用户名: 密码: 验证码:
不同微环境对骨髓间充质干细胞分化为产胰岛素细胞的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病是常见的慢性疾病,全世界患病率约6%。患者常需要终身注射胰岛素治疗,但胰岛素注射疗法对血糖的控制并不理想,无法阻止糖尿病肾病、冠心病、糖尿病眼病等并发症的发生和发展。最近几年胰岛移植的成功表明了通过补充缺乏的β细胞可以治愈糖尿病。但供体来源缺乏和移植排斥阻碍了胰岛细胞移植的广泛应用。
     干细胞作为一类具有极强自我更新及多向分化潜能的细胞,已经逐渐成为人们寻找胰岛β细胞替代物的新的细胞资源。由于骨髓间充质干细胞(MSCs)具有多向分化和很强的增殖能力,具有用于细胞治疗的巨大潜能。它们可以分化为神经细胞、脂肪细胞、平滑肌细胞、骨骼肌细胞、心肌细胞、软骨细胞和产胰岛素细胞等。但是由骨髓间充质干细胞诱导分化而来的产胰岛素细胞(IPCs),其胰岛素分泌量不足正常胰腺β细胞的1%。如何促进MSCs分化为较成熟的IPCs成为亟待解决的关键问题。目前认为其分化机制,主要是微环境因素通过一定的信号转导通路传递,转录因子抑制或激活,启动关键基因表达的结果。
     本研究的目标是:探索不同微环境下对大鼠MSCs体外分化为IPCs的影响,在糖尿病大鼠体内微环境下MSCs是否还可以分化为IPCs,为糖尿病细胞替代治疗提供理想的种子细胞。
     大鼠MSCs的体外分离培养和生物学特征:利用贴壁法分离纯化大鼠MSCs,传代培养于含10%胎牛血清的DMEM培养液中;通过倒置显微镜、电镜、免疫细胞化学分析大鼠MSCs的生物学特征。结果显示原代和传代培养MSCs均保持较强的增殖能力,形态为均一的成纤维样细胞。超微结构显示了干细胞的幼稚特征,免疫细胞化学显示CD34阴性,CD44阳性。结论:采用我们的方法,可以获得生长稳定,扩增较快和纯度较高的MSCs。
     不同微环境对大鼠MSCs体外分化为IPCs的影响:采用第三代MSCs,用不同的微环境进行诱导,对照组诱导剂为含有角朊细胞生长因子、胰岛素铁硒传递蛋白(ITS)、尼克酰胺的无血清DMEM/F12培养基、实验组在对照组基础上添加胰腺条件培养液;对诱导后细胞进行光、电镜观察,双硫腙和免疫细胞化学等进行鉴定,并行体外葡萄糖刺激实验,测定细胞分泌胰岛素及C-肽功能。结果表明,实验组及对照组均可诱导分化为IPCs,但实验组分化而成的IPCs在数量及功能上均好于对照组。结论:大鼠胰腺提取物模拟的微环境能促进大鼠MSCs体外诱导分化为较高质量的IPCs。
     在糖尿病大鼠体内微环境下MSCs分化为IPCs的潜能:通过腹腔注射链脲佐菌素(STZ)诱导健康SD大鼠建立糖尿病模型;将MSCs及由MSCs诱导分化来的IPCs注射到糖尿病模型大鼠的肾包膜下,检测移植前后血糖、体重、尿量、生存时间变化,当移植大鼠血糖开始下降后,行荷移植物肾切除术去除移植物,继续观察血糖变化,看是否有血糖反跳,以评价其治疗糖尿病的效果,结合标本免疫组织化学染色,观察移植入的MSCs在糖尿病大鼠体内是否分化为IPCs。结果:将MSCs及IPCs移植到大鼠肾包膜下后,大鼠的血糖水平下降,糖尿病症状得到控制,生存时间明显延长。免疫组化显示移植入的MSCs分化为胰岛素染色阳性细胞。结论:在糖尿病大鼠体内微环境下MSCs可以分化为IPCs。
     综上所述,大鼠MSCs在不同的体外及体内微环境下均可特异诱导分化为IPCs,而大鼠胰腺提取物模拟的微环境能促进大鼠MSCs体外诱导分化为IPCs;将大鼠MSCs和IPCs移植入糖尿病大鼠模型体内能够明显改善糖尿病症状,延长其生存时间。虽然骨髓间充质干细胞在安全而有效地运用于临床治疗之前还有许多基本的问题有待解决,但它为我们解决移植治疗糖尿病中供体缺乏问题方面提供了一条新的途经。
Diabetes mellitus is a devastating chronic disease and over 6% of the population is affected worldwide. The diabetic are necessary to inject insulin in their lifetime, but it is not ideal to inject insulin since insulin can't prevent the development of diseases derived form diabetes, such as kidney diseases, coronary heart disease, eye diseases,etc. The success achieved over last few years with islet transplantation suggests that diabetes can be cured by the replenishment of deficientβcells. However, the lack of donor organs and transplant rejection hinder the application of pancreatic islet transplantation.
     Stem cells ,which have the capacity for both self-renewal and multilineage differentiation into any type of cell, becoming the new source of islet cell replacement. Bone marrow mesenchymal stem cells(MSCs) have great ability of multi-directional differentiation and reproductive activity that make them potentially useful for cell therapy. A number of protocols have been described to induce MSCs to neuronal cells,adipocytes,smooth muscle myocytes,skeletal muscle myocytes,cartilage cells and insulin-producing cells(IPCs).The IPCs induced from MSCs can secrete insulin,but their secretory volume was less than 1% that of a normalβcells. How to promote MSCs differentiating into IPCs become the critical issue should be solved. The recent study have shown that the differentiation mechanism is the result of key gene expression through a definite signal transmitting passway and inhibition or activation of transcription factor induced by microenviroment factors.
