用户名: 密码: 验证码:
CS/PVA凝胶负载基因转染的BMSCs移植修复兔关节软骨缺损的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分温敏型壳聚糖/聚乙烯醇水凝胶的制备及生物相容性研究
     目的:研究温敏型壳聚糖/聚乙烯醇水凝胶的制备条件以及不同壳聚糖与聚乙烯醇比例制成凝胶的强度、空间结构、红外光谱特征及平衡溶胀度、体外降解率,并评估凝胶的生物相容性。
     方法:将2%壳聚糖盐酸溶液调至PH中性后与不同比例的聚乙烯醇混合后,观察不同样本的凝胶化时间及凝胶的强度,红外光分析仪观察凝胶的红外光谱特征、扫描电镜观察凝胶冷冻干燥后的空间结构并检测不同凝胶样本的平衡溶胀度和降解率。并通过致敏实验,全身毒性反应,细胞毒性反应及肌肉植入实验,评价凝胶的生物相容性。
     结果:不同比例壳聚糖和聚乙烯醇凝胶样本的强度,空间结构以及溶胀度测试结果表明,随着聚乙烯醇在凝胶中比例增加,样本的凝胶化时间延长,强度增加,网络结构致密,溶胀度变小。致敏实验证明凝胶对SD大鼠皮肤无刺激,过量注射大白兔无全身毒性反应,细胞毒性0-Ⅰ级,在材料植入肌肉后早期有炎性浸润及纤维包膜形成,随植入时间延长,炎性反应消失,包膜变薄,植入12w后见血管长入,凝胶部分降解,证实凝胶材料具有良好的组织相容性。
     结论:壳聚糖/聚乙烯醇复合水凝胶具有温度敏感特性,互穿网络结构和更好的机械强度,细胞毒性低,组织相容性好,符合组织工程支架材料的要求。
     第二部分Ad-hTGF-β1体外诱导兔BMSCs向软骨细胞分化
     目的:通过Ad-TGF-β1转染兔BMSCs,诱导BMSCs向软骨细胞定向分化。
     方法:体外分离培养兔骨髓间充质干细胞,观察细胞生长状态并绘制生长曲线。第三代BMSCs经过Ad-hTGF-β1转染后,观察细胞形态变化,并通过转染后不同时间点甲苯胺蓝染色观察细胞内糖胺聚糖的表达。并在转染后1w、2w、3w、4w不同时间点使用RT-PCR方法检测hTGF-β1和Aggrecan mRNA在细胞内的表达情况,在转染后2w提取细胞蛋白,使用Western blot方法分析hTGF-β1, CollagenII蛋白的表达,并在不同时间段进行Ⅱ型胶原免疫组化检测细胞浆内Ⅱ型胶原的表达。
     结果:兔BMSCs经Ad-hTGFβ-1转染后,早期出现细胞坏死、漂浮,3d后恢复正常。转染2w后甲苯胺蓝染色阳性,并持续表达。RT-PCR表明转染后1-4w后BMSCs均表达Aggrecan和hTGFβ-1的mRNA,随培养时间延长Aggrecan表达量增加,hTGFβ-1表达量递减,未转染组均表达阴性。Western blot;检测到转染后2w细胞内的hTGFβ-1和Ⅱ型胶原蛋白表达,空载病毒转染组和未转染组阴性。转染后的细胞Ⅱ型胶原免疫组化阳性,随培养时间增加,阳性率增加。
     结论:经Ad-hTGFβ-1转染的BMSCs在体外培养过程中可表达软骨细胞表型。
     第三部分CS/PVA凝胶负载Ad-TGF-β1转染的BMSCs移植修复兔关节软骨缺损
     目的:观察温敏型CS/PVA凝胶负载Ad-hTGFβ-1转染的BMSCs移植修复兔关节软骨缺损的实验效果。
     方法:体外分离培养兔BMSCs,以CS/PVA凝胶作为三维培养支架,激光共聚焦显微镜下观察其增殖活性。并以构建成功的Ad-hTGF-β1载体转染体外培养的BMSCs,在转染1周后以细胞免疫荧光方法检测Ad-hTGF-β1的表达效率。用24只成年新西兰大白兔制造关节软骨缺损模型,双侧后肢均用于实验,动物模型分为4组(A、B、C、D组),各组动物6只。A组:凝胶复合转染BMSCs修复组;B组:凝胶复合未转染BMSCs修复组;C组:凝胶修复组;D组:空白对照组。分别于术后4周、8周及16周各处死实验动物8只,取缺损部位及周围正常软骨组织,进行大体标本观察及染色组织学观察。通过术后16周大体标本和组织学染色结果评价各组修复效果,按照Wakitani关节软骨组织评分,对各组修复效果进行统计学分析,以P<0.05有统计学意义。
     结果:兔BMSCs在CS/PVA凝胶中保持较高的增殖活性。免疫组化证实Ad-hTGF-β1转染BMSC的阳性率为85.4%。术后4周大体标本观察:A、B、C三组缺损部位被瓷白色凝胶填充,填充物与周围股骨关节面结合紧密,关节表面光滑平整,填充组织与正常关节软骨分界线明显,D组软骨缺损部位为陈旧性淤血块填充。术后8周大体标本观察见A组及B组缺损部位边缘与正常软骨分界模糊不清,缺损区组织形似软骨,色泽与周围软骨组织接近。C组表面光滑平整,与周围软骨结合牢靠,颜色与周围软骨区别较大,界限清楚。D组缺损底部及周围有部分肉芽填充。术后16周取材见A组关节软骨缺损部位为软骨样组织填充,关节面平整,与正常关节软骨界限不清,缺损区外观质地同其他各组有明显差别。术后16周A组组织学观察见再生的软骨组织细胞排列及细胞密度与正常软骨相似,番红O染色阳性,二型胶原免疫组化阳性,Wakitani评分同其它各组相比差异有显著性(P<0.05)。
     结论:CS/PVA凝胶作为一种温敏型可注射支架材料,其负载hTGFβ-1转染的BMSCs移植可用于兔关节软骨缺损修复。
PartⅠ:The preparation and biocompatibility of injectable thermo-sensitive chitosan/Poly(vinyl alcohol) hydrogel
     Objective:To investigate the preparation conditions of thermosensitive chitosan/ PVA(Polyvinyl alcohol) hydrogel and evaluate the mechanical properties,spatial structure,infrared spectral characteristics and swelling degree,degradation rate and gel biocompatibility of these hydrogen.
