting of High Strength Aluminium Foundry Alloys[C].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002.617-622.
    51.Biihdg-Polaczek A,Aguilar J.Materials Development for Semi-Solid-Metal Processing [C].Proceedings of the 8~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Cyprus,Limassol,2004.
    52.Carat M,Blais S,Pluchon C et al.Aluminum Semi-Solid Processing;From the Billet to the Finished Part[C].Proc.5th Inter.Conf.on Semi-Solid Processing of Alloys and Composites,1998,Colorado,USA,199-213
    53.Lee J I,Lee H I,Kim M I.Formation of Spherical Primary Silicon Crystals during Semi-Solid Processing of Hypereutectic Al-15.5wt%Si Alloy[J].Scripta Meterialia,1995;32(12):1945-1949
    54.Pan Qingyue,Apelian Diran.Quantitative Microstructure Characterization of Commercial Semi-Solid Aluminum Alloys[C].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002:563-568.
    55.Pan Qingyue,Apelian Diran.Quantitative Microstructure Characterization of Commercial Semi-Solid Aluminum Alloys.www.wpi.edu/Academics/Research/ACRC/Research/,modified:Oct 16,2006
    56.刘丹,崔建忠,夏克农.液相线铸造铝合金2618显微组织[J].东北大学学报(自然科学版).1999,20(2):173-176
    57.路贵民,任栖锋,董杰,崔建忠.液相线半连续铸造112Al合金的组织[J].铸造技术,2002,23(3):189-192
    58.谷晓峰.ZL201铝合金半固态组织与成形性研究[D].东北大学硕士学位论文,2002
    59.路贵民,董杰,崔建忠.7075 Al合金液相线半连续铸造组织与二次加热的合金组织[J].中国有色金属学报,2001,11(2):211-215
     60.路贵民,董杰,崔建忠,常守威.7075 Al合金液相线半连续铸造组织及形成机理[J].金属学报,2001.37(10):1045-1048
    61.史立峰.ZL201合金半固态触变压铸及数值模拟[D].沈阳:东北大学硕士学位论文,2005,1
    62.路贵民,史立峰,王平等.ZL201合金半固态二次加热时的组织演变[J].东北大学学报(自然科学版),2006,27(6):669-672
    63.王顺成,陈彦博,温景林.A2017合金半固态压缩的变形机制和成形性能[J].材料研究学报,2004,18(3):285-289
    64.张鹏,曾大本,崔建忠等.半固态Al-28Pb铸锭中Pb的分布[J].清华大学学报(自然科学版),2002,42(4):484-487
    65.刘昌明,何乃军,杨大壮等.AlSi6.5Cu2.8Mg合金半固态重熔时的组织演变[J].重庆大学学报(自然科学版).2001,24(3):31-34
    66.毛卫民,钟雪友,李立强.AlSi7Mg非枝晶合金半固态重熔加热时的组织演变[J].铸造,1998(8):10-12
    67.毛卫民,白月龙,高松福等.半固态AlSi7Mg铝合金的新型流变成形[J].材料研究学报.2006,20(10):469-473
    68.陈晓阳,曾大本,钟雪友.AlSi7Mg合金坯料在固液两相区的初始结构对变形的影响[J].金属学报.2000,36(3):247-250
    69.王云华,高志强,朱明芳等.半固态Al—10%Cu合金流变行为[J].安徽工学院学报.1997,16(3):8-12
    70.Frederick P S,Bradley N L,Erickson.Injection molding magnesium alloys[J].Adv Mater & Processes,1988,134(4):53-56
    71.LeBeau S,Decker R.Microstructural design of thixomolded magnesium alloys.In:Bhasin A K,Moore J J,Younhg K P and Midson S[C].Proc.5th Inter.Conf.on Semi-Solid Processing of Alloys and Composites,1998,Colorado,USA,387-395
    72.Walukas D M,Vining R E,LeBeau S.Effect of Process Variables in Thixomolding[C].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002:101-106.