     In this study,we try to explore the impact of different microenvironment on differentiating rat bone marrow MSCs into IPCs in vitro,then to study the capacity of MSCs differentiating into IPCs in diabetic rat’s microenviroment in vivo,and to provide suitable“seed”cells for replacement therapy of diabetes mellitus.
     Isolation, cultivation and biological features of rat MSCs in vitro:MSCs were isolated from rat bone marrow,purified by their adhesive process onto the culture dish,serial subcultivated on dulbecco’s modified eagle medium with 10% fetal bovine serum;The changes of cell morphology and the ultrastructure were observed, cell surface markers CD34、CD44 were detected by immunocytochemistry. The results show both primary and passage MSCs have maintained highly proliferative capacity.They have homogeneous fibrocyte-like shap under light microscope. The ultrastructure showed the young cell nature of stem cell. The cells were negative for CD34, while positive for CD44 by immunocytochemistry staining.Conclusion: MSCs can be cultured stably、expanded quickly and have higher purity with our method.
     The Impact of different microenvironments on the differentiating rat MSCs into IPCs: Third descended MSCs cells were then cultivated in vitro mimicking different microenvironments,in which control group was cultivated in serum free DMEM/F12 medium including keratinocyte growth factor(KGF)、ITS and Nicotinamide, while experimental group was cultivated in serum free DMEM/F12 medium in which the rat pancreatic extract was added. During the cultivation period the cells were taken for light and electron microscopy at different time points, identified by dithizone(DTZ) and immunocytochemistry. The glucose stimulation test was performed in vitro and the levels of insulin and C-peptide in response to the different glucose concentration was assayed. The results show MSCs could differentiat into IPCs both in the control group and the experimental group. The IPCs harvested from experiment group had greater number and better function than that from control group . Conclusion :The microenvironment in which the rat pancreatic extract added could promote the rat bone marrow MSCs to differentiate into better IPCs in vitro。
     The capacity of MSCs differentiating into IPCs in diabetic rat’s microenviroment in vivo: The rat MSCs and IPCs induced from MSCs were transplanted under the renal capsule of STZ induced SD rat. Blood glucose levels, weight, urine and survival rate were monitored. when rat’s blood glucose levels begin to descend,grafts were then removed by unilateral nephrectomy. The blood glucoses level was monitored to investgate whether euglycemia reversal happenned, and we have immunohistochemistry staining to observe wherether the MSCs of transplanted could differentiate into IPCs. The result show MSCs and IPCs by injection into the renal capsule of STZ induced diabetic SD rat could decrease its blood glucose level and prolonged survival time. Immunohistochemistry also confirmed that the MSCs of transplanted were strongly positive for insulin. Conclusion: MSCs can differentiating into IPCs in diabetic rat’s microenviroment in vivo.
     In summary, the present study provides evidence that rat MSCs have the capacity to differentiate into IPCs under different microenvironments both in vitro and in vivo. The microenvironment in which the rat pancreatic extract added could promote the rat bone marrow MSCs to differentiate into better IPCs in vitro. MSCs and IPCs transplanted into the renal capsule of STZ induced diabetic SD rats could decrease their blood glucose level and prolong their survival time. Obviously, there are still a number of fundamental questions about MSCs need to be answered before they can be safely and effectively used in clinical setting, but it provides us a new solution to deal with the shortage of beta cells for therapy of type 1 diabetes.
引文
1. Diabetes Control and Complication Trial Research Group.The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.N Engl J Med 1993;329:977-986
    2. UK Prospective Diabetes Study Group.Intensive blood glucose control with sulphonvlureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes(UKPDS 33) . Lancet 1998;352:837-853
    3. Shapiro AM,Lakey JR,Ryan EA,et al. Islet transplantation in seven patients with type I diabetes mellitus using a glucocorticoid-free immunosupp- ressive regimen.[J] New Engl JMed, 2000,343(4): 230-238.
    4. Hess D,Li L , Martin M,et al.Bone mallow-derived stem cells initiate pancreatic regeneration[J].Nat Biotechnol,2003;2l(7):763-770.
    5. Ianus A, Holz GG,Theise ND, Hussain MA: In vivo derivation of glucosecompetent pancreatic endocrine cells from bone marrow without evidence of cell fusion.2003,J Clin Invest 111:843-850.
    6. Preston St ,Alison MR,Forbes SJ,et a1.The new stem eel1 biology:something for everyone [J] Mol Pathol,2003,56(2):86-96.
    7. Choi KS,Shin JS,Lee JJ,et al.In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract [J].Biochem Bioph Res Co,2005;330(4):l299-l30512).
    8. Lebovitz HE.Type2diabetes:anoverview[J].ClinChem,199945:8(B):1339-1345
    9. Rodriguez JP, Garat S, Gajardo H, et al. Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells
    1. Diabetes Control and Complication Trial Research Group.The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.N Engl J Med 1993;329:977-986
    2. UK Prospective Diabetes Study Group.Intensive blood glucose control with sulphonvlureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes(UKPDS 33) . Lancet 1998;352:837-853
    3. Shapiro AM,Lakey JR,Ryan EA,et al. Islet transplantation in seven patients with type I diabetes mellitus using a glucocorticoid-free immunosupp- ressive regimen.[J] New Engl JMed, 2000,343(4): 230-238.