     Methods:2% chitosan hydrochloride solution was transferred to a neutral PH and mixed with different proportions of PVA,then the gelation time and strength were observed,infrared spectral characteristics were analysised by infrared analyzers,spatial structures were observed under a scanning electron microscopy (SEM) after freeze-drying, the equilibrium swelling degree and the degradation rate of these different samples were tested.Then through sensitization experiments, systemic toxicity, cell toxicity and muscle implantation test to evaluate the biocompatibility of them.
     Results:The different ratios of chitosan and polyvinyl alcohol gels showed that with a larger proportion of PVA in the gel,the gelaton time were extended,the strength were increased, the network structure became dense,swelling degree turned smaller.Gel had no simulations to the SD rats skin through sensitization experiments,rabbits without systemic toxicity after excessive injection,the cytotoxicity were between grade 0 toⅠ.there were inflammatory infiltration and fibrous capsule formation of the early days after the gel implanted into muscle,with the time prolonged,inflammatory reaction disappeared and capsule thinning.The blood vessels grew into the gel and the gel were seen part of degradation after 12w implantation.All these results were certificated that the gel had good histocompatibility.
     Conclusion:Chitosan/PVA composite hydrogel with a thermosensitive characteristics,interpenetrating network structure,better mechanical strength,low cytotoxicity and good biocompatibility,It complys with the requirement of tissue engineering scaffold material.
     Part II:Rabbit BMSCs differentiation into chondrocytes induced by Ad-TGF-β1 in vitro
     Objective:To induce bone marrow mesenchymal stem cells differentiation into chondrogenic by Ad-TGF-β1 transfection.
     Methods:Rabbit bone marrow mesenchymal stem cells were isolated and cultured in vitro,to observe the cell's growth state and growth curve.The morphological changes of the third passage of MSCs was observed after transfectection by Ad-hTGF-β1,and through toluidine blue staining detecting the expression of glycosaminoglycan in the cells after transfected at different time.RT-PCR methods to detect hTGF-β1 and Aggrecan mRNA expression in cells after transfection 1w,2w,3w,4w at different time points.Using Western blot method to analysis hTGF-β1 and Collagen II expression 2w after transfection and type II collagen immunohistochemistry to defect the type II collagen expression in the transfected cells.
     Results:There were some cells nesrosis at the early after transfection,then returned to normal in about 3d, toluidine blue staining were positive 2w after transfection and continue to express with the time.RT-PCR showed that mRNA of hTGFβ-1 and Aggrecan were expressed in the transfected cells at different time points,the expression of Aggrecan were increased and that of hTGF-β1 were reduced with the time.HTGF-β1 and Type II collagen protein were defected by Western blot methods in the transfected cells after 2 weeks and they were both negative in the empty virus infection and untransfected group.Type II collagen of transfected cells were positive by immunohistochemical staining and positive rate increased with the time.
     Conclusion:Bone marrow mesenchymal stem cells could express the process of chondrocyte phenotype by Ad-hTGFβ-1 transfected in vitro.
     Part III:Experiment study of rabbit articiular cartilage defects repaired by thermosensitive CS/PVA composite hydrogel engineered hTGF-β1 transfected bone marrow mesenchymal stem cells
     Objective:To investigate the experiment effects of rabbit joint articular cartilage defects repaired by thermosensitive CS/PVA composite hydrogel engineered hTGFβ-1 transfected bone marrow mesenchymal stem cells.
