用户名: 密码: 验证码:
La_2O_3、Pr_2O_3掺杂SnO_2电极陶瓷材料的制备及其烧结性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SnO_2电极具有优越的高温导电性能,具有对玻璃熔体耐腐蚀、无污染等特性,因此,SnO_2电极几乎可以用于所有玻璃品种的熔制,特别适用于含铅玻璃、光学玻璃等高档玻璃的熔制。由于纯SnO_2本身属于不导电、难烧结的材料,制备SnO_2导电陶瓷首要解决的问题是如何提高SnO_2的导电性能和烧结性能。目前国内SnO_2研究主要集中在气敏陶瓷、压敏陶瓷和导电薄膜等方面,关于SnO_2电极方面的研究很少,国产电极偏中低档,高品质电极主要依赖进口,因此,研究电学性能和烧结性能俱佳的国产二氧化锡电极成为当务之急。
     论文研究了原料制备、成型工艺和烧结工艺等方面,建立了一种新的制备SnO_2电极的工艺方法,并且探讨了不同添加剂及其含量对电极性能的影响。根据各种测试结果分析各掺杂元素、掺杂含量、烧结工艺对SnO_2电极性能的影响机理,成功的制备了电阻率和致密度均优于国产电极的新型SnO_2电极。
     考虑到纳米粉体的粒径小、比表面能大,可以改善SnO_2电极的烧结;另外化学合成法制备的纳米SnO_2原料纯度高,可以减少工业原料带来的杂质。第二章研究了复合掺杂超细SnO_2粉体的制备。采用共沉淀法制备了单元素La掺杂,La、Sb、Ce、Zn复合掺杂超细SnO_2粉体,运用共滴的方式保证pH值的恒定。由XRD和TEM测试可知,得到的SnO_2为四方晶系金红石结构,粉体呈近球形,晶粒发育完整,组织均匀细小,粒径在10-25nm;掺杂不改变SnO_2的晶型,掺杂元素La含量的增加抑制了SnO_2的结晶。
     制备好了粉体,接下来在经历了粉体造粒、干法成型、坯体烘干等过程后得到了复合掺杂SnO_2电极。第三章研究了制备过程中成型压力、烧结温度对样品电阻率的影响,确定成型压力为30Mpa,烧结温度在1300-1400℃时,SnO_2电极电阻率最小。通过添加剂对电阻率的影响发现La_2O_3、Sb_2O_3的掺杂对提高SnO_2电极的电学性能效果显著,并探讨了它们的掺杂导电机理,确定了La_2O_3、Sb_2O_3的最佳掺杂含量为1.5wt%和1.0wt%,该含量下的电阻率为98Ω·cm,远低于国产电极的185Ω·cm。
     La_2O_3的掺杂可以很好的改善SnO_2电极的导电性能,为了探索La_2O_3的掺杂量和烧结工艺对SnO_2电极致密化有什么样的影响。第四章研究确定了最佳烧结方案和最高烧结温度;在最佳烧结工艺下考察了La_2O_3掺杂量对SnO_2电极的体积密度和烧结性能的影响,探讨了La_2O_3掺杂致密化机理。结果表明La_2O_3掺杂对提高SnO_2电极的致密度有很大的帮助。随着La_2O_3含量的增加,样品的体积密度先增大后减小。当La_2O_3含量为1.5wt%时,体积密度最好,能达到6.514g·cm~(-3),优于国产电极的6.4g·cm~(-3)。
     目前SnO_2电极研究几乎没涉及到掺杂稀土元素Pr,为了研究掺杂Pr对电极性能产生的影响,第五章研究了Pr_2O_3掺杂含量对SnO_2电极性能的影响。发现Pr_2O_3的引入对改善二氧化锡电极的性能并不明显。主要是因为Pr_2O_3的引入使其他元素(Zn、La和Sb)向SnO_2晶体表面富集,破坏了SnO_2晶格的完整性和有序性,导致SnO_2电极难以致密化的同时也使其电阻率迅速上升。
Tin dioxide electrode with excellent electrically-conductive property in high temperature and good corrosion resistance to molten glass and no pollution to environment has extensive application in all kinds of glass electric-melting, especially it could be used to melt top-grade glass such as lead glass and optical glass and so on. Due to pure tin dioxide belongs to material which is not electric and hard to sinter, the chief problem needs to resolve of preparing electric tin dioxide ceramic is how to improve electrical properties and sintering properties of tin dioxide. However, nowadays the studies about tin dioxide are mainly focused on gas sensitivity ceramic, capacitor ceramic and electric films of tin dioxide, the studies about tin dioxide electrode are less, domestic electrodes have low quality and the high quality tin dioxide electrodes are still depended on import, therefore, it is urgent to study the domestic tin dioxide with excellent electrical properties and sintering properties.