    4. Hess D,Li L , Martin M,et al.Bone mallow-derived stem cells initiate pancreatic regeneration[J].Nat Biotechnol,2003;2l(7):763-770.
    5. Ianus A, Holz GG,Theise ND, Hussain MA: In vivo derivation of glucosecompetent pancreatic endocrine cells from bone marrow without evidence of cell fusion.2003,J Clin Invest 111:843-850.
    6. Preston St ,Alison MR,Forbes SJ,et a1.The new stem eel1 biology:something for everyone [J] Mol Pathol,2003,56(2):86-96.
    7. Choi KS,Shin JS,Lee JJ,et al.In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract [J].Biochem Bioph Res Co,2005;330(4):l299-l30512).
    8. Lebovitz HE.Type2diabetes:anoverview[J].ClinChem,199945:8(B):1339-1345
    9. Rodriguez JP, Garat S, Gajardo H, et al. Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cellspancreatic endocrine,exocrine,and hepatic phenotypes.Diabetes 2001;50:521-533.
    21. Dor Y,Brown l,Martinez OI,Melton DA.Adult pancreatic B-cells are formed by self-duplication rather than stem cell differenttiation.Nature,2004;429:41-46.
    22. Seaberg RM,Smukler SR,Kieffer TJ,et al.Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages。Nat Biotechnol,2004;22:1115-1124.
    23. Gershengorn,Hardikar,Chiju Wei,et al.Epithelial-to-Mesenchymal transition generates proliferative human islet precursor cells.Science. 2004;25:1101968.
    24. E.Hao,B.Tyrberg,J.R.Lakey,et al.Beta-cell differentiation from non- endocrine epithelial cells of the adult human pancreas,Nat.Med,2006, 12:310-316.
    25. 张玲,洪天配,胡江,等.从胎儿胰腺组织建立单克隆胰腺前体细胞的研究.中华糖尿病杂志2004;12:442-445。
    26. Huang H,Tang X.Phenotypic determination and characterization of nestin-positive precursors derived from human fetal pancreas.Lab Invest,2003;83:539-547.
    27. Wu F,Jagir M,Powell JS.Long-term correction of hyperglycemia in diabetic mice after implantation of cultured human cells derived from fedal pancreas.Pancreas,2004;29:e23-e29.
    28. Zou C,Suen PM,Zhang Y,et al.Isolation and in vitro characterization of pancreatic progenitor cells from the islets of diabetic monkey models.Int J Biochem cell Biol.2006;38(5-6):973-84.
    29. McKinnon CM,Docherty K.Pancreatic duodenal homeobox-1,PDX-1, a majorregulator of beta cell identity and function [J].Diabetologia.2001; 44(10):1203-1214
    30. Bonner-Weir S, Arun Sharma .pancreatic stem cells.J Pathol,2002;197(4):519-526.
    31. Lendahl U,Zimmerman LB,McKay RD.CNS stem cells express a new class of intermediate filament protein.Cell 1990;60:585-595
    32. Hunziker E,Stein M .Nestin-expressing cells in the pancreatic islets of Langerhans.Biochem Biophys Res Commun 2000;271:116-119.
    33. 夏修金,鲍卫汉,洪天配,等.巢蛋白在人胚胎胰腺中的表达.中国糖尿病杂志,2003;11:204-207.
    34. Peters K,Panienka R,L i J,et al. Expression of stem cell markers and transcription factors during the remodeling of the rat pancreas after duct ligation.VirchowsArch,2005,446:56-63.
    35. Bernardo AS,Barrow J,Hay CW,et al.Presence of endocrine and exocrine markers in EGFP-positive cells from the developing pancreas of a nestin/EGFP mouse.Mol Cell Endocrinol,2006, 253:14-21.
    36. Treutelaar MK,Skidmore JM,Dias-Leme CL,et al.Nestin-lineage cells contribute to the microvasculature but not endocrine cells of the islet.Diabetes,2003;52:2503-2512.
    37. Delacour A,Nepote V,Trumpp A,et al.Nestin expression in pancreatic exocrine cell lineages.Mech Dev.2004;121:3-14.
    38. Gao R,Ustinov J,Pulkkinen MA,et al.Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture.Diabetea,2003;52:2007-2015.
    39. Humphrey RK,Bucay N,Beattie GM,et al.Characterization and isolation of promoter-defined nestin-positive cells from the human fetal pancreas.Diabetes.2003;52:2519-2525.
    40. Street CN,Lakey JR,Seeberger K,et al.Heterogenous expression of nestin in human pancreatic tissue precludes its use as an islet precursor marker.J Endocrinol,2004;180(2):213-215.
    41. Zheng ZM,Chen DM,Li LS,et al.Expression of nestin and neurogenin-3 in the human fetal pancreas.Zhonghua Wai Ke Za Zhi,2005,43:1537-1540.
    42. Bouwens L.Cytokeratins and cell differentiation in the pancreas.J Biochem Biophys.2004;40:81-8.
    43. Wang R,Li J,Yanshpal N.Phenotypic analysis of c-Kit expression in epithelial monolayers derived from postnatal rat pancreatic islets[J].J Endocrinol,2004;182(1):113-122.
    44. Bouwens L.Islet morphogenesis and stem cell markers.Cell Biochem Biophys.2004;40:81-8.
    45. Bocian-Sobknowska J,Zabel M,Wozniak W,et a1.Po1yhomlonal aspect of the endocrine cells of the human fetal pancreas.Histochem Cell Biol,1999,l12(12):147—153.