     Methods:Bone marrow mesenchymal stem cells were isolated and cultured in vitro.The CS/PVA composite hydrogel were prepared as a three-dimensional scaffolds and to observe the activity of proliferation under laser confocal microscope The mesenchymal stem cells were tranfected by Ad-hTGF-β1 in vitro and the the positive rate of transfection was defected by cell immunofluorescence methods after Ad-hTGF-β1 transfected for one week.24 adult New Zealand white rabbits with full articular cartilage defects were randomly divided into four groups,each group had 6 animals,both hind limbs were used in the experiment.Group A:to repair the defects with hydrogel combined with transfected cells;Group B:to repair the defects with hydrogel combined with untransfected cells;Group C:to repair the defects with hydrogel only;Group D:blank control group.24 animals were sacrificed after 4 weeks,8 weeks and 16 weeks.The defect site and the surrounding normal cartilage tissue were obtained for gross observation and histological staining.Specimens and histological observation were used to evaluate the repairment effect after 16 weeks according to Wakitani's score,which had statistically significant when P<0.05.
     Results:Rabbit BMSCs showed a high activity of proliferation.in the CS/PVA gel,when transfected by Ad-hTGF-β1,the positive rate was about 85.4% by cell immunofluorescence methods.Gross observation after 4 weeks,the defect sites of group A,B and C were filled with porcelain white gel and the filler combined with the surrounding articular surface of the femur closely. The articular surface were smooth and the filler had a significant boundaries with the normal tissure.The cartilage defect sites of group D were filled with old blood stasis block.After 8 weeks,the defect edge of group and group B were unclear with the normal tissure,the shape of cartilage defects were closely to the surrounding cartilage.the texture and color of group C had a widely difference with the cartilage around.and that of group D were filled with granulation in and around the bottom of the defect. After 16 weeks the defects of group A were repaired by cartilage-like tissue,the surface of these articulars were smooth and could not distinguish the normal articular cartilage and the defects.The cell arrangement and densities of regenerated cartilage were similar to normal cartilage,Safranin O staining were positive and typeⅡcollagen immunohistochemistry were positive.There was a significant difference according to Wakitani's score compaired with other groups.
     Conciusion:CS/PVA gel is a kind of thermosensitive injectable scaffold.Rabbit articiular cartilage defects could be repaired by CS/PVA hydrogel engineered hTGF-β1 transfected bone marrow mesenchymal stem cells.
引文
1. Klein TJ, Malda J, Sah RL, et al, Tissue engineering of articular cartilage with biomimetic zonesTissue Eng Part B Rev.2009,15(2):143-57.
    2. Kafienah W, Mistry S, Dickinson SC, et al, Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients., Arthritis Rheum. 2007,56(1):177-87.
    3. Yang Z, Shi Y, Wei X, et al, Fabrication and Characterization of a Novel Acellular Cartilage Matrix Scaffold for Tissue Engineering. Tissue Eng Part C.2009,11,5. [Epub ahead of print].
    4.崔小平,张永红.关节软骨组织工程支架材料研究进展.临床医药实践杂志,2009,18(1):3-5.
    5. Cohen SB, Meirisch CM, Wilson HA, et al. Biomedicals,2003; 24 (15) 2653-2660.
    6. Kumar MNVR. A review of chitin and chitosan applications.Reactive & Functional Polymers,2000,46:1-27.
    7. Kumar MNVR, Muzzarelli RAA, Muzzarelli C, et al. Chitosan Chemistry and Pharmaceutical Perspectives, Chem. Rev,2004,104:6017-6084.
    8. Khor E, Lim LY Implantable applications of chitin and chitosan. Biomaterials, 2003,24:2339-2349.
    9. Chung HJ, Bae JW, Park HD, et al. Thermo sensitive Chitosans as Novel Injectable Biomaterials. Macromol.Symp,2005,224:275-286.
    10. Chenite A, Chaput C, Wang D, ea al. Novel injectable neutral solutions of chitosan from biodegradable gels in situ. Biomaterials,2000,21(2):2115.
    11. Changan Guo, Xueguang Liu, Jianzhong Huo, et al. Novel Gene Modified Tissue Engineering of Cartilage Using Stable Transforming Growth Factor-β1-Transfected Mesenchymal Stem Cells Grown on Chitosan Scaffolds. Journal of
    bioscience and bioengineering.2007,103(6):547-556.
    12. Marivalda M, Pereira, Herman S, et al. Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked J Mater Sci:Mater Med,2009(20):553-561
    13. Kurkuri MD, Aminabhavi TM Poly(vinyl alcohol) and poly(acrylic acid) sequential interpenetrating network pH-sensitive microspheres for the delivery of diclofenac sodium to the intestine. J. Control. Release,2004,96:9-20.
    14.李永,高瑾,刘国权,等.聚乙烯醇水凝胶与人关节软骨摩擦特性比较,北京科技大学学报,2004,26(4):156-158.
    15.蔡宏,娄思权,王志国,等.聚乙烯醇水凝胶弹性体复合物修复关节软骨缺损的实验研究.中国康复医学杂志,2004,19(5):337-339.
    16. Hyojin Park, Dukjoon Kim. Swelling and mechanical properties of glycolchitosan/poly(vinyl alcohol) IPN-type superporous hydrogels, Journal of Biomedical Materials Research Part A,2006,78(4):662-667.
    17. Tang Y, Du Y, Li Y, et al. A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing hydroxyapatite for protein delivery, J Biomed Mater Res A. 2009,91(4):953-963.