     In this paper, preparation of powder, forming process and sintering process were studied, a new technics about preparation of SnO_2 electrodes was established, the influence of the different additives and their contents were discussed. According to diversified test results, the influence mechanism of every additive and its content and sintering process were also analyzed, a new type SnO_2 electrode which both had better resistivity and bulk density than domestic electrode was prepared successfully.
     Considering nano-scale powder had a good improvement on the sintering of the electrodes, and pure nano-SnO_2 raw material was prepared by co-precipitation method could reduce impurity brought by industrial raw material. Compound doped nano-SnO_2 powders prepared by co-precipitation method were studied in chapter two. SnO_2 powders singly doped by La and mixed doped by La, Sb, Ce and Zn were prepared, keeping the same pH by co-drop mode. The test results of XRD and TEM showed SnO_2 had a rutile structure of the square crystal system; a good growth grain and SnO_2 powder presented like a ball and the grain size was from 10 to 25 nanometers; additive did not change SnO_2 crystal type and the increase of La additive could inhibit the crystallization of SnO_2.
     Powders were prepared and next were powders getting wet, forming under normal pressure, drying samples and finally compound doped SnO_2 electrodes were obtained. In chapter three, after studying forming pressure and sintering temperature in the process, I found when the forming pressure was 30Mpa and sintering temperature was between 1300 and 1400℃, SnO_2 electrode had a lowest resistivity. Through the influence of the additives, I also found La_2O_3, Sb_2O_3 doped had a remarkable effect on the electrics performance and discussed the doped theory, the resistivity of electrode which had the best doped contents involved 1.5wt% La_2O_3 and 1.0wt% Sb_2O_3 is 98Ω·cm, it was lower than 185Ω·cm of the domestic electrode.
     La_2O_3 doped had a nice improvement on the electrics performance of the SnO_2 electrodes, for researching the effects of the La_2O_3 doped content and sintering process on the densification of the electrodes, the best sintering project and the highest sintering temperature were investigated, the densification theory also was discussed in chapter four, the results showed La_2O_3 doped had a big improvement on the densification of the SnO_2 electrodes. With the increase of La_2O_3 content, the bulk density of samples increased at the beginning then decreased. The best bulk density of sample doping 1.5wt% La_2O_3 was up to 6.514g·cm~(-3), it was better than 6.4 g·cm~(-3) of the domestic electrode.
     SnO_2 electrodes research hardly involved doped chemical Pr at the present time, for studying the effect of the Pr doped on the electrodes, the effects of the Pr_2O_3 doped content on the properties of the SnO_2 electrodes in the chapter five. The results showed Pr_2O_3 doped had an unconspicuous improvement on the properties of the SnO_2 electrodes. The reason mainly was doping Pr_2O_3 enriched other elements (Zn, La and Sb) on the SnO_2 crystal surfaces, and destroyed the integrality and regular arrangement SnO_2 crystal, lead to sloppy and loose electrodes at the same time made resistivity increase fast.