    46. Gmyr V,Kerr-Conte J,Belaich S,et a1.Adult human cytokeration l9-postive cells reexpress insulin promoter factor in vitro futher evidence for pluripotent pancreatic stem cells in human.Diabetes,2000,49(10):1671- 1680.
    47. Hosotani R,Ida J,Kogire M,et al . Expression of pancreatic duodena1 hoemobox-1 in pancreatic islet neogenesis after surgical wrapping in rats.Surgery,2004,135(3):297-306.
    48. Jensen J,Heler RS,Funder Nielsen T,et a1.Inedpendent development of pancreatic alpha-and beta-cells from neurogenin3-expressing precumom:a role for the notch pathway in repression of premature differentiation[J].Diabetes,2000,49(2):163-176.
    49. Schwitzgebel VM,Scheel DW,Conners JR,et al.Expression of neurogenin3 reveals an islet cell precursor population in the pancreas.Development, 2000,127:3533-3542
    50. Schmied BM,Liu GZ,Matsuzaki H,et a1.Differentiation of islet cells in long-term culture[J].Pancreas,2000,20(4):337-347.
    51. Ko SH,Suh SH,Kiln BJ,et al.Expression of the intermediate filament vimentin in proliferating duct cells as a marker of pancreatic precursor cells.Pancreas.2004,28(2):121-128.
    52. 杨明,王春友,刘涛,等.应用蛋白组学的方法筛选胰腺干细胞标记物.生物化学与生物物理进展.2006,33(6):540-54.
    53. 周毅,许评,宋一民,等.测定胰腺干细胞分子标志的临床意义[J].国外医学消化系疾病分册.2001,21(3):177-180.
    54. Lumelsky N,Blondel O,Laeng P,et a1.Diferentiation of embryonic stem cells to insulin secreting structures similar to pancreatic islets[J].Science,2001,292(5520):1389-1394.
    55. Suheir A,Gila M,Michal A,et al.Insulin secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin induced diabetic mice[J].Diabetes.2000,49(2):157-162.
    56. Assady S,Maor G,Amit M,et al.Insulin production by human embryonic stem cells.Diabetes,2001:50:1691-1697.
    57. Zhang L,Hong TP,Hu J,et a1.Nestin-positive progenitor cells isolated from human fetal pancreas have phenotypic markers identical to mesenchymal stem cells[J]. World J Gastroenterol,2005,ll(19):2906-2911.
    58. Shi Y,Hon L,Tang F,et a1.Inducing embryonic stem cells to differentiate into pancreatic βcells by a novel three-step approach with activin A andal1-trans retinoic acid[J].Stem Cells,2005,23(5):656-662.
    59. D'Amour KA,Bang AG,Eliazer S,et al.Production of pancreatic hormone- expressing endocrine cells from humanembryonic stem cells. Nat Biotechnol 2006, 24(11):1392-1401.
    60. Hansson M,Tonning A,Frandsen U,et al.Artifactual insulin release from differentiated embryonice stem cells.Diabetes,2004,53:2603-2609.
    61. Fujikawa, T. et al. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol. 2005,166:1781-1791.
    62. Zhao, Y. et al. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics.Exp Cell Res.2006,312:2454–2464.
    63. Yoshida S,et al.Human cord blood-derived cells generate insulin-producing cells in vivo.Stem Cells,2005;23:1409-1416.
    64. Bonner-Weir S,Taneja M,Weir GC,et a1.In vitro cultivation of human islets from expanded ductal tissue [J].Proc Nail Acad Sci USA,2000;97(14):7999- 8004.
    65. Baeyens L,De Breuck S,Lardon J,et al.In vitro generation of insulin- Producing beta cells from adult exocrine pancreatic celle.Diabetologia. 2005,48(1):49-57.
    66. Minami K,Okuno M,Miyawaki K,et al.Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells.Proc Natl Acad Sci USA.2005;102(42):15116-162.
    67. Zhang L,Hong TP,Hu J,et a1.Nestin-positive progenitor cells isolated from human fetal pancreas have phenotypic markers identicalto mesenchymal stem cells[J].World J Gastroenterol,2005,ll(19):2906-2911.
    68. Kandeel F,Smitll CV,Todorov I,et al.Advances in islet cell biology:From stem cell differentiation to clinical transplantation[J].pancreas,2003; 27(3):E63-E78.
    69. Eberhardt M SP,von Mach MA,Hengstler J,Get al. Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem Biophys Res Commun. 2006;345(2006):1167–1176.
    70. Tang DQ,Cao LZ,Burkhardt BR,et a1.In Vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow [J].Diabetes,2004;53(7):1721-1732.
    71. Taneera, J. et al. Failure of transplanted bone marrow cells to adopt a pancreatic β-cell fate.Diabetes,2006,55:290–296.
    72. Timper K,Seboek D,Eberhardt M,et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin,somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun. 2006;341(4): 1135–40.
    73. Kedame S,Kuhtreiber W,Fujimura S,et a1.Islet regeneration during the reversal of antoimmune diabetes in NOD mice [J].Science,2003;302(5648): 1223-1227.
    74. A.S. Chong, J. Shen, J. Tao, et al. Reversal of diabetes in non-obese diabetic mice without spleen cell-derived b cell regeneration, Science, 2006,311:1774–1775.
    75. Yang L,Li S,Harch H,et a1.In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells[J ], Proc Natl Acad Sci USA,2002;99(12):8078-8083.