    18. Pittenger MF, Maekay AM, Beek SC, et al. Multilineage Potential of adult human mesenehymal stem cells. Seience,1999,284:143-147.
    19. Bosnakovski D, Miuzno M, Kim G, et al, Chondorgenie dieffrentiation of bovine bone marrow mesenehymal stemcells(MSCs) in dieffrent hydorgels:Influence of collagent type II extracellular rmatrix on MSC chondrogenesis. Bioteehnol Bioeng.2006,93(6):1152-1163.
    20. Ivkovic A, Pascher A, Hudetz D, et al.Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Ther.2010 Mar 11. [Epub ahead of print]
    21. Sbano P, Cuccia A, Mazzanti B, et al. Use ofdonorbonemarrow mesenchymal stem cells for treatmentof skin allograft rejection in a preclinical rat model. Arch Dermatol Res,2008,300(3):115-124
    22. Zhou H, Jin Z, Liu J, et al. Mesenchymal stem cellsmight be used to induce tolerance in heart transplantation. Med Hypotheses,2008,70(4):785-787
    23. Karlsson H, Samarasinghe S, Ball LM, et al. Mesenchymal stem cells exert differential effects on alloantigen and virus-specific T cell responses. Blood,2008, 20(3):513-519
    24.胡煜,陈维信,阎影.骨髓间充质干细胞在现代细胞治疗中的潜在作用.国际移植与血液净化杂志,2006,4(3):35-37.
    25. Llull R. Immune considerations in tissue engineering. Clin Plast Surg,1999,26 (4):549-568.
    26.方军,李华壮,高克海,等.体外团状培养系统中Ad-hTGF-β1诱导骨髓间充质干细胞向软骨细胞的分化.中国组织工程研究与临床康复.2009,13(49)9717-9721.
    27. Longobardi L, O'Rear L, Aakula S, et al. Effect of IGF-1 in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling.J Bone Miner Res.2006,210(2):626-636.
    28. Betre H, Ong SR, Guilak F, et al. Chondrocytic differentiation of human adipose adult stem cells in elastin-like polypeptide.Biomaterial.2006,27(1):91-99.
    29. Reddi A. Morphogenesis and tissue engineering of bone and cartilage:inductive signals,stem cells,and biomimetic biomateri-als.Tissue Eng,2000,6(4):351-359.
    30. Freed L, Martin I, Vunjak-Novakovic G. Frontiers in tissue engineering:in vitro modulation of chondrogenesis. Clin Orthop,1999,367:46-58.
    31. Evans C, Ghivizzani S, Smith P, et al. Using gene therapy to protect and restore cartilage. Clin Orthop,2000, (379 Sup-pl):214-219.
    32. Fernandes J, Martel-Pelletier J, Pelletier J. Gene therapy for osteo-arthritis:new perspectives for the twenty-first century.Clin Orthop,2000(379 Suppl):S262-272.
    33.郭晓东,杜靖远,郑启新,等.分子生物学在组织工程学研究中的应用前景.中华实验外科杂志,2001,1(3):283-284.
    1. MN Khalid, F Agnely, N Yagoubi. Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks. European Journal of Pharamaceutical Sciences.2002,15(5):425-432.
    2.国家技术监督局.中华人民共和国国家标准:医用有机硅材料生物学评价试验方法(GB/T 16175-1996)[S].北京:中国标准出版社,1996:6,17-8.
    3.郝和平,奚廷斐,卜长生主编.医疗器械监督管理与评价[M].北京:中国医药科技出版社,2000.172-173.
    4. Joseph JG. Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polymers for Advanced Technologies,2006,17:395-418.
    5. Dang JM, Sun DD, Shin YaY, et al Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells, Biomaterials,2006,27:406-418.
    6. Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials, 2003,24:2339-2349.
    7. Chung HJ, Bae JW, Park HD, et al Thermo sensitive Chitosans as Novel Injectable Biomaterials. Macromol.Symp,2005,224:275-286.
    8. Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials,2000,21:2155-2161.
    9. Bhattarai N, Ramay HR, Gunn J, et al PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. Journal of Controlled Release,2005,103:609-624.
    10.吕昌伟,胡蕴玉,白建平,等.注射型软骨组织工程材料修复关节软骨缺损的试验研究.骨与关节杂志,2003,18:686-688.
    11. Hung HJ, Bae JW, Park HD, et al. Thermosensitive chitosans as novel injectable biomaterials.Macromolecules of Symposium,2005,224:275-286.
    1. Wislet-Gendebien S, Hans G, Leprince P, et al. Plasticity of cultured mesenchymal stem cells:switch from nestin-positive to excitable neuron-like phenotype. Stem Cells,2005,23(3):392-402.
    2. Yoon YS, Wecker A, Heyd L, et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest,2005,115(2):326-338.
    3.晏杰,刘玲蓉,张其清.诱导骨髓间充质干细胞向软骨分化的体外研究.中国修复重建外科杂志,2006,20(11):1114-1118.
    4.韩冰,付小兵,孙晓庆.骨髓基质细胞基因表达的研究进展.中国修复重建外科杂志,2005,19(2):153-158.