    73.Kleiner S,Beffort O,Fuchs M and Uggowitzer P J.Thixocasting of Mg-Al Alloys Using Extruded Feedstock Material[C].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002:257-262.
    74.Kleiner S,Beffort O,Uggowitzer P J.Microstructure evolution during reheating of an extruded Mg-Al-Zn alloy into the semisolid state.Scripta Materialia,2004,51:405-410
    75.Aguilar J,Fehlbier M,Rettemeier G.Development of New Mg-Alloys for the Thixomolding Process[C].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002:605-610
    76.Rajesh,Chandran,Sakai,Tetsuya.Kamado,Shigeharu.Kojima,Yo.Matsuzawa,Kazuo.Semi-solid forming of Mg-Li-Al-Ca light metal alloys[J].Journal of Japan Institute of Light Metals,1998,48(1): 13-18.
    77.乐启炽,张新建,崔建忠等.Mg-Li-Al合金近液相线制浆及部分重熔[J].铸造,2003,52(4):239-242
    78.乐启炽,欧鹏,吴跃东等.AZ91D镁合金近液相线铸造研究[J].金属学报,2002,38(2):19-22
    79.乐启炽,张新建,崔建忠等.AZ91D镁合金近液相线铸造半固态坯料的部分重熔[J].金属学报,2002,38(12):1266-1272
    80.毛卫民,甄子胜,闫时建等.连续冷却条件下半固态AZ91D合金的流变特性[J].铸造技术,2004,25(9):706-709
    81.毛卫民,闫时建,甄子胜等.半固态AZ91D镁合金的触变性[J].金属学报,2005,41(2):191-195
    82.Rick R G,Vrachnos A,Young K P,et al.Machine Casting of a Partially Solidified High Copper Content Alloy[J].AFS Trans,1975 83:25-30
    83.Bramann H.,Sahm P.R.,Biihrig-Polaczek A.Casting of a cold work steel alloy in semi-solid state[J].Journal of Materials Processing Technologies,Elsevier,Ireland,2004
    84.赵爱民,毛卫民,康永林等.钢铁半固态流变浆料制备与输送装置的研制[J].铸造设备研究,2003(2):1-3
    85.Kaufmann H,Mundl A.An Update on the New Rheocasting-Development Work for Al-and Mg-Alloys[J].Die Casting Engineering,2002,46(6):16-19
    86.Kim Shae K,Kim Young-Jig.Alloy Design and Microstructural Evolution of Thixoformable Alloys[C].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002:593-598
    87.Atkinson H V,Liu D.Development of High Performance Aluminium Alloys for Thixoforming[C].Proceedings of the 7~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Japan,Tsukuba,2002:51-56.
    88.Kazakov Alexander A.Alloy Compositions for Semisolid Forming[J].Advanced Materials &Processes,2000,46(6):31-34
    89.Lee Jae-Chul,Seok Hyun-Kwang and Ho-In Lee.Alloy Design of Thixoformable Wrought Sic/Al Alloy Composites[C].Materials Research Bulletin,1999,34(1):35-42
    90.Pan Qingyue,Hogan Patrick,Apelian Diran.SSM Alloy Development.www.wpi.edu/Academics/Research/ACRC/Research/,modified:Oct 16,2006
    91.Xu Jun,Tian Zhanfeng,Shi Likai.Study on New Al-Mg-Si Alloys for Semi-Solid Processing[C].Proceedings of the 8~(th) International Conference on Semi-Solid Processing of Alloys and Composites.Cyprus,Limassol,2004.