    76. Nakajima-Nagata N,Sakurai T,Mitaka T,et al.In vitro induction of adult hepatic progenitor cells into insulin-producing cells[J].Biochem Bioph ResCo,2004;3l8(3):625-630.
    77. D.Q. Tang, S. Lu, Y.P. Sun,et al.Reprogramming liver-stem WB cells into functional insulin-producing cells by persistent expression of Pdx1 and Pdx1-VP16 mediated by lentiviral vectors, Lab.Invest.86(2006):83–93.
    78. Burns CJ,Minger SL,Hall S,et a1.The in vitro diferentiation of rat neural stem cells into an insulin-expressing phenotype [J].Biochem and Biophys Res Commun,2005,326(3):570-577.
    79. Suzuki A,Nakauchi H,Taniguchi H,et al.Glucagon-like peptide l(1-37) converts intestinal epithelial cells into insulin-producing cells[J]. Prec Natl Aced Sci USA.2003,100(9):5034-5039.
    80. Cheung AT,Dayanandan B,Lewis JT,et a1.Glucose-dependent insulin release from genetically engineered K cells[J].Science,2000;290(5498):1959-1962
    81. Hermans Y,Van De Casteele M,et al.Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3.J Cell Biol,2002,159(2):303-312.
    82. Jeong Hwan Kim,Si-Nae ParK,Hwal Sub,Generation of insulin-producing human mesenchymal stem cells using recombinant adeno-associated virus.Yonsei Medical Journal 2007,48:109-119 .
    83. Noguchi H,Kaneto H,Weir GC,Bonner-Weir S,PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells.Diabetes 2003,52:1732-1737.
    84. Noguchi H,Bonner-Weir S,Wei FY,Matsumoto S,BETA2/NeuroD protein can be transduced into cells due to an arginine-andlysine-rich sequence. Diabetes,2005,54:2859-2866.
    85. Dominguez-Bendala J,Klein D,Ribeiro M,et al.TAT-mediated neurogenin 3 protein transduction stimulates pancreatic endocrine differentiation invitro.Diabetes.2005,54:720-726.
    86. Mezey E,Chandross KJ.Bone marrow:a possible alternative source of cells in the adult nervous system[J].Eur J Pharmacol,2000;405:297.
    87. Friedenstein AJ, Chailakhjan RK, Lalykina KS.The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970, 3:393-403.
    88. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet,1987,20(3):263-272.
    89. Minguell JJ,Erices A,Conget P.Mesenchymal stem cells[J].Exp Bid Med. 2001,226(6):507.
    90. Bruder SP,Jaiswal N,Haynesworth SE.Growth kinetics,self-renewa1,and the osteogential of purified human mesenchymal stem cells during extensive subculativtion and following cryopreservation[J].J Cell Biochem,1997, 64(2):278-281.
    91. 付文玉,路艳蒙,朴英杰.人骨髓间充质千细胞的分化与端粒酶活性[J].第一军医大学学报.2001.21(11):801.
    92. 王运涛.骨髓间充质干细胞分离培养的研究进展[J]. 国外医学.生物工程分册. 2002,25(4):184-188.
    93. Hgushi H,Caplan A I.Stem cell technology and biocramics:from cell to gene engineering[J].J Biomed Mater Res,1999,48(6):913-927.
    94. Conget P A,Minguell J J.Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells[J]. J Cell Physiol,1999,181(1): 67-73.
    95. Pittenger MF, Mackay A M ,Beck S C,et al.Multolineage potential of adult human mesenchymal stem cells [J]. Science,1999,284(2):143-147
    96. Lisignoli G,Remiddi G,Cattini L,et a1.An elevated number of diferentiated osteoblast colonies can be obtained from rat bone marrow stromal cells using a gradient isolation procedure [J].Connect Tissue Res,2001,42(1): 49.
    97. Zohar R,Sedek J,Mc Culloch C A.Characterization of stromal progenitor cells enriched by flow cytometry[J].Blood,1997,90(9):3471.
    98. J Encina N R,Billotte W G,Hofmaun M C.Immunonmgnetic isolation of osteoprogenitors from human bone malTow stroma[J].Lab Invest,1999,79 (4): 449.
    99. 郑杰、王培训、周联。骨髓间充质干细胞分离及条件培养基在其培养扩增中的作用.广州中医药大学学报,2006,23(4):356-359.
    100.Ferrari G, Coletta M, Paolucci E, et al. Muscle regeneration by bonemarrow-derived myogenic progenitors[J].Science,1998,279:152810.
    101.Brazerlton TR,Rossi FM V,Keshet GI,et al.From marrow to brain :expression of neuronal phenotypers in adult mice[J]. Science, 2000,290(5497):1775 -1779.
    102.Ereira RF,Halford KW,O Hara MD, et al.Cultured adlherent cells from marrow can long-lasting precursor cells for bone, cartilage,and lung in irradiated mice[J].Proc Natl Aci USA,1995,92(11):4857-4861
    103.Rockop D J. Marrow stromal cells as stem cells for nonhematopoietic tissues [J].Science,1997,276(5 309):71-74.
    104.Sanchez-Ramos J,Song S,Cardozo-pelaze F,et al. Adult bone marrow stromal cells differentiate into neural cells in vitro[J]. Exp Neurol,2000, 164(2):247-252.
    105.Hanada K.Stimulatory effects of basic fibroblast growth factors and bone morphogenetic protein-2 on osteogenic differentiation of rat bonemarrow-derived mesenchymal stem cells[J].J Bone Miner Res,1997;12:1606.