    5.董世武,应大军,朱楚洪,等.核心结合因子α1基因修饰骨髓间充质干细胞对骨缺损的修复研究.中国修复重建外科杂志,2006,20(5):555-559.
    6. Shi Y, Hu G, Su J, et al. Mesenchymal stem cells:a new strategy for immunosuppression and tissue repair..Cell Res.2010 6. [Epub ahead of print].
    7.漆白文,喻爱喜,张功礼,等.体外共培养诱导骨髓间充质干细胞向雪旺细胞分化.武汉大学学报(医学版),2007,28(4):422-425.
    8. Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic transplants of bone marrow:analysis of precursor cells for osteogenic and hematopoietic tissues.Transplantation,1968,6:230-247.
    9. Bianco P, Riminucci M, Gronthos S, et al. Bone marrow stromal stem cells:nature, biology and potential applications. StemCells,2001,19(3):180.
    10. Ogawa T, Akazawa T, Tabata Y. In vitro proliferation and chondrogenic differentiation of rat bone marrow stem cells cultured with gelatin hydrogel microspheres for TGF-betal release.J Biomater Sci Polym Ed.2010,21(5): 609-21.
    11.Peister A, Mellad JA, Wang M, et al.Stable trans fection of MSCS by electroporation.Gene Ther 2004,11(2):224-228.
    12.王武愉,张亚,王晓东.诱导兔骨髓间充质干细胞向软骨细胞分化的实验研究.实用全科医学,2008,6(5):443-444.
    13.晏杰,刘玲蓉,张其清.诱导骨髓间充质干细胞向软骨细胞分化的体外研究,组织工程.2006,20(11):1114-1118.
    14. Bosnakovski D, Miuzno M, Kim G, et al. Chondorgenie dieffrentiation of bovine bone marrow mesenehymal stemcells(MSCs) in dieffrent hydorgels:Influence of collagent type Ⅱ extracellular rmatrix on MSC chondrogenesis.Bioteehnol Bioeng. 2006,3(6):1152-1163.
    15. Ponticiello MS, Schinagl RM, Kadiyala S, ea al. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy.Biomed Mater Res,2000,52(2):246-255.
    16.许少刚,赵建宁.转化生长因子-β在软骨组织工程的应用进展.人民军医.2006,49 (11):646-648.
    17. Chen J, Wang C, Lu S, et al.In vivo chondrogenes is of adult bone-marrow-derived autologous mesenchymal stem cells.Cell Tissue Res,2005,319 (3): 429-438
    18. Kafienah W, Mis try S, Dickinson SC, et al. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients Arthritis Rheum 2007,56(1):177-187
    19. Penick KJ, Solchaga LA, Welter JF. High-throughputaggregate culture system to assess the chondrogenic potential of mesenchymal stem cells. Biotechniques, 2005,39(5):687-691
    20. Peterson B, Zhang J, Iglesias R, et al.Healing of critically sized femoral defects using genetically modified mesenchymal stem cells f rom human adipose tissue. Tissue Eng,2005,11 (122):120-129.
    21. Seto H, Tanaka S, Seto H, et al.Relationship between gene transfer and cartilage tissue engineering.Clin Calcium.2004,14(7):72-75.
    22. Mauck RL, Nicoll SB, Seyhan SL, et al. Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng,2003,9 (4): 597-611.
    23. Redman SN, Oldfield SF, Archer CW, Current strategies for articular cartilage repair.Eur.Cell Master,2005,9:23-32.
    24. Jorgensen C, Gordeladze.J, Noel D. Tissue engineering through autologous mesenchymal stem cells.Curr.Opin.Biotechnol,2004,15,406-410.
    25.丁长根,刘惠莉.腺病毒表达载体研究进展.动物医学进展.2007,28(10):64-67.
    26.方军,李华壮,高克海,等.体外团状培养系统中Ad-hTGF-p1诱导骨髓间充质干细胞向软骨细胞的分化.中国组织工程研究与临床康复.2009,13(49):9717-9721
    27. Longobardi L, O'Rear L, Aakula S, et al. Effect of IGF-1 in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res 2006,210(2):626-636.
    28. Betre H, Ong SR, Guilak F, et al. Chondrocytic differentiation of human adipose adult stem cells in elastin-like polypeptide.Biomaterial.2006,27(1):91-99.
    29. Indrawattana N, Chen G, Tadokoro M, et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell.Biochem Biophys Res Commun 2004,320(3):914-919
    30. Yoo JU, Barthel TS, Nishimura K. The chondrogenic potential of human bone-marrow derived mesenchymal progenitor cells.J Bone Joint Surg Am 1998, 80(12):1745-1757
    31. Attisano L, Wrana JL. Signal transduction by the TGF-β superfamily. Science, 2002,296(5573):1646-1647.
    32. Kawamura K, Chu CR, Sobajima S, et al.Adenoviral-mediated transfer of TGF-β1 but not IGF-1 induces chondrogenic differentiation of human mesenchymal stem cells in pellet cultures.Exp Hematol,.2005,33(8):865-872.
    33. Ito Y, Bringas P J, Mogharei A, et al.Receptor-regulated and inhibitory Smads are critical in regulating transforming growth factor beta-mediated Meckel's cartilage development.Dev Dyn,2002,224:69-78.