引文
[1]M.A.L. Margionte, A.Z. Simoes, C.S. Riccardi et al, WO_3 and ZnO-doped SnO_2 ceramics as insulating material[J], Ceramics International, 2006,32(2006):713-718
    [2]王晓兵,寇玉鹏,梁慧君等,CuO掺杂纳米SnO_2的气敏性能研究[J],电子元件与材料,2008,27(2):16-19
    [3]曾文,林志东,高俊杰,金属离子掺杂纳米SnO_2材料的气敏性能及掺杂机理[J],纳米技术与精密工程,2008,6(3):174-179
    [4]龚树萍,邱原,周东祥,Cu/Sb掺杂SnO_2纳米晶薄膜的H_2S气敏特性[J],电子元件与材料,2007,26(11):4-7
    [5]孙红娟,彭同江,樊亮等,Cu掺杂SnO_2纳米粉体的制备及气敏特性[J],精细化工,2008,25(9):833-837
    [6]Wang jin-feng, Chen hong-cun, Su wen-bin et al, Grain size effects of (Co,Ta)-doped SnO_2 varistor induced by doping Sr[J], Electronic Components and Materials, 2005,24(7): 1-4
    [7]Y. Sawada, L.perazolli, J.A.Varela et al, Evolution of Water Vapor from Indium-Tin-Oxide Transparent Conducting Films Fabricated by Dip Coating Process[J], Journal of Thermal Analysis and Calorimetry, 2004,77(3): 751-757
    [8]闫军峰,张志勇,邓周虎等,SnO_2(Sb,In)透明导电薄膜的制备及其性能研究[J],华中科技大学学报(自然科学版),2007,35(1):81-85
    [9]沈观清,玻璃窑内的电极应用[J],玻璃与搪瓷,2004,32(4):34-37
    [10]张雪凤,常鹏北,孙建科等,SnO_2基陶瓷的制备及其性能研究[J],材料开发与应用,2007,22(3):1-5
    [11]荆忠国,樊刚,张德丰等,纳米SnO_2材料制备技术研究进展[J],南方金属,2007(158):5-8
    [12]王志强,张伟凤,纳米SnO_2微粒的制备方法及其进展[J],湖州师范学院学报,2008,30(1):52-55
    [13]张建荣,高濂,顾立新,水热合成纳米氧化锡粉体的烧结性能[J],无机化学学报,2006,22(11):2001-2004
    [14]王东新,钟景明,孙本双等,水热合成法对纳米氧化锡粉体粒径和形貌的控制研究[J],无机化学学报,2008,24(6):892-896
    [15]刘伟,宋玉哲,喇培清等,SnO_2纳米粉体的水热制备及其气敏性能研 究[J],传感技术学报,2009,22(2):183-186
    [16]刘欢,龚树萍,赵俊等,水热法合成纳米晶SnO_2的气敏性能研究[J],华中科技大学学报(自然科学版),2009,37(2):28-31
    [17]王志强,张伟凤,二氧化锡纳米微粒的制备与表征[J],伊犁师范学院学报(自然科学版),2008(1):25-27
    [18]姚敏琪,卫英慧,胡兰青等,SnO_2纳米粉体制备及其气敏性能研究[J],稀有金属材料与工程,2004,33(1):105-108
    [19]庞承新,张丽霞,谭健等,溶胶-凝胶法制备纳米二氧化锡的研究[J],广西师范学院学报(自然科学版),2006,23(3):26-30
    [20]王静,冯玉杰,溶胶-凝胶法制备稀土Gd掺杂SnO_2电催化电极的试验研究[J],环境污染治理技术与设备,2005,6(7):19-24
    [21]连进军,李先国,冯丽娟等,溶胶-凝胶-冷冻干燥技术制备纳米二氧化锡及其表征[J],化学世界,2004(4):171-174
    [22]吕逵弟,余林,吴雅红等,二氧化锡超细粉体的制备及研究进展[J],无机盐工业,2005,37(4):7-11
    [23]郭广生,危晴,王志华等,均匀沉淀法制备纳米氧化锡粒子[J],化学通报,2004(3):210-213
    [24]彭迎慧,徐旺生,配合-均相沉淀法制备纳米掺锑氧化锡[J],无机盐工业,2008,40(3):30-34