    106.Ozawa S, Kasugai S. Evaluation of implant materials (hydroxyl-apatite, glassceramics, titanium) in rat bone marrow stromal cell culture. Biomaterials, 1996,17(1):23-29.
    107.Dennis JE and Caplan AI. Porous ceramic vehicles for rat-marrow-derived (Rattus norvegicus) osteogenic cell delivery: effects of pre-treatment with fibronectin or laminin. J Oral Implantol,1993,19(2):106-115.
    108.Riew KD, Wright NM, Cheng S, et al. Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit.Tissue Int, 1998, 63(4): 357-360.
    109.Owen M. Marrow stromal stem cells. J Cell Sci Suppl, 1988,10:63-76.
    110.Friedenstein AJ, Shapiro-Piatetzky II and Petrakova KV. Osteogenesis in transplants of bone marrow cells.J Embryol Exp Morphol,1966,16(3):381 -390.
    111.Yoo JU, Johnstone B. The role of osteochondral progenitor cells in fracture repair. Clin Orthop,1998,(355 Suppl):73-81.
    112.Douncis IS,Goomer ER. Chondrogenic phenotype of perichondrium-derivered chondroprogenitor cells is influenced by transforming growth factor β1[J].J Orthop Res,1998;15:803.
    113.Martin I,Shastri VP,Padera RF,et al.Selective differentiation ofmammalian bone marrow stromal cells cultured on three-dimensional polymer foams.J Biomed Mater Res,2001,55(2):229-235.
    114.Beresford JN. Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop, 1989, (240): 270-280
    115.Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am,1994,76(4): 579-592.
    116.Ponticiello MS,Schinagl RM,Kadiyala S,et al.Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy.J Biomed Mater Res,2000,52(2): 246-255.
    117.Wakitani S,Saito T,Caplan AI.Myogenic cells derived from rat bone marrow mesenchymal stromal cells exposed to 5-azacytidine[J].Muscle Nerve, 1995;18:1417.
    118.吕铁伟, 田杰, 朱静, 等. 骨髓间充质干细胞胞体内诱导分化为心肌细胞的初步观察[J] .重庆医科大学学报, 2003;28(4):463.
    119.Wang JS,Shum-Tim D,Chedrawy E,et al.The coronary delivery of mallow stromal cells for myocardial regeneration:Pathophy sioligic and therapeutic implications[J].J Thorac cardiovasc Surg,2001,122(4):699.
    120.Strauer B,Brehm M,Zeus T,et al.Intracoronary,human autologous stem cell transplantation formyocardial regeneration following myocardial infarction[J].Germ Med,2001;126: 932.
    121.Woo SL,Hildebrand K,Watanabe N,et al. Tissue engineering of ligamentand tendon healing. Clin Orthop,1999,(367 Suppl):312-323.
    122.Awad HA, Butler DL, Boivin GP, et al. Autologous mesenchymal stem cell-mediated repair of tendon.Tissue Eng,1999,5(3):267-277.
    123.Young RG, Butler DL, Weber W, et al. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res,1998,16(4): 406-413.
    124.沙慧芳,冯久贤,顾伟勇,等.人骨髓间充质干细胞的体外培养及诱导分化[J].复旦大学学报( 医学版),2003;30(3):232.
    125.Sanchez-Ramos J,Song S,Cardozo-Pelae F,et al.Adult bone marrow stromal cells differentiate into neural cells in vitro[J] . L Exp Neurol, 2000;164:247.
    126.郭丽, 尹飞,王晓丽,等.骨髓间充质干细胞向神经元的诱导分化[J] . 吉林大学学报( 医学版),2003;29(1): 51.
    127.Kopen GC,Prockop DJ,Phinney DG.Marrow stromal cells migrate throughout forebrain and cerebellum,and they differentiate into astrocytes after injection into neonatal mouse brains[J].Proc Natl Acad Sci USA,1999,96: 10711.
    128.项鹏、夏文杰、张丽蓉等.成人骨髓间质千细胞定向诱导为神经元样细胞的研究[J].中国病理生理杂志,2001,17(5):385.
    129.Reyes M,Vedallie GM.Characterization of multipotent adult progenitor cells.a subpopulation of mesenchymal stem cells[J].Ann Ny Acad Sci,2001. 938:231.
    130.方利君、付小兵、孙同柱,等.在体诱导骨髓间充质干细胞分化为表皮细胞的初步观察[J] . 中华创伤杂志,2003;19(4):212.
    131.Oh SH,Miyazaki M.Kouchi H,et e1.Hepatocyte growth factor induces diferentiation of adult rat bone marrow cells into a hepatocyte lineage in vitro[J].Biochem Biophys Res Commun.2000,279(2):500.
    132.徐迎新、王文杰、宋旭华、等. 骨髓间充质干细胞定向肝细胞样分化的研究[J] . 中华实验外科杂志, 2004; 21( 2) : 152.
    133.孙嫣、段芳龄、陈香宇、等. 人骨髓间充质干细胞体外分化为肝细胞样细胞[J].胃肠病学和肝病学杂志,2004;13(3):244.
    134.Krause DS,Theise ND,Collector MI,et al.Multi-organ,multi-lineage engraftment by a single bone marrow-derived stem cell.2001,Cell 105:369- 377。
    135.Chen LB,Jiang XB,Yang L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells.World J Gastroenterol,2004,10:3016-3020.
    136.Oh SH,Muzzonigro TM,Bao SH,et al.Adult bone marrow derived cells trans-differentiating into insulin-producing cells for the treatment of type Ⅰdiabetes.Lab Invest,2004,84(5):607-617.