    34. JulligM, Stocc NS. Mitochondrial localization of Smads in a human-chondrogenic cell line.Biochem Biophys Res Commun,2003; 307:108-13.
    35. Watanabe H, Caestecker MP, Yamada Y.Transcriptionalcross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan gene expression in chondrogenic ATDC5 cells.J Biol Chem,2001,276:14466-14473.
    36. Drissi MH, Li X, Sheu TJ, et al. Runx2/Cbfal stimulation by retinoic acid is potentiated by BMP2 signaling through interaction with Smadl on the collagen X promoter in chondrocytes.J Cell Biochem,2003,90:1287-1298.
    1. Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage.J Bone Joint Surg Am,1994, 76(4):579-592.
    2. Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect,2005,54:465-480.
    3. Koulalis D, Schultz W, Heyden M, et al.Autologous osteoehondral grafts in thetreatment of cartilage defects of the knee joint.Knee Surg sports Traumatol Arthrosc.2004,12(4):329-334.
    4. Aford JW,Cole BJ. Cartilage Restoration, Part l:Basic Science, Historical Perspective, Patient EvMuafion and Treatment Options Am J Sports Med,2005, 33(2):295-306.
    5. Buckwalter JA, Lane NE. Athletics and osteoarthritis.Am J Sports Med.1997,25 (6):873-881.
    6. Hunt SA,J azrawi LM, Sherman OH. Arthroscopic management Of osteoarthritis ofthe knee.J Am Acad Orthop Surg,2002,10:356-363.
    7. Steadman JR, Briggs KK, Rodrigo JJ, et al Outcomes of microfracture for traum atic chondral defects of the kn ee:average 11 year follow-up. Arthroscopy 2003; 1
    9:477-484.
    8. Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective:present status.Arthroscopy,1986,2(1):54-69.
    9. Carranza-Bencano A, Garcia-Paino L, Armas adron JR, et al. Neochondrogenesis in repair of fullthickness articular cartilage defects using free autogenous periosteal grafts in the rabbit. A follow-up in six months. Osteoarthritis Cartilage. 2000,8:351-358.
    10.赵斌.关节软骨缺损修复策略的研究进展.生物骨科材料与临床研究.2007,4(6):25-28.
    11. Chenite A, Chaput C, Wang D, et al.Novel injectable neutral solutions of chitosan from biodegradable gels in situ. Biomaterials,2000,21 (2):2115.
    12. Hoemann CD, Sun J, Legare A, et al.Tissue engineering of Cartilage using an injectable and adhensive chitosan-based cell-delivery vehicle.Osteoarthritis Cartilage,2005,13(4):318.
    13. Zheng Y, Lv H, Wang Y, et al.Performance of novel bioactive hybrid hydrogels in vitro and in vivo used for artificial cartilage.Biomed Mater,2009,4(1):15015
    14. Huang C, Jin DD, Zhang ZM, et al. Evaluation of the biocompatibility of pectin/poly vinyl alcohol composite hydrogel as a prosthetic nucleus pulposus material.Nan Fang Yi Ke Da Xue Xue Bao,2008,28(3):453-456.
    15. Charlton DC, Peterson MG, Spiller K, et al. Semi-degradable scaffold for articular cartilage replacement, Tissue Eng Part A.2008,14(1):207-213.
    16.王晓,郭传友.骨髓间充质干细胞修复关节软骨缺损研究进展.中国矫形外科杂志.2008,16(12):924-926.
    17. Kamalia N, McCulloch CA, Tenebaum HC, et al. Dexamethasone recruitment of self-renewing osteoprogenitor cells in chick bone marrow stromal cell cultures. Blood.1992,79(2):320-326.
    18. Seto H, Tanaka S, Seto H, et al.Relationship between gene transfer and cartilage tissue engineering.Clin Calcium.2004,14(7):72-75.
    19. Mauck RL, Nicoll SB, Seyhan SL, et al.Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering.Tissue Eng.2003,9 (4): 597-611.
    20. Li WJ, Tuli R, Okafor C, et al.A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells.Biomaterials, 2005,26(6):599-609.
    1. Vinatier C, Bouffi C, Merceron C et al. Cartilage tissue engineering:towards a biomaterial-assisted mesenchymal stem cell therapy.Curr Stem Cell Res Ther. 2009,4(4):318-329.
    2. Muller S, Breederveld RS, Tuinebreijer WE. Results of osteochondral autologous transplantation in the knee.Open Orthop J.2010,17(4):111-114.
    3. Mauck RL, Soltz MA, Wang CC, et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng,2000,122(3):252-260.
    4. Kuo YC, Ku IN.Application of polyethyleneimine-modified scaffolds to the regeneration of cartilaginous tissue.Biotechnol Prog.2009,25(5):1459-1467.
    5. 陈书军,计宁,裴国献.可注射软骨组织工程支架材料.中国骨与关节损伤杂志,2006,21(11):942-944.
    6. Havla JB, Lotz AS, Richter E, et al. Cartilage tissue engineering for auricular reconstruction:in vitro evaluation of potential genotoxic and cytotoxic effects of scaffold materials., Toxicol In Vitro.2010,24(3):849-853.