    [25]张久兴,张艳峰,液相共沉淀法制备纳米ITO粉体[J],稀有金属材料与工程,2006,35(3):451-454
    [26]李启厚,何峰,高宇波等,喷雾热分解法制备超细Sn02粉体及工艺参数优化[J],机械工程材料,2009,33(4):50-54
    [27]孙明,余林,郝志峰等,柠檬酸微波加热法合成纳米二氧化锡[J],精细化工,2005,22(6):423-425
    [28]Li huai-xiang, Qin hong-wu, Zhou hong-wei et al, Transparent and Conductive Films of SnO_2-ZnO Alternate Multilayer Obtained by Sol-Gel Method[J],Nano-processing Technique, 2009, 6(1):34-40
    [29]L.Perazolli, A.Z. Simoes, U.Coleto Jr, Structural and microstructural behaviour of SnO_2 dense ceramics doped with ZnO and WO_3[J], Materials Letters,2005(59): 1859-1865
    [30]Z.M. Tian, S.L. Yuan, J.H. He et al, Structure and magnetic properties in Mn doped SnO_2 nanoparticles synthesized by chemical co-precipitation method[J], Alloys and Compounds, 2007, 2008(466):26-30
    [31]KM. Filho, A.Z. Simoes, A. Ries et al, Nonlinear electrical behaviour of the Cr_2O_3, ZnO, CoO and Ta_2O_5-doped SnO_2 varistors[J], Ceramics International, 2005,2006(32):283-289
    [32]I.P. Silva, A.Z. Simoes, F.M. Filho et al, Dependence of La_2O_3 content on the nonlinear electrical behaviour of ZnO, CoO and Ta_2O_5 doped SnO_2 varistors[J],Materials Letters, 2006, 2007(61):2121-2125
    [33]陈洪存,王春明,王奉等,Nd_2O_3掺杂对SnO_2压敏电阻电学性能的影响2008年中国电子学会第十五届电子元件学术年会,2008,98-102
    [34]高燕,李健,吉雅图等,稀土Nd掺杂纳米SnO_2薄膜气敏特性[J],传感器技术,2005,24(6):29-31
    [35]杨建广,唐谟堂,杨声海等,锑掺杂ITO导电机理及制备方法研究现状[J],材料导报,2004,18(3):17-20
    [36]K. Sato, H. Yugami, T. Hashida et al, Effects of rare-earth oxides on fracture properties of ceria ceramics [J], Materials Science, 2004, 39(18): 5765-5770
    [37]A. Marsal, A. Cornet, J.R. Morante et al, Study of the co and humidity inter ference in La doped tin oxide CO_2 gas sensor[J], Sensors and Actuators,2003,2003(94):324-329
    [38]I. Stambolova, K.Konstantinov, S. Vassilev et al, Lanthanum doped SnO_2 and ZnO thin films sensitive to ethanol and humidity[J], Materials chemistry and Physics, 1999,2000(63):104-108
    [39]严继康,甘国友, 陈海芳等, (Nb、La)共掺杂TiO_2压敏陶瓷第二相的研究[J],压电与声光,2008, 30(1):67-70