    137.刘雅娟,李秀东,陈强,等. 骨髓间充质干细胞体外诱导分化为胰岛样细胞及其对坏死胰腺组织的修复.吉林大学学报(医学版)2005,31(6):836-838.
    138.Schofield R.The relationship between the spleen colonyforming cell and the haemopoietic stem cell. Blood Cells,1978,4:7-25.
    139.da Silva Meirelles L, Chagastelles PC, Nardi NB: Mesenchymal stem cells reside in virtually all post-natal organs and tissues.J Cell Sci,2006, 119:2204-2213.
    140.Blashki D,Short B,Bertoncello I,et al.Identification of stromal MSC candidates from multiple adult mouse tissues. In Int Soc Stem Cell Res 4th Annual Meeting,2006: 206.
    141.Shi S, Gronthos S: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res,2003,18:696-704.
    142.Doherty MJ, Canfield AE. Gene expression during vascular pericyte differentiation. Crit Rev Eukaryot Gene Expr 1999, 9:1-17.
    143.Nusse R,Varmus HE.Many tumors induced by the mouse manmary tumor virus contain a provirus integrated in the same region of the host genome. Cell,1982。31(1):99.
    144.Kleber M, Sommer L. Wnt signaling and the regulation of stem cell function.Curr Opin Cell Biol 2004,16:681-687.
    145.Huelsken J,Vogel R,Erdmann B,et al. Beta-Catenin controls hair follicle morphogenesisand stem cell differentiation in the skin[J].Cel,2001, 105(4):533-545.
    146. Reya T,Duncan AW,Ailles L,et al.A role for Wnt signalling in self-renewal of haematopoiesie stem cells.Nature,2003,423:409-414.
    147.Zhang J,Niu C,Ye L,et a1.Identifieation of the haematopoietic stem cell niche and control of the niche size. Nature.2003,425:836-841.
    148.Boland GM, Perkins G, Hall DJ, Tuan RS: Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells.J Cell Biochem 2004,93:1210-1230.
    149.Muguruma Y,Yahata T,Miyatake H, et al.Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment[J]. Blood, 2006,107:1878- 1887.
    150.Calvi LM,Adams GB,Weibrecht KW,et al.Osteoblastic cells regulate the haematopoietic stem cell niche[J].Nature,2003,425(6960):841-846.
    151.van den Bos C,Mosca JD,Winkles J,et al.Human mesenchymal stem cells respond to fibroblast growth factor. Hum Cell,1997;10:45-50.
    152.Hanada K,Dennis J E,Caplan AI.Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res,1997;12:1606-1614.
    153.Metcalf D.The unsolved enigmas of leukemia inhibitory factor.Stem Cells 2003, 21:5-14.
    154.Heymann D, Rousselle AV. gp130 Cytokine family and bone cells. Cytokine 2000, 12:1455-1468.
    155.Matsuda T,Nakamura T,Nakao K,et a1.STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells.EMB0 J,1999,18(15):4261-4269.
    156.Johnstone B, Hering TM,Caplan AI,et al.In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res,1998;238:265- 272.
    157.Bottaro DP,Rubin JS,Faletto DL,et al.Identification of the hepatocyte growth factor receptor as the c-Met proto-oncogene product.Science, 1991;251(4995):802-804.
    158.Cartwright JE,Tse WK,Whitley GS.Hepatocyte growth factor induced human trophoblast motility involves phosphatidylinositol-3-kinase, mitogen-activated protein kinase, and inducible nitric oxide synthase.Exp Cell Res,2002;279:219-226.
    159.Duan HF,Wu CT,Lu Y,et al,Sphingosine kinase activation regulates hepatocyte growth factor induced migration of endothelial cells.Exp Cell Res,2004;298:593-601.
    160.刘红军、段海峰、鲁茁壮,等.肝细胞生长因子对骨髓间充质干细胞生物学特性的影响.中国实验血液学杂志.2005;13(6)1044-1048.
    161.Grayson WL,Zhao F,Izadpanah R,et al.Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 2006, 207:331-339.
    162.Covello KL,Kehler J,Yu H,Gordan JD,et al.HIF-2α regulates Oct-4:effects of hypoxia on stem cell function, embryonic development,and tumor growth. Genes Dev 2006,20:557-570.
    163.杨景全、路来金、范东艳,等.大鼠脊髓匀浆上清液对骨髓间充质干细胞的诱导分化作用.中国老年学杂志,2007;2(27):245-246.
    164.Datta N,Holtorf HL,Sikavitsas VI,et al. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells.Biomaterials,2005,26:971-977.
    165.Campos LS.β1 integrins and neural stem cells: making sense of the extracellular environment. BioEssays 2005,27:698-707.
    166.Shake JG,Gruber PJ,Baumgartner WA,et al.Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects[J]. Ann Thorac Surg,2002,73:1919-1925.
    167.Chapel A,Bertho J M,Bensdhoum M,et al.Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome[J].J Gene Med,2003,5: 1028-1038.
    168.Francois S,Bensidhoum M,Mouiseddine M,et al. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 2006,24: 1020-1029.
    169.Son BR,Marquez-Curtis LA,Kucia M,et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases.Stem Cells 2006, 24:1254-1264.
    170.邢万红、徐志伟、陆兆辉,等.体外模拟心肌微环境诱导婴幼儿骨髓间充质干细胞向心肌细胞分化的实验研究.中华实验外科杂志,2006,4(23):636.
    171.漆白文、喻爱喜、张功礼,等.体外共培养诱导骨髓间充质干细胞向雪旺细胞分化.武汉大学学报(医学版),2007;4(28):422-425.