    7. Kasemkijwattana C, Kesprayura S, Chaipinyo K, Autologous chondrocytes implantation with three-dimensional collagen scaffold.J Med Assoc Thai.2009, 92(10):1282-1286.
    8. 刘克宇,董金波,王勇.组织工程学技术修复关节软骨缺损的研究进展.农垦医学,2006,28(2):146-149
    9. Rault I, Frei V, Hue A, et al.Evaluation of different chemical methods for cross-linking collagen gel,films and sponges. J Mater Sci Mater Med,1996, (7): 215-221.
    10. Chevallay B, Abdul-Malak N, Herbage D. Mouse fibroblasts in long-term culture with in collagen three-dimensional scaffolds:Influence of crosslinking with diphenylphosphorylazide on matrix reorganization, growth, and biosynthetic activities. J Biomed Mater Res,2000(49):448-459.
    11. Sams AE, Monir RR, Wootton JA, et al. Local and remotematrix responses to chondrocyte-laden collagen scaffold implantation in extensive articular cartilage defects. Osteoarthritis Cartilage,1995,3(1):61-70.
    12. 陈富林,杨维东,毛天球,等.牛键胶原混和软骨细胞再造软骨的实验研究.实用口腔医学杂志,1999,15(5):381-382.
    13. Kawamura S, Wakitani S, Kimura T, et al. Articular cartilage repair. Rabbit experiments with a collagen gel-biomatrix and chondrocytes cultured in it. Acta Orthop Scand,1998,69(1):56-62.
    14. Taguchi T, Xu LM, Kobayashi H, et al. Encapsulation of chondrocytes in injectable alkali-treated collagen gels prepared using polyethylene glycol)-based 4-armed star polymer. Biomaterials,2005,26:1247-1252.
    15. Ibusuki S, Fujii Y, Iwamoto Y, et al. Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin:fabrication and in vitro performance. Tissue Engineering,2003, (2):371-383.
    16.葛薇,姜文学,李长虹,等.3种可注射性支架体内构建组织工程软骨的比较研究.实用骨科杂志,2005,11(5):424.
    17. Bensaid W, Triffitt JT, BlanehatC, et al. A biodegradable fibrin seaffold for mesenehymal stem cell transplantation. Biomaterials,2003,24:2497-2502.
    18. Sims CD, Butler PEM, Casanova R, et al. Injectable cartilage using poly ethylene oxide polymer substrates. Plast Reconstr Surg,1998 (5):843.
    19.何劫,杨翔,岳鹏举.纤维蛋白凝胶和脱钙骨基质支架材料复合软骨细胞修复兔膝关节软骨缺损的实验研究.中国骨伤,2009,22(7):523-526.
    20. Xu JW, Zaporojan V, Peretti GM, et al. Injectable tissue-engineered cartilage with different chondrocyte sources. Plast Reconstr Surg,2004,113 (5):1361
    21. Fortier LA, Mohammed HO, Lust G, et al. Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg (Br),2002,84 (2):276.
    22. Chenite A, Chaput C, Wang D, ea al. Novel injectable neutral solutions of chitosan from biodegradable gels in situ.Biomaterials,2000,21 (2):2115.
    23. Hoemann CD, Sun J, Legare A, et al.Tissue engineering of Cartilage using an injectable and adhensive chitosan-based cell-delivery vehicle.Osteoarthritis Cartilage,2005,13(4):318.
    24. 王东武,杨柳,段小军,等.体外构建可注射性组织工程软骨的初步研究.第三军医大学学报,2006,28(11):1145-1147.
    25.李忠,杨柳,戴刚,等,骨髓间充质干细胞在壳聚糖凝胶中体外三维培养的实验研究.四川医学.2006,27(12):1211-1212.
    26. Wan Y, Wu H, Yu AX, et al.Biodegradable polylactide/chitosan blend membranes. Biomacromolecules,2006,7:1362-1372.
    27. Martens PJ, Bryant SJ, Anseth KS. Tailoring the degradation of hydrogels formed from multivinyl poly (ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacro-molecules,2003,4(2): 283.
    28. Cho SH, Oh SH, Lee JH. Fabrication and characterization of porous alginate/ polyvinyl alcohol hybrid scaffolds for 3D cell culture.J Biomater Sci Polym Ed, 2005,16 (8):933.
    29. Miot S, Woodfield T, Daniels AU, et al. Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition. Biomaterials,2005,26(15):2479.
    30. Bryant SJ, Chowdhury TT, Lee DA, et al. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly (ethylene glycol) hydrogels. Ann Biomed Eng,2004,32(3):407.
    31. Bryant SJ, Bender RJ, Durand KL, et al. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus:engineering gel structural changes to facilitate cartilaginous tissue production.Biotechnol Bioeng,2004,86 (7) 747.
    32. Stevens MM, Qanadilo HF, Langer R, et al. A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials,2004, 25:887-894.
    33.朱海燕,丁洁,王本晓.聚合物在温度敏感型原位凝胶中的应用.齐鲁药事,2006,125(12):107-109.