    92.张志峰,徐骏,石力开.新型半固态加工专用铝合金的成分设计[J].热加工工艺,2005,9:3-5
    93.赵大志,路贵民,崔建忠.半固态铸造技术的发展状况及前景[J].铸造,2005,54(10):943-947
    94.路贵民,赵大志,崔建忠.轻合金半固态成形的研究进展[J],特种铸造及有色合金,2007,(S):29-36
    95.杨国英 任智森 陈建华.热顶模铸造常见的缺陷及防止措施[J].铸造,1999,48(3):37-40
    96.张鸿云.水平连铸6063合金锭常见缺陷及解决办法[J].铝加工,1999,22(2):3-6
    97.Geiger J,Roosz A,Barkoczy.Simulation of grain coarsening in two dimensions by cellular-automation[J].Acta Mater.,2001,49:623-629
    98.胡汉起.金属凝固原理[M].北京:机械工业出版社,2000:80-165
    99.Duru M.Stefanescu,C.S.Kanetjkar.State of the art of counter simulation of casting and solidification processes[M],H.Fredriksson,ed,Les Edition de Physique,PARIS,1986.
    100.大野笃美著,唐彦斌等译.金属凝固学[M].北京:机械工业出版社,1983:
    101.Oreper G M,Szekely J.The effect of an externally imposed magnetic field on buoyancy driven flow in a rectangular cavity[J].Journal of Crystal Growth,1983,64:505-515.
    102.Nastac L,Stefannescu D M.Macrotransport-Solidification Kinetics Modeling of Equiaxed Dendritic Grown[J].Metall.Matr.Trans.A,1996,27A:4061-4074.
    103.邢书明,马静,陈维视等.半固态亚共晶铝硅合金非枝晶固相的形成与演变[J].中国有色金属学报,1999,9(suppl 1):270-274
    104.赵祖德,罗守靖.轻合金半固态成形技术[M].化学工业出版社,北京,2007:8-34
    105.王战锋,张辉,张昊等.喷射沉积5A06铝合金热压缩变形的流变应力行为[J].中国有色金属学报,2006,16(11):1938-1944
    106.Jiri Malek.Kinetic analysis of s nickel-phosphorus deposits[J].Journal of Non-Crystalline Solids,2003,324:230-241
    107.Borrego A,Gonzalez-Doncel G.Calocrystallization processes in amorphous materials[J].Thermochimica Acta,2000,355:239-253
    108.Keong K.G.,Sha W.,Malinov S.Computer modelling of the non-isothermal crystallization kinetics of electrolesrimetric study of 6061-Al-15 vol.%SiC_w PM composites extruded at different temperatures[J].Materials Science and Engineering A,1998 245:10-18
    109.Mao W M,Cui C L,Zhao A M,et al.Dynamical cosrsening processes of microstructures in non-dendritic AlSi7Mg alloy remelted in semi-solid state[J],Trans Nonferrous Met Soc China,2000,10(1):25-28
    110.Wang J L,Su Y H,Tsao C Y A.Structural evolution of conventional cast dendritic and spray-east non-dendritic structures during isothermal holding in the semi-solid state[J],Scripta Material,1997,37(12):2003-2007
    111.潘冶,曹洪波,孙国雄.半固态铝硅合金的压缩变形行为与组织变化[J],特种铸造及有色合金,200115(4):552-557
    112.郭钧,丁志勇,谢水生等.半固态Al-6.6%Si合金的变形行为[J].中国有色金属学报,2000,10(Suppl.1):115-119
    113.肖亚庆.铝加工技术实用手册[M].北京:冶金工业出版社,2005:564-571,952-954
    114.胡传炘.热加工手册[M],北京:北京工业大学出版社,2002:581-596
    115.吴向红,赵国群,孙胜等.挤压速度和摩擦状态对铝型材挤压过程的影响[J].塑性工程学报,2007,14(1):36-41
    116.齐乐华,李贺军,罗守靖等.液态模锻和液态挤压强韧化材料的机理探析[J].兵器材料科学与工程,1996,19(4):56-60
    117.Ferrante M.,Freitas E.de.Rheology and microstructural development of a Al-4wt%Cu alloy in the semi-solid state[J].Materials Science and Engineering A,1999,271:172-180
    118.TZIMAS E.and ZAVALIANGOS A..Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content[J].Acta Mater.,1999,47(2):517-528
    119.Yoon J.H.,Im Y.T and Kim N.S.Rigid-thermoviscoplastic finite-element analysis of the semi-solid forging of Al2024[J].Journal of Materials Processing Technology,1999,89-90:104-110