    [40]韦瑶,李珍,La_2O_3、Y_2O_3掺杂对(Na_(0.5)Bi_(0.5))_(0.94)Ba_(0.06)TiO_3无铅压电陶瓷性能的影响[J],材料开发与应用,2008,23(4):1-4
    [41]刘文生,黄文德,云月厚等,掺杂CeO_2对制备SnO_2电热膜电学性能的影响[J],中国稀土学报,2005(23):74-76
    [42]C. Bouzidi, H. Elhouichet, A. Moadhen et al, Sensitisation of erbium emission by silicon nanocrystals-doped SnO_2[J], Luminescence, 2009(129):30-33
    [43]范会涛,张彤,漆奇等,掺Sm_2O_3的SnO_2纳米粉体对C_2H_2气敏特性的研究[J],半导体学报,2008,29(2):319-323
    [44]王静,孙春峰,吴发超等,稀土Gd掺杂SnO_2-Sb涂层样机电催化氧化甲基橙[J],化工环保,2009,29(1):14-17
    [45]闫君,李健,汪良等,稀土Dy掺杂纳米SnO_2薄膜的结构与气敏特性[J],功能材料与器件学报,2009,15(4):321-326
    [46]J.A. Aguilar, M.B. Hernandez, M.I. pech et al, A compararive study between the mixed-oxide and high-energy milling planetary method on electrical and microstructural properties for a SnO_2-based ceramics system[J], Materials processing Technology, 2009(209):318-323
    [47]徐淑雷,倪亚茹,陆春华等,Sb掺杂SnO_2纳米颗粒的微波辅助溶剂热合成[J],南京工业大学学报(自然科学版),2008,30(4):16-19
    [48]张哲,张鸿,汪健等,新型Sb掺杂SnO_2基NTC热敏材料的研制[J],电子元件与材料,2009,28(6):56-59
    [49]杨芬,张永伍,汪帆等,掺锑二氧化锡纳米粉末的制备及电化学性质研究[J],曲靖师范学院学报,2007,26(6):13-15
    [50]王艳,任衍燕,郝春燕等,掺锑二氧化锡电极光电催化降解甲基橙的研究[J],太原科技大学学报,2009,30(4):350-354
    [51]周秉明,申利春,曹建新,纳米SnO_2/ZnO复合氧化物的制备及制备条件对光催化性能的影响[J],化学研究与应用,2008,20(6):705-709
    [52]刘洁,宁伟,汪庆卫等,掺杂ZnO对SnO_2电极烧结性能的影响[J],化工新型材料,2009,37(2):76-78
    [53]C. R. Foschini, Y.K. Sudo, M.S. Kamo et al, Sintering of tin oxide using zinc oxide as a densification aid[J], Materials Science , 2004, 39(18): 5825-5830
    [54]刘元隆,吴建刚,吴小琴等,CeO_2/SnO_2纳米材料的制备与气敏性能研究[J],化学研究与应用,2008(1):26-29
    [55]Ingrid T. Weber, Antoninho Valentini, Luiz Fernando et al, Catalytic activity of nanometric pure and rare earth-doped SnO_2 samples [J], Materials Letters,2008(62): 1677-1680
    [56]刘伶俐,刘秀芹,申树芳等,掺杂La_2O_3的SnO_2纳米颗粒的制备及对三甲胺气敏性能的研究[J],化学研究与应用,2008,20(12):1546-1550
    [57]黄新文,刘春前,卢小钦等,La掺杂SnO_2/Ti阳极电催化氧化4-硝基苯酚研究[J],水处理技术,2008,34(9):44-46
    [58]Wang hong-xia, Yan yu, Y.sh. Mohammed et al, First-principle study of magnetism in Co-doped SnO_2[J], Magnetism and Magnetic Materials, 2008(3):1-6