    34. Paige KT, Cima LG, Yaremchuk MJ, et al. Denovo cartilage generation using calcium alginate-chondrocyte constructs. Plast Reconstr Surg,1996,97(1): 168-180.
    35.曹强,毛天球,封兴华,等.藻酸钙为载体的可注射组织工程化骨行牙槽嵴增高术的实验研究.牙体牙髓牙周病学杂志,2008,18(7):372-374.
    36. Tate MC, Shear DA, Hoffman SW, et al. Biocompatibility of methylcellulose-based constructs designed for intracerebral gelation following experimental traumatic brain injury. Biomaterials,2001,22:1113-1123.
    37. Gupta D, Tator CH, Shoichet MS. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the ingured spinal cord Biomaterials,2006,27(11):2370-2379.
    38. Vinatier C, Magne D, Weiss P,,et.al. A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes. Biomaterials,2005, 26:6643-6651.
    39. Muller FA, Muller L, Hofmann I, et al. Cellulose-based scaffold materials for cartilage tissure engineering Biomaterials,2006,27(21):3955-3963.
    40. Diduch DR, Chhabra A, Blessey P, et al.Osteochondral autograft plug transfer: achieving perpendicularity. J Knee Surg,2003,16(1):17-20.
    41.杨亚冬.关节软骨缺损修复治疗的研究进展.中国骨与关节损伤杂志,2007,2(1):85-87.
    42.朱文,段世锋,丁建东.组织工程用水凝胶材料.功能高分子学报,2004,17(4):689-696.
    43. Rachael H. Schmedlen, Kristyn S, et al.Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineeringBiomaterials,2002(23):4325-4332.
    44. GS. Sailaja, K. Sreenivasan, Y.Yokogawa, et al. Bioinspired mineralization and cell adhesion on surface functionalized poly(vinyl alcohol) films Acta Biomaterialia 2009,5(5):1647-1655.
    45. Rung-Shu Chen, Yi-Jane Chen, Min-Huey Che,et al. The behavior of rat tooth germ cells on poly(vinyl alcohol) Biomaterialia 2009,5(4):1064-1074.
    46. Devon C. Charlton BS, Margaret GE, et al.Tissure engineering. Part A,2008 (14):207-213.
    47. Miot S, Woodfield T, Daniels AU, et al. Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition. Biomaterials,2005,26 (15):2479.
    48. Cho SH, Oh SH, Lee JH. Fabrication and characterization of porous alginate/ polyvinyl alcohol hybrid scaffolds for 3D cell culture.J Biomater Sci Polym Ed, 2005,16 (8):933.
    49. Miot S, Woodfield T, Daniels AU, et al. Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition. Biomaterials,2005,26 (15):2479-2489.
    50. Kellner K, Tessmar J, Milz S, et al. PEGylation does not impairinsulin efficacy in three-dimensional cartilage culture:an investigation toward biomimetic polymers. Tissue Eng,2004,10(3):429.
    51. Williams CG, Kim TK, Taboas A, et al. In vitro chondrogenesisof bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng,2003,9 (4):679.
    52. Ibusuki S, Fujii Y, Iwamoto Y, et al. Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin:fabrication and in vitro performance. Tissue Engineering,2003, (2):371-383.
    53. Cho JH, Kim SH, Park KD, et al. Chondrogenic differentiation of human Mesenchymal stem cells using a thermosensitive poly(N-isopropyl acrylamide) and water-soluble chitosan copolymer. Biomaterials,2004,25:5743-5751.
    54. Ho E, Lowman A, Marcolongo M. In situ apatite forming injectable hydrogel Journal Of Biomedical Materials Research Part A,2007,83 (1):249-256.
    55. Jeong B, Bae YH, Kim SW. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions.Macromolecules,1999,32(21):7064-7069.
    56. Jeong B, Kibbey MR, Birnbaum JC, et al. Thermogelling biodegradable polymers with hydrophilic backbones:PEG-g-PLGA. Macromolecules,2000, 33(22):8317-8322.
    57. Chung YM, Simmons KL, Gutowska A, et al. Sol-gel transition temperature of PLGA-g-PEG aqueous solutions Biomacromolecules,2002,3(3):511-5161.
    58. 袁歆,张其清.软骨组织工程支架材料研究进展.中华整形外科杂志,2002,18(1):49-51.
    59.吴俊,孙俊英.软骨组织工程材料研究进展.中国矫形外科杂志,2004,12(3):282-284.
    60. Baiwen Qi, Aixi Yu, Shaobo Zhu, The Preparation and Cytocompatibility of Injectable Thermosensitive Chitosan/Poly(vinyl alcohol) Hydrogel. Journal of Huazhong University of science and technology(medical science),2010,30(1): 89-93.
    61. Na,K;Kim,SW;Sun,BK,et al.Blended construct consisting of thermo-reversible hydrogels and heparinized nanoparticles for increasing the proliferation activity of the rabbit chondrocyte in vivo test Biotechnology Letters,2007,29 (10): 1447-1452.
    62. Filion, Lavertu, Buschmann.Ionization and solubility of chitosan solutions related to thermosensitive chitosan/glycerol-phosphate systems. Biomacro-molecules,2007,8:3224-3234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700