    120.IWASAKI H.,MORI T.,MABUCHI M.and HIGASHI K..Shear deformation behavior of Al-5%Mg in a semi-solid state[J].Acta Mater.,1998,46(18):6351-6360
    121.Lapkowski W.Shicczak J.and Rusz S.Feasibility of metal forming in semi-liquid state[J].Materials Processing Technology,1997,63:260-264
    122.Rovira M M,Lancini B C.and Robert M H.Thixo-forming of Al-Cu alloys[J].Materials Processing Technology,1999,92-93:42-49
    123.Yang D Y.and Kim K.J.Design of processes and products through simulation of three-dimensional extrusion[J].Journal of Materials Processing Technology,2007,191:2-6
    124,Ajiboye J.S.and Adeyemi M.B.Effects of extrusion variables on temperature distribution in axisymmetric extrusion process[J].International Journal of Mechanical Sciences,2008,50(3):522-537
    125.Tahir Altinbalik,Onder Ayer.A theoretical and experimental study for forward extrusion of clover sections[J].Materials and Design,2008,29(6):1182-1189
    126.Ding H L,Liu L F and Kamado Shigeharu,et al.Study of the microstructure,texture and tensile properties of as-extruded AZ91 magnesium alloy[J].Journal of Alloys and Compounds,2008,456(1-2):400-406
    127.Gavrus A,Massoni E,Chenot J L.An inverse analysis using a finite element model for identification of rheological parameters.[J]Materials Processing Technology,1996,60:447-454
    128.温景林,丁桦,曹富荣等.有色金属挤压与拉拔技术[M].北京:化学工业出版社,2007:37-73
    129.Tseng A A,Horsky J,Raudensky M.Deformation behavior of steels in mushy state.Materials and design,2001,22:83-92
    130.Lapkowski W S.and Overfelt R A.High temperature deformation behavior of solid and semi-liquid alloy 718[J].Acta Materials,1999,47(18):4695-4710
    131.林建忠.流—固两相拟序涡流及稳定性[M].清华大学出版社,北京,2003:141-154
    132.沈喜生.优化计算的神经网络模型及其稳定性分析.厦门大学博士学位论文[D],厦门:厦门大学,2006
    133.Hecht-Nielsen R.Theory of the Back propagation Neural Net-work.Proceedings of the International Joint Conference on Neural Network[C].Wangshington:IEEE,1989:593-605
    134.Song R G,hang Q.Heat treatment optimization for 7175 aluminum alloy by an artificial neural network and a genetic algorithm.Journal of Materials Processing Technology,2001,117:84-88
    135.Malinov S,Sha W,Mckeown J J.Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural net work[J].Computational Materials Science,2001,21(3):375-394.
    136.Li H J,Qi L H,Han H M,et al.Neural network modeling and optimization of semi-solid extrusion for aluminum matrix comnocitec.[J]Journal of Materials Processing Technology.2004,151:126-132
    137.宋仁国,张奇忠,曾梅光.人工神经网络在7175高强铝合金时效动力学研究中的应用[J].东北大学学报,1995,16(2):219-221
    138.有色金属及其热处理编写组.有色金属及其热处理[M],北京:国防工业出版社,1981:21-52
    139.何立子.Al-Mg-Si系合金组织性能.东北大学博士学位论文[D],沈阳:东北大学,2001
    140.Ji-Yong Yao,Geo fferya,Edwards et al.Graham:Precipitation and Age-Hardening in Al-Si-Cu-Mg-Fe Casting Alloys[J],Materials Science Forum,1996,217/222:777-782
    141.余忠土,张恒华,邵光杰,许珞萍等.热处理对铝合金半固态成形件组织与性能的影响[J],理化检验.物理分册,2002,38(11):489-495
    142.A G 盖伊,J J 赫仑.物理冶金学原理[M].北京:机械工业出版社,1981:292-321

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700