    172.Santa Maria L,Rojas CV,Minguell JJ.Signals from damaged but not undamaged skeletal muscle induce myogenic differentiation of rat bone-marrow- derived mesenchymal stem cells. Exp Cell Res 2004,300:418-426.
    173.Lange C,Bassler P,Lioznov MV,et al.Liver-specific gene expression inmesenchymal stem cells is induced by liver cells. World J Gastroenterol, 2005,11:4497-4504.
    174.Cuevas P, Carceller F,Dujovony M,et al. peripheral nerve regeneration by marrow st romal cells [J] . Neurol Res,2002,24(7):634-2638.
    175.Arnzeh TL,Peter SJ,Archambaultm P.Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect[J].J Bone Joint Surg,2003,85A: 1927-21935.
    176.苗春雷,周广东,刘天一.软骨细胞与骨髓基质细胞共培养体外构建软骨组织的初步研究[J].上海第二医科大学学报,2004,4:246-249.
    177.Ying Q L,Nichols J,Evans E P.Changing potency by spontaneous fusion[J]. Nature, 2002, 416: 5452548.
    178.Sato Y,Araki H,Kato JJ,et al.Human mesenchymalstem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion.Blood,2005,106(2):756-763.
    179.Jiang Y,Jahagirdar BN,Reinhardt RL,et al.Pluripotency of mesenchymal stem cells derived from adult marrow. Nature.2002,418(6893):41-49.
    180.司徒镇强、吴军正。细胞培养[M]西安:世界图书出版公司.1996:114
    181.Huang DM, Hung Y, Ko BS,et al. Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking.The FASEB Journal, 2005,19,2014–2016
    182.冯智英、张毅、秦洁行,等,贴壁法培养大鼠骨髓间充质干细胞的生物学特点.中国临床康复,2006,10(9)37-39.
    183.苏立,陈运贞.骨髓间充质干细胞的生物学特性.医学综述.2004;10(5):306-309.
    184.Asahara T, Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol. 2004,287(3): 572-579.
    185.义日,付小兵,李存保.骨髓间充质干细胞的研究进展.中国危重病急救医学.2004,8(16):499-501.
    186.李烨,汪保和.骨髓间充质干细胞生物学特性的研究进展.医学临床研究.2004, 6(21):646-650.
    187.Kinnaird T, Stabile E, Burnett MS,et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Research. 2004,94(5):678-685.
    188.Isacke CM,Yarwood H.The hyaluronan receptor,CD44.Int J Biochem Cell Biol.Jul 2002;34(7):718-721.
    189.陈立波、姜小兵、王春友,等.骨髓基质干细胞分化为胰岛样细胞的形态学观察。中华实验外科杂志,2004,21;184-185.
    190.邓方阁、张秀英、王心蕊,等.体外模拟心肌微环境中人骨髓间充质干细胞向心肌细胞的分化。吉林大学学报(医学版),2007,33(2):257-159.
    191.Mizuguchi T,Hui T,Palm K,et a1.Enhanced proliferation and differentiation of rat hepatocytes cultured with bone marrow stromal cells.Cell Physiol,2001,189(1):106-119.
    192.Ying Xiang,Qiang Zheng,Bing-bing Jia,et al.Ex vivo expansion and pluripotential differentiation of cryopreserved human bone marrow mesenchymal stem cells. J Zhejiang Univ Sci B. 2007; 8(2):136-146.
    193.Kyung JC, Katarzyna AT, Steven JG, et al. Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1.Stem Cells 2005;23:383-391.
    194.Catherine M Kolf, Elizabeth Cho, Rocky S Tuan.Mesenchymal stromal cells.Biology of adult mesenchymal stem cells:regulation of niche, self-renewal and differentiation.Arthritis Res Ther.2007;9(1):204.
    195.宋振顺,顾克菊.成人胰腺干细胞分离及转分化为胰岛的研究.中华实验外科杂志,2003,20:240-241.
    196.Akira Shiroi, Masahide Yoshikawa, Hiroshi Yokota, et al. Identification of insulin-producing cells derived from embryonic stem cells by Zinc- chelating dithizone.Stem Cells, 2002;20:284-292.
    197.Kaczorowski DJ, Patterson ES, Jastromb WE, et al. Glucose-responsive insulin-producing cells from stem cells. Diabetes Metab Res Rev,2002, 18(6):442-450.
    198.Choi JB,Uchino H,Azuma K,et al.Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells.Diabetologia.2003; 46(10):1366-1374.
    199.王禹斌,周正宇,薛智谋,等.人类疾病动物模型[M].邵义祥主编. 医学实验动物学. 南京: 东南大学出版社,2003,253-259.
    200.Cap Lan AI,Bruder SP.Mesenchymal stem cells:building blocks for molecular medicine in the 21 st century.Trends in Molecular Medicine.2001;7:259- 264.
    201.Soria B.In-vitro differentiation of pancreatic beta-cells. Differentiation.2001,68:205–219.
    202.Zalzman M ,Gupta S,Giri RK,et al. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc Natl Acad Sci USA, 2003,100:7253–7258,
    203. Robinson D,Efrat M,Mendes DG,et al.Implants composed of carbon fiber meshandbone-marrow-derived chondrocyte-enriched cultures for joint surface reconstruction. BullHospJtDiS,1999:53:757
    204.杨巍,罗春元,于春雷,等.不同剂量STZ诱导小鼠糖尿病模型的发病机制.吉林大学学报(医学版),2006,32(3):432-435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700