    [59]Z. Ling, C. Leach, R. Freer, NO_2 sensitivity of a heterojunction sensor based on WO_3 and doped SnO_2[J], European Ceramics Society, 2003(23): 1881-1891
    [60]杨秀玲,丁士华,宋天秀等,CoO掺杂MgTiO_3-CaTiO_3介质陶瓷的介电性能[J],西华大学学报(自然科学版),2008(5):47-50
    [61]何则强,熊利芝,刘文萍等,新型纳米SnO_2-CuO复合氧化物负极材料的制备与电化学性能[J],稀有金属材料与工程,2007,36(3):455-458
    [62]罗国强,李捷,张东明等,含MnO_2和Sb_2O_3的SnO_2基陶瓷烧结致密化和导电性能的研究[J],耐火材料,2007,41(2):108-112
    [63]古映莹,宋丰轩,杨天足等,Ag/SnO_2电接触材料的制备及烧结条件对密度的影响[J],粉末冶金材料科学与程,2007,1(12):39-43
    [64]杨敏鸽,王俊勃,张燕等,稀土La对化学共沉淀法制备纳米SnO_2结构的影响[J],材料导报,2006,20(4):161-163
    [65]Zhang maolin, Feng xuan, Yang weiwei et al. Novel preparation of nanosized ZnO-SnO_2 with high photocatalytic activity by homogeneous co-precipitation method[J],Materials Letters, 2005(59): 3641-3644
    [66]贾锐军,彭同江,孙红娟等,pH值在掺Ni纳米SnO_2粉末制备中的作用[J],化工新型材料,2007,35(8):31-34
    [67]胡勇,陈国建,陈雪梅等,掺锑二氧化锡纳米棒的制备及表征[J],华东理工大学学报(自然科学版),2005,31(1):115-118
    [68]杜保立,崔燕岭,王海英等,Al_2O_3/SnO_2纳米复合粉体制备及其红外吸收特性研究[J],河南师范大学学报(自然科学版),2007,35(1):68-70
    [69]吴晓春,汤国庆,张桂镧等,表面包覆的SnO_2纳米微粒的红外振动特性[J],光学学报,1995,15(10):1355-1358
    [70]曾玉凤,刘自力,秦祖赠等,臭氧在SnO_2表面吸附的红外光谱研究[J],光谱学与光谱分析,2008,28(5):1035-1037
    [71]潘庆谊,张剑平,董晓雯等,溶胶-凝胶法制备二氧化锡薄膜[J],硅酸盐通报,2001(1):6-9
    [72]刘小珍,桑文斌,陈捷等,Nd和Sb掺杂SnO_2导电粉体的红外光谱研究[J],光谱实验室,2005,22(2):395-397
    [73]李善评,曹翰林,胡振,稀土La掺杂Yi/Sb-SnO_2电极的制备及性能研究[J],无机化学学报,2008,24(3):369-374
    [74]刘伶俐,稀土氧化物掺杂SnO_2材料的制备及对TMA气敏性的研究,[硕士毕业论文],上海:华东师范大学,2008
    [75]汪庆卫,宁伟,罗理达,二氧化锡电极及其研究[J],功能材料增刊,2004:1042-1045
    [76]梅松柏,宁伟,汪庆卫等,La_2O_3掺杂对SnO_2基陶瓷显微结构与电阻率的影响[J],人工晶体学报,2009,38(4):943-946
    [77]厉炯慧,黄新文,叶敏等,La掺杂SnO_2/Ti电极电催化降解硝基苯酚[J],环境污染与防治,2009,31(8):60-66
    [78]王银玲,徐雪青,徐刚等,锑掺杂纳米SnO_2透明导电薄膜的制备与性能研究[J],光学仪器,2008,30(3):68-72
    [79]方文,黄新文,成型压力对基体体积密度、吸水率和显气孔率影响的探讨[J],中国陶瓷,2007,43(4):25-27
    [80]高瑞平,先进陶瓷物理与化学原理及技术,上海:科学出版社,2001:281
    [81]韩国成,刘峥,王永燎,Pr改性SnO_2/Ti电催化电极制备、表征及性能的研究[J],稀土,2008,29(2):30-34
    [82]李善评,胡振,曹翰林,钕改性钛基SnO_2/Sb电催化电极的制备及表征[J],中国稀土学报,2008,26(3):291-